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Spatial patterns in ecology contain useful information about underlying mechanisms and

processes. Although there are many summary statistics used to quantify these spatial

patterns, there are far fewer models that directly link explicit ecological mechanisms to

observed patterns easily derived from available data. We present a model of intraspecific

spatial aggregation that quantitatively relates static spatial patterning to negative density

dependence. Individuals are placed according to the colonization rule consistent with

the Maximum Entropy Theory of Ecology (METE), and die with probability proportional

to their abundance raised to a power α, a parameter indicating the degree of density

dependence. This model can therefore be interpreted as a hybridization of MaxEnt

and mechanism. Our model shows quantitatively and generally that increasing density

dependence randomizes spatial patterning. α = 1 recovers the strongly aggregated

METE distribution that is consistent with many ecosystems empirically, and as α → 2 our

prediction approaches the binomial distribution consistent with random placement. For

1 < α < 2, our model predicts more aggregation than random placement but less than

METE. We additionally relate our mechanistic parameter α to the statistical aggregation

parameter k in the negative binomial distribution, giving it an ecological interpretation

in the context of density dependence. We use our model to analyze two contrasting

datasets, a 50 ha tropical forest and a 64 m2 serpentine grassland plot. For each dataset,

we infer α for individual species as well as a community α parameter. We find that α is

generally larger in the tightly packed forest than the sparse grassland, and the degree of

density dependence increases at smaller scales. These results are consistent with current

understanding in both ecosystems, and we infer this underlying density dependence

using only empirical spatial patterns. Our model can easily be applied to other datasets

where spatially explicit data are available.

Keywords: aggregation, community assembly, density dependence, macroecology, METE, scale, spatial ecology,

theoretical ecology

1. INTRODUCTION

Spatial patterns in ecology have been studied extensively (e.g., Wiegand andMoloney, 2013; Diggle,
2014), and contain useful information about what processes shape ecosystems (Law et al., 2009;
Brown et al., 2011; Münkemüller et al., 2020). Quantitative understanding of these patterns can
therefore be used to infer the importance of various mechanisms, and illuminate underlying

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2021.691792
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2021.691792&domain=pdf&date_stamp=2021-06-24
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles
https://creativecommons.org/licenses/by/4.0/
mailto:micbru@berkeley.edu
https://doi.org/10.3389/fevo.2021.691792
https://www.frontiersin.org/articles/10.3389/fevo.2021.691792/full


Brush and Harte Density Dependence and Spatial Patterning

processes (Levin, 1992; Rosenzweig, 1995; Brown et al., 2016).
Additionally, models of spatial patterns allow us to better model
and predict ecosystem response to natural and anthropogenic
disturbances (Thomas et al., 2004; Newman et al., 2020),
are critical in understanding the well studied species-area
relationship (Arrhenius, 1921; Plotkin et al., 2000; Drakare et al.,
2006; Harte and Kitzes, 2015), and have applications in reserve
designs and conservation (Kitzes and Shirley, 2016).

A common approach to quantifying these patterns is the
use of various summary statistics (Wiegand et al., 2013),
which have been shown to be able to distinguish different
ecological mechanisms (Brown et al., 2016). Here we take a
slightly different approach and directly model the impact of
an important mechanism in population dynamics: intraspecific
negative density dependence. We focus on the effects of this
ecological mechanism on spatial patterning.

More specifically, we consider the effects of intraspecific
negative density dependence on the spatially explicit species-
level abundance distribution. This distribution, 5(n|A,A0, n0),
is defined as the probability that if a species has n0 individuals
in a plot of area A0, then it has n individuals in a randomly
selected subplot of area A. In this analysis, we will focus on
this distribution in bisected plots where A = A0/2. Studying
bisections is well-motivated theoretically as it often leads to
simpler expressions which can be easily compared across models.
Here it keeps our model analytically tractable and facilitates
comparison to empirical data. We note limitations to this
approach in the section 4.

One prediction of the function 5(n|n0) comes from
the Maximum Entropy Theory of Ecology (METE), which
successfully and simultaneously predicts many macroecological
patterns (Harte, 2011; Harte and Newman, 2014) across a wide
range of spatial scales, taxa, and habitats (White et al., 2012;
Xiao et al., 2015). METE predicts very strong spatial aggregation,
which is consistent with many observed ecosystems, and obtains
the functional form of 5(n) by maximizing entropy while
constraining the mean number of individuals in a subplot.
However, the same functional form can be obtained using a
colonization rule, which is the approach we will use in our model.

Colonization rules assign spatial locations to new individuals
based on the location of existing individuals. Chapter 4.1.2 in
Harte (2011) shows that using the Laplace rule of succession as
a colonization rule results in the same geometric distribution
for 5(n) that METE predicts. Because METE agrees well with
empirical data in many cases, we will use this colonization rule
in our model. Occasionally, however, we see that the empirical
degree of aggregation is less than the METE prediction (Conlisk
et al., 2012; McGlinn et al., 2015). To study this, Conlisk et al.
(2007) added an extra parameter to the relevant colonization rule
that allows 5(n) to vary, but it has no mechanistic interpretation
and is used only as a free fit parameter.

We derive a new model that uses the colonization rule
consistent with METE and adds a density dependent death
rule. This means our model can be viewed as a density
dependent extension of METE, and in that sense hybridizes
MaxEnt and mechanism. Our model introduces a parameter
α which quantifies the degree of intraspecific negative density

dependence. This parameter can be fit to empirical spatial
data to predict the strength of underlying density dependence.
However, as with all models inferring process from pattern, there
are many underlying mechanisms that lead to similar spatial
patterns (Vellend, 2016; Leibold and Chase, 2018), and we cannot
definitively attribute any pattern to a single process.

More generally, our model predicts a more random spatial
arrangement with stronger negative density dependence and
more spatial aggregation with weaker density dependence. While
empirically there is an apparent qualitative relationship between
species density and aggregation (Condit et al., 2000; Bagchi
et al., 2011; Comita et al., 2014), our aim here is to establish a
general quantitative statement relating density dependence and
spatial aggregation.

2. MATERIALS AND METHODS

In this section, we review the Maximum Entropy Theory
of Ecology (METE) and its prediction for the species-level
abundance distribution, 5(n). We then contrast this prediction
of strong aggregation to the well-known random placement
model (Coleman, 1981), which predicts no spatial aggregation.
Given that most species are aggregated (He and Gaston, 2000;
Kitzes, 2019), but not all are as aggregated as predicted by METE
(Conlisk et al., 2012), the aggregation of most species should fall
somewhere between these two predictions for 5(n).

We then introduce a density dependent death rule to combine
with the colonization rule consistent with METE, and derive
the resulting 5(n) distribution. This derivation assumes a steady
state between deaths and new individuals in a single species,
but our results should hold if this assumption is relaxed (see
section 4).

Finally, we discuss the techniques used to compare our
predicted distribution to data, and describe the datasets used in
our analysis.

Relevant code for the resulting 5(n) distribution and
data analysis is available at https://github.com/micbru/density_
dependence_public.

2.1. The Maximum Entropy Theory of
Ecology (METE)
In METE, the 5(n) function is given by maximizing the
information entropy of the 5(n) distribution given the following
constraint (Harte et al., 2008; Harte, 2011, Chapter 7.4):

n0
∑

n=0

n5(n|A,A0, n0) =
n0A

A0
. (1)

This leads to the following distribution

5(n|A,A0, n0) =
e−λ5n

Z5

(2)

where Z5 is a normalization factor, and λ5 is the Lagrange
multiplier determined by the constraint condition.
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In the case of a bisection, A = A0/2 and the 5 function
simplifies to

5(n|n0) =
1

n0 + 1
, (3)

which is independent of n. This means that given n0 individuals,
any arrangement of them on the two sides of a bisected plot
or quadrat is just as likely as any other. In other words,
this is equivalent to equal probability for each unique spatial
arrangement of unlabeled individuals (Haegeman et al., 2010).

Ecologically this prediction translates to very strong spatial
aggregation, as individuals are equally as likely to all be on one
side of the bisection as to be evenly divided on each half. This is
in agreement with many datasets (Harte et al., 2008; Harte, 2011,
Chapter 8.3) but fails in others, where the theory over-predicts
aggregation (Conlisk et al., 2007; McGlinn et al., 2015). This
empirical agreement is why we choose the METE distribution as
our starting point.

The prediction from METE is equivalent to the distribution
obtained from using the Laplace rule of succession as a
colonization rule (Harte, 2011, Chapter 4.1.2). This rule states
that in a colonization process, the probability of placing an
individual on one side of the bisected area is roughly proportional
to the fraction of individuals already there. This “rich get richer”
effect results in strong spatial aggregation. The probability for
placing an individual on the left half of a bisected plot with nL
individuals on the left and nR individuals on the right is

pL =
nL + 1

nL + nR + 2
.

To make our notation consistent with that above, let the number
on the left be n and the total number to be n0. The probabilities
of a new individual arriving on the left or on the right are then:

pL(n|n0) =
n+ 1

n0 + 2
,

pR(n|n0) =
n0 − n+ 1

n0 + 2
.

(4)

If we place n0 individuals using this rule, the resulting probability
distribution is given by Equation (3).

2.2. Random Placement
Another model for spatial ecology, perhaps the simplest, is
the random placement model (Coleman, 1981). Instead of the
placement rules in Equation (4), each individual is placed
randomly. In a bisected plot this means each individual has a 50
percent chance of being placed on either side, pL = pR = 0.5.
Placing n0 individuals this way gives the binomial distribution

5RP(n|n0) =
(

n0

n

) (

1

2

)n0

(5)

which, if n0 is large, means we are very likely to have roughly
half the individuals on each side. This is equivalent to having no
spatial aggregation; there is no preference for any new individual
to stay close to any previous individual as each placement is a
random coin flip.

2.3. Deriving the 5(n) Distribution With a
Density Dependent Death Rule
We now introduce an intraspecific density dependent death rule
in addition to the METE colonization rule in Equation (4). To
allow for general density dependence, we set the death rate
proportional to nα . The parameter α determines the strength
of the density dependence, and can be inferred from the data.
Density dependencemay result from resource limitation, or some
other mechanism (e.g., the Janzen-Connell effect, Janzen, 1970;
Connell, 1971).

In the case of a bisected plot, each death must be on the left
or right. Thus, given that we have one death in a species, the
probabilities that the death is on the left, pD,L, or on the right,
pD,R, are

pD,L(n|n0) =
nα

nα + (n0 − n)α

pD,R(n|n0) =
(n0 − n)α

nα + (n0 − n)α
.

(6)

Now that we have the colonization and death rules (Equations 4
and 6), we can derive the general 5α(n|n0) for bisections. We
will assume the population size of the species is constant and step
the model forward over time, where at each step in the model
we will have one death followed by the placement of one new
individual within a species. Each placement can be interpreted
ecologically as a birth or as the immigration of an individual from
the same species. We can then solve for the resulting steady state
distribution where we reach an equilibrium in the spatial pattern.

There are several approaches for deriving the steady state
solution for such a system. Here, we equate the rates leaving and
entering any individual state 5α(n|n0). We take the probability
that we start with n individuals on the left, one on the right dies
and then one is placed on the left resulting in n + 1 individuals
on the left, and equate that to the probability that we have n + 1
individuals on the left, one on the left dies and then one is placed
on the right resulting in n individuals on the left. We could have
equivalently done the same thing with n and n−1. Equating these
rates using the probabilities in Equations (4) and (6) leads to a
recursion relation. Solving it gives a general stationary solution
for 5α with a given n0 and α:

5α(n|n0) =
nα + (n0 − n)α

C(n0,α)n
α
0

(

n0

n

)α−1

(7)

where C(n0,α) is the overall normalization that does not have
a closed analytic form. In the case that n0(α − 1) is large, an
approximate form for the normalization is

C =
2n0(α−1)πn0√

α − 1

(

1

2πn0

)α/2

. (8)

See Supplementary Material 1 for the details of this derivation.
If α = 2, we can solve for the normalization explicitly to get

5α=2(n|n0) =
n2 + (n0 − n)2

2n0−1n0(n0 + 1)

(

n0

n

)

, (9)
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and if α = 1, we recover the METE prediction
5α=1(n|n0) = 1

n0+1 .

2.4. Comparing to Data
Inferring the degree of intraspecific density dependence in
empirical data requires obtaining a value of α consistent with
the data. Bisection predictions can be compared to data by
rank ordering the fraction of individuals present in one half
of the plot for each species (e.g., Harte, 2011). This method,
however, ignores species abundance and does not account
for the likelihood of individual data points. This can lead
to incorrect conclusions about which model is preferred (see
Supplementary Material 2).

We instead find the maximum likelihood α given the data,
where we minimize the sum of the negative logs of the
probabilities given data points ni and n0,i, where i labels each
quadrat for a given species. Inferring α using this method gives
us the values that are the most consistent with the data, even if
they may not look like they agree with the rank ordered fractions
(Supplementary Figure 1 and Supplementary Table 1).

The statistical error in estimating α this way goes as 1/
√
p

where p is the sample size (see Supplementary Material 3). We
can also get some idea of error from the maximum likelihood
estimate itself by considering the width of the likelihood
distribution, however for Figures 3, 4, we do not include these
error bars as they are smaller than the data points.

For determining α for individual species, we will require
multiple bisections and the sample size p will be roughly the
number of cell pairings, p ≈ 2b−1, where b is the number of
bisections. There will be fewer data points in practice as some
cell pairings will be empty.

We can also define a community α, assuming each species
follows the same death rule with identical α. In this case, we will
have a larger sample size. For a single bisection, we will have a
sample size p equal to the number of species, p = S0. For multiple
bisections where we consider the species on aggregate, the sample
size will be roughly equal to the number of species multiplied by
the number of cells, p ≈ S02

b−1. Again, the equality is not exact
as not all cell pairings beyond the first bisection will have all of
the species present at the single bisection level.

In both the case of the species-level and community-level α,
we will bisect single plots more than once (into quadrants, then
into 8 cells, etc.) when comparing the model to data. In our
analysis, we begin by bisecting the plot in half in one direction,
then bisecting each of the resulting plots in the opposite direction.
We alternate this bisection pattern until we have 2b cells. We can
then combine adjacent cells (either left/right or up/down) as if
they were single plots with abundance n0,i, where i will index the
plots and range from 1 to 2b−1. We then choose the abundance
on one half to be ni. This method gives us 2b−1 points.

Additionally, in this analysis we will only consider species that
could have at least one individual per bisection (n0 > 2b−1). The
smallest scale we consider in our datasets is b = 8, so when we
bisect the plot more than once we will only consider species with
more than 128 individuals. This restriction ensures that we do not
have too many plots with only a few individuals present. If n0 is
very small,5α(n) is not particularly sensitive to α and it becomes

very difficult to reliably infer α from the data. For n0 ≤ 2, 5α(n)
does not depend on α.

2.5. Data Used
We will compare our results to two contrasting datasets. First,
we will use data from a sparse Californian serpentine grassland
site (Green et al., 2003, 2019) at the McLaughlin University of
California Natural Reserve censused in 1998. This is a 64 m2 plot
divided into 256 cells with 24 species and 37 182 individuals.
There are 10 species with abundance greater than 128 individuals
that constitute 36 783 individuals.

Second, we will use data from Barro Colorado Island (BCI) in
Panama (Condit, 1998; Hubbell et al., 1999, 2005; Condit et al.,
2019), a 50 ha plot in a moist tropical forest. We will work with
the 2005 census and consider plants with a diameter at breast
height (dbh) greater than 10 cm. This dataset has 229 species and
20,852 individuals, and 40 species with abundance greater than
128 individuals that constitute 15,960 individuals.

3. RESULTS

3.1. Comparison to METE and Random
Placement
Figure 1 compares the bisection predictions for 5(n) from
METE, random placement, and our density dependent model for
various α, at n0 = 10 and 50. In general, our model predicts that
increasing negative density dependence (larger α) leads to more
random spatial patterning, and less density dependence (smaller
α) leads to stronger aggregation.

We can relate our distribution directly to both the METE and
random placement distributions for different values of α. α = 1
corresponds exactly to the METE solution, which makes sense
given that the placement and death rules are both linear in n.
As α → 2, our distribution approaches the random placement
prediction if n0 is large enough (Supplementary Material 4

shows this result analytically). For 1 < α < 2, we vary
continuously between METE and random placement. We can
make the distribution even more spatially aggregated thanMETE
with α < 1 and even less than random placement (overdispersed)
with α > 2.

We can also relate this distribution to the commonly used
conditional negative binomial distribution (Bliss and Fisher,
1953; He and Gaston, 2000, 2003; Green and Plotkin, 2007) in
the limit of large n0, assuming that matching the peak of the
distributions is a good approximation for the entire distribution.
In that limit, the aggregation parameter k is approximately
related to the density dependent parameter α by

k ≈
n0

2

(

α − 1

2− α

)

+ 1. (10)

Note that this approximation holds for 1 ≤ α ≤ 2, which
should be the ecologically relevant range for most species as
most species will be more aggregated than random placement,
and less aggregated than METE. This also allows the aggregation
parameter k to be interpreted mechanistically as the degree of
density dependence, in that higher k corresponds to higher α and
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FIGURE 1 | Comparison of the bisection probability distributions 5(n) from METE, random placement (RP), and our density dependent model with varying α at (A)

n0 = 10 and (B) n0 = 50. At α = 1, our model corresponds exactly to METE. At larger n0, α → 2 approaches the random placement distribution. Our model varies

continuously between METE and random placement for 1 < α < 2.

greater density dependence. See Supplementary Material 5 for
the derivation.

3.2. Individual Species
Since the 5 function is defined on the species level, we
can consider each species separately and find the maximum
likelihood α for each. To do this we have to go beyond the
first bisection to get multiple data points for the same species at
smaller scales.

For the serpentine data, we exclude Eriogonum nudum from
the following figures as an outlier (see section 4). This leaves 9
species with abundance greater than 128 individuals.

Figure 2 shows the distribution of α values among the species
at each scale, for both the serpentine and BCI data. The median
α increases at smaller scales for both datasets, and is higher
overall at the BCI dataset, even though the absolute scale is
much larger. The spread in α is quite large, but this variation is
expected considering the small number of data points, especially
for rarer species. Most species have an α between 1 and 2, which
is somewhere between the aggregation predicted by METE and
random placement.

3.3. Community α
We can instead treat α as a community parameter, using each
species as a single data point to recover a community α. Figure 3
shows the direct comparison between our model prediction and
the serpentine and BCI datasets at the single bisection level. Each
data point is the observed fraction of individuals in one half of
the plot vs. the species abundance. The curves in this figure show
the 95% contour intervals for the5(n|n0) distributions predicted
by METE, random placement, and our density dependent model
with the maximum likelihood α value. We can see that with
increasing n0, the random placement model narrows quickly to

having most of its probability weight around 0.5, whereas the
METE contours are very wide.

At the single bisection level, the maximum likelihood result
for the serpentine dataset is nearly indistinguishable from α = 1,
so the confidence interval curves on the plot for METE and the
density dependent model overlap for most n0. For the BCI data,
the maximum likelihood value is α = 1.12, slightly larger than
1. In this case, where 1 < α < 2, we see the width of the
predicted distribution is between METE and random placement.
The likelihoods for each of the models are shown in Table 1.

3.4. Scale Dependence in Community α
Going beyond the first bisection allows us to see how α varies
depending on the scale of our plot. Figure 4 shows how α

scales with fractional area for both the serpentine and BCI plots.
Density dependence increases at smaller scales in both datasets.
The trend in community α across scales is similar to the median
α in the single species analysis, though the median α is in general
slightly larger than the community α. Note that here we restrict
our analysis to species with n0 > 128 for all scales so that we are
including the same species across scales.

4. DISCUSSION

Our model establishes a quantitative relationship between the
spatially explicit distribution 5(n) and the parameter α, which
measures the strength of negative density dependence. This
can be seen in Figure 1, where the 5α(n) distribution flattens
with smaller α, indicating greater aggregation, and broadens
as α increases. Importantly, the parameter α has a direct
interpretation as quantifying the strength of negative density
dependence. Further, our relationship in Equation (10) allows us
to interpret the parameter k in the negative binomial distribution
in the same intuitive way.
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FIGURE 2 | Boxplots for α among the species at different scales at both sites, where panel (A) shows 10 species from the Serpentine dataset, and panel (B) shows

40 species from the BCI dataset. In both cases at smaller scales α is larger, and we see a relatively large spread in α across species at the same scale. The boxplots

show boxes from quartile 1 (Q1) to quartile 3 (Q3) with a line at the median. The whiskers extend to 1.5×(Q3-Q1). The remaining points are plotted as individual circles.

4.1. Comparing Species and Community α
In our analysis, we consider α both as a separate parameter for
each species (as in Figure 2), and as a community parameter
where each species has the same α (as in Figures 3, 4). The
community α is harder to interpret ecologically, but we include
it to allow for comparisons with models with community level
aggregation parameters (e.g., Volkov et al., 2005; Conlisk et al.,
2007). To analyze and compare the accuracy of the species-level
α and the community α, we considered the Akaike Information
Criterion (AIC) in both cases across scales (Table 2). This
was calculated for single species as the negative log-likelihood
summed over each species with the number of parameters equal
to the number of species, whereas for the community α there
was only a single α parameter. For both serpentine and BCI at all
scales considered, we find that the AIC is lower with species-level
α compared to a single community α, despite the inclusion of 9
more parameters in the case of the serpentine data and 228 more
parameters in the case of the BCI data. We therefore conclude
that a separate α for each species describes the data better than a
single community α.

4.2. Comparing Serpentine and BCI
We use our model to directly compare our results between
our two contrasting datasets, serpentine and BCI. Because the
serpentine site was very sparse, whereas the BCI forest is
tightly packed, we expect higher α values and greater density
dependence at BCI than at the serpentine site. This is consistent
with our inferred values of α at both the individual species level
and at the community level.

Another difference between the serpentine and BCI sites is
how well other macroecological distributions agree with METE.
METE well describes other patterns at the serpentine site, and
does less well at explaining the BCI data. Given that α = 1
corresponds to the METE prediction for 5(n), we might expect

that ecosystems well-described by other METE predictions will
have α ≈ 1, as these systems will generally be consistent with
METE. This is consistent with our analysis here as the median
and community αs for the serpentine data are approximately 1 at
the largest scale, whereas at BCI the median and community αs
are larger than 1.

Because METE predictions seem to hold for relatively static
and undisturbed ecosystems (Newman et al., 2020), this suggests
interpreting an increase in density dependence away fromMETE
(α > 1) as a kind of ecological disturbance. A biological
example of strong density dependent mortality as a result of
disturbance could be the self-thinning of trees in forest recovery
from wildfire, such as bishop pines in coastal California (Harvey
et al., 2014). This interpretation is in line with the recently
proposed DynaMETE theory (Harte et al., 2021), which models
specific mechanistic disturbances away from METE to predict
macroecological patterns.

4.3. Scaling
Our scaling results in both Figures 2, 4 make ecological sense.
We expect that at smaller scales, the density dependence would
be larger as individuals compete more for resources at that scale.
At large scales, we expect α to be close to 1 as the individuals
do not compete over large distances. This means that the spatial
distributions look more aggregated on large scales than on small
scales as the individuals within species broadly group together,
but repel each other at small scales. We see this trend at the
individual level in Figure 2 as the medians increase at smaller
scales, and for the community α in Figure 4.

Our repeated bisection analysis also indicates at which scale
density dependence becomes important. This will appear as a
shoulder in the data where α moves away from≈ 1. We could do
this for individual species by tracing α and looking for a shoulder
in Figure 2, but here we will look at the community results in
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FIGURE 3 | Ninety-five percent contour intervals for the predicted bisection probability distributions 5(n|n0) from METE, random placement, and our density

dependent model with maximum likelihood community α, and bisection data for each species in (A) the serpentine dataset, and (B) the BCI dataset. The data is

plotted for each species, where the y-axis is the fraction in one half plot and the x-axis is the total species abundance in that plot. The contours are calculated at each

n0. For our density dependent model with a community α, α = 1.0003 maximizes the log-likelihood for the serpentine dataset, and α = 1.12 maximizes log-likelihood

for BCI dataset.

order to compare to Conlisk et al. (2007) and Volkov et al. (2005).
Looking at Figure 4, we find that the shoulder in absolute scale
corresponds to < 0.5 m2 for the serpentine plot and < 1.6 ha for
the BCI dataset. This again makes sense given that the serpentine
grassland is much more sparse than the BCI forest.

We first compare to Conlisk et al. (2007), who introduce a fit
parameter φ that modifies the colonization rule Equation (4) and
allows the 5 distribution to vary continuously between random
placement andMETE. They compare their estimated community

φ parameter to both the serpentine and BCI data in their Figure 6.
For the serpentine data, they find that at scales larger than around
0.5 m2 (the 8th bisection), φ approaches 0.5, which corresponds
to the METE prediction. At scales around 0.5 m2 or smaller,
φ ≈ 0.25, where φ = 0 corresponds to random placement.
This is consistent with our scaling results in Figure 4. For BCI,
they find that at all but the largest scales φ ≈ 0.25. Our result
that α is larger at BCI than at the serpentine site across scales,
which corresponds to less spatial aggregation, is not consistent
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TABLE 1 | Log-likelihood values for the three different models, with α as a

community parameter.

Serpentine BCI

Model Log-likelihood Model Log-likelihood

METE −114.8 METE −729

RP −5188.6 RP −963

α = 1.0003 −114.6 α = 1.12 −660

We can compare our model to METE using the deviance in log-likelihood and obtain a

p-value. The deviance is defined as twice the difference in log-likelihood. For the serpentine

dataset, the deviance is 0.6 which corresponds to a p-value of 0.45. For the BCI dataset,

the deviance is 138 which corresponds to a p-value of < 10-30.

with their findings. We believe this is due to a difference in how
the data are analyzed.

In Conlisk et al. (2007), the species abundance n0 is measured
at the scale of the full plot, and the bisection prediction is
recursively iterated to smaller scales (see their Theorem 2). Here,
we treat each bisection at smaller scales separately. For example,
after dividing the plot into 128 quadrants (8 bisections), we look
at the species abundance in each individual quadrat without
considering n0 at the scale of the entire plot. In principle, we
could conduct our analysis in the same way and anchor at the
largest scale, though this would be difficult analytically, and our
approach makes use of the empirical data available at each scale
rather than only at the largest scale. Further, the method in
Conlisk et al. (2007) depends implicitly on the chosen size of the
overall study plot. This is not true in our analysis as a bisection
studied at any scale does not depend on information at any other
scale. In practice, this means that in our analysis there is no
difference between studying species in a 1 m2 subplot embedded
in a 100 m2 plot vs. studying the same 1 m2 plot independently.
This difference in how n0 is treated across scales could lead to
different predictions for α (or φ).

We can further compare our results to Conlisk et al. (2007)
by relating our α to φ, using their relationship between φ and k
and our Equation (10). This relationship depends on n0, which
may affect comparisons between these parameters across scales.
Finally, an additional difference between our analyses is our
different cutoff of n0 > 128, and for BCI, dbh > 100 mm,
however this does not explain all of the difference between
our results. Supplementary Material 6 derives an approximate
relationship between α and φ, Supplementary Figure 4 uses
that relationship to transform our Figure 4 to a relationship in
φ, and Supplementary Figure 5 shows how our result changes
if we remove our abundance threshold. A takeaway from this
comparison is that these scaling results depend at least in part
on the choice of model and the data analysis methods.

Volkov et al. (2005) showed that intraspecfic and symmetric
density dependence can explain different shapes for the species-
abundance distribution. Their added parameter c is interpreted
as a measure of the strength of symmetric density dependence,
where c = 0 corresponds to no density dependence. This
parameter is therefore similar to our community α in that all
species have the same degree of negative density dependence.

They then show at what density these effects become important
in their Figure 3. For BCI, they find c = 1.80, and the density
dependent effects are visible for species with n > 27. To convert
this to area, we need to look at scales of the total area divided by
the abundance where density dependent effects become visible.
Thus, this corresponds to density dependence entering at scales
smaller than a fractional area of 1/27 = 1/24.75, which is close to
the same scale where we see α increase away from 1 in Figure 4.

Across these results, we interpret increasing α at small scale
as an increase in density dependence. However, at smaller spatial
scales where there are fewer individuals it becomes more difficult
to distinguish between different patterns of aggregation. In
particular, when n0A/A0 << 1, it is difficult to determine if the
empirical pattern is due to noise or a specific clustering process
(Harte, 2011, p. 63). This sampling effect should be small here, as
even at the smallest scale the median n0A/A0 is greater than 1 for
both datasets (Supplementary Material 7).

4.4. Trends for Individual Species at BCI
At the individual species level at BCI, we find overall that most
species at all scales are more aggregated than random (α < 2
in Figure 2). This is consistent with results from Condit et al.
(2000). We also find that species tend to be more aggregated at
large scales than at small scales (median α > 1 at small scales and
α ≈ 1 at large scales in Figure 2), whichmakes sense as we expect
some species to only be present in certain areas of the plot.

More broadly, we might expect to find trends in inferred
density dependence with species abundance or size. More
abundant species may be competingmore for the same resources,
or larger species may compete over larger distances. For example,
Condit et al. (2000) find that both rarer species and smaller
individuals tend to be more aggregated, however at a much
smaller scale (within a 10 m radius). We looked for trends in
abundance, mean dbh, and total energy for each species at BCI
with n0 > 128 across all scales considered (as in Figure 2).

In terms of abundance (Supplementary Figure 7 and
Supplementary Table 2), we do not find any species with high
α and high abundance (no highly density dependent high
abundance species), and we find that the variance in α decreases
with abundance. We also find that at all scales except the two
smallest, α decreases slightly with increasing log of abundance.
Thus, we find that at larger scales, more abundant species are
slightly more aggregated than less abundant species.

We find no evidence of a trend with species’ mean dbh
(Supplementary Figure 8 and Supplementary Table 3), though
it is possible this trend is obscured by variance in individual size
within a species, or that the range of mean dbh we considered
(about 100 − 500 mm) is too small to see its effect. Finally,
we looked for an overall energy effect. Considering that the
most abundant species tend to be smaller, it may be that
density dependence depends on the total metabolic rate of a
species. Plotting this relationship (Supplementary Figure 9

and Supplementary Table 4) again does not reveal
a significant scaling relationship at all scales except
one (log2(A/A0) = −6).

A plausible mechanism for the observed density dependence
at BCI is the Janzen-Connell effect (Janzen, 1970; Connell, 1971),
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FIGURE 4 | Community α scaling with area for species with abundance n0 > 128. The density dependence again increases at smaller scales and the trend is similar

to the single species analysis. The serpentine dataset has 36,783 individuals and the BCI dataset has 15,960 individuals.

TABLE 2 | Comparison of the Akaike Information Criterion (AIC) for α defined at the individual species level and at the community level in both the serpentine and BCI

data and across scales.

Scale (A/A0) 2−8 2−7 2−6 2−5 2−4 2−3

Serpentine Species α, AIC 474 769 1,294 1,931 3,208 4,881

Community α, AIC 485 777 1,321 2,079 3,420 5,182

BCI Species α, AIC 10,133 7,541 5,079 3,409 2,109 1,271

Community α, AIC 10,207 7,621 5,148 3,522 2,171 1,307

At the individuals species level, the number of parameters is equal to the number of species, whereas at the community level there is only a single parameter. The AIC is lower at the

species level in all cases.

whereby areas near parent trees are inhospitable for offspring,
resulting in density dependence. Various studies (Harms et al.,
2000; Carson et al., 2008; Comita et al., 2014) have observed this
effect at BCI, which is consistent with our result that α > 1 for
most species at smaller scales there.

See Supplementary Material 8 for more information on
these trends.

4.5. Notable Species
For individual species at the BCI dataset, Gustavia superba stood
out with an average α of 1.001 across scales. This species is largely

limited to 2 hectares of young secondary forest along the edge
of the plot, (J. Wright, personal communication, 2019) making it
look especially aggregated and resulting in amaximum likelihood
α close to 1.

In the serpentine dataset, we excluded Eriogonum nudum as
an outlier for part of our analysis. The maximum likelihood
α was > 6 at the smallest scale and the maximum itself was
very shallow. This species has a large canopy compared to
the other grassland plants, and tends to be found far from
other individuals. It makes sense that it would be overdispersed
with α > 2.
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4.6. Implications for the Species-Area
Relationship
In METE, the spatial distribution is used together with
the species-abundance distribution to predict the species-
area relationship (Harte, 2011, Chapter 7.5), and to upscale
predictions of biodiversity (Harte and Kitzes, 2015). These
predictions should hold in ecosystems like the serpentine
grassland analyzed here, as the observed species aggregation
agrees with the METE prediction. However, different levels of
aggregation will impact the species-area relationship. The impact
of aggregation is discussed in Wilber et al. (2015). They find
that increasing randomization decreases the predicted slope of
the species-area relationship at the same scale, and therefore
upscaling METE will overpredict species richness. In addition,
they analyze the effect of variation in aggregation among species,
which slightly decreases the slope at small scales and increases the
slope at larger scales. This results in a species-area relationship
that more closely resembles a power law. They also consider the
effect of decreasing aggregation across scale, which results in a
species-area relationship that no longer displays scale collapse.
We observe both of these effects here.

4.7. Limitations and Assumptions
As with all models inferring process from pattern, we can never
be sure the pattern we observe can be completely attributed
to the process we model. There are many different underlying
processes that can lead to aggregation, including environmental
filtering and dispersal limitation (Vellend, 2016; Leibold and
Chase, 2018), and it is not possible for any one model to
include every effect. Our empirical results here are consistent
with our interpretation of α as a parameter that relates to the
strength of intraspecific negative density dependence, however
there are certainly other important mechanisms in these datasets.
Regardless of our ability to infer process from pattern, our
theoretical result that increasing density dependence increases
spatial randomization holds.

Our model is also limited in that it only considers bisections,
and it would be useful to extend it to be more general. There are
many spatial arrangements that can not be accurately captured
by dividing plots into bisection, and in general a single functional
summary statistic does not completely describe the observed
spatial pattern (Wiegand et al., 2013). For example, if we divide
our plot into anm bym grid, and have one individual per cell, we
would see exactly 0.5 as the fraction for each bisection. This result
would be consistent with random placement with a large number
of individuals, which does not well describe this exceptionally
uniform arrangement. There could also be different degrees of
spatial aggregation within a cell that we will not accurately
capture with a bisection. Despite these limitations, bisections
are useful for understanding commonly observed macroscopic
spatial patterns.

A conceptually simple extension to our model is to divide
plots into quadrisections rather than bisections. The colonization
and death rules then have three unknowns rather than one (the
number of individuals in each quadrant, where the fourth is
determined by constraining the sum to be n0). This makes it

hard to solve analytically, however we can simulate the birth-
death process until it reaches steady state. We find no significant
difference in our simulation compared to our prediction from
two bisections, and find that a community α = 1.12 is still
consistent with the BCI data.

Because we consider the steady state solution in our model,
we are assuming that the density dependence time scale is longer
than the time scale of individual births or deaths. That is, α must
not change too rapidly in time. This assumption is justified for
many systems roughly in steady state with their environment and
not undergoing rapid change (Newman et al., 2020).

Solving for the steady state solution also assumes that births
and deaths are in balance. We assume here that there is a single
death followed by a placement, however simulating two deaths
followed by two placements gives a probability distribution
consistent with our analytic prediction. We expect our result to
hold with other numbers of deaths and placements. Assuming
that births and deaths are in balance also implicitly assumes some
amount of negative density dependence, and here α provides a
quantitative measure of the degree of density dependence.

Another assumption in ourmodel is the choice of colonization
rule itself, though if we had chosen a different colonization rule
many of our conclusions would remain the same. We use the
colonization rule consistent with METE because of its good
empirical agreement (Harte, 2011, Chapter 8.3). This allows us
to interpret the α = 1 case as consistent with METE. This is
useful as METE can be thought of as a null theory that holds
in ecosystems that are undisturbed and relatively static (White
et al., 2012; Xiao et al., 2015; Harte et al., 2017; Newman et al.,
2020), and α 6= 1 can be thought of as a density dependent
correction, away from the MaxEnt distribution. In this sense, this
model hybridizes MaxEnt and mechanism.

Instead, as an example, we could have chosen the colonization
rule resulting in the random placement distribution. For a
bisection this rule is just pL = pR = 0.5. In this case, α = 1
would recover the binomial distribution, which we know does
not well describe most spatial data (Condit et al., 2000; He and
Gaston, 2000), and so we cannot interpret α 6= 1 as a density
dependent correction. As another example, if we had chosen the
more general colonization rule in (Conlisk et al., 2007) we would
have two parameters to tune, making it difficulty to differentiate
between colonization and death. In ecosystems where we suspect
a different colonization rule may be in play, we could modify our
theory appropriately. In any of these cases, our general results
would remain largely unchanged.

4.8. Future Work
One advantage of the bisection approach is that it can make
predictions about inter-quadrat correlations. McGlinn et al.
(2015) examined these correlations and compared empirical
distance-decay relationships with the spatial predictions of
METE (α = 1 in this model). They found that the predicted
distance-decay was much stronger than observed. We would
expect the predicted distance-decay relationship to be weaker
with α > 1 in our model. Conlisk et al. (2007) note that φ > 0 in
their model produces more realistic looking distance-decay than
random placement. Together, this means that with 1 < α < 2
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our model should predict a more realistic shape for the distance-
decay relationship compared to random placement, but with less
steep of a slope than predicted by METE. However, Conlisk
et al. (2007) also note that the analysis of these inter-quadrat
correlations makes use of distance between cell pairs rather than
physical distance, which limits the analysis [though note Ostling
et al. (2004) provides a set of user rules to reduce this effect].
This issue is also present in our model. Future comparisons
to empirical distance-decay relationships could provide another
method of estimating α and testing this framework.

Another advantage of our approach is that it only requires
static spatial data. However, analyzing a single dataset over time
could provide an interesting test of our interpretation of α as
a measure of density dependence. This would be particularly
appropriate with data where strong density dependent mortality
is known to occur, for example a self-thinning forest recovering
from wildfire (Harvey et al., 2014; Newman et al., 2020).

Finally, while our analysis here compares two contrasting
datasets, future work could analyze more ecosystems to look for
effects of habitat type, species richness, or average density.

5. CONCLUSION

Our model robustly predicts that increased intraspecific negative
density dependence leads to more random spatial patterning,
and establishes a quantitative relationship between the degree
of density dependence described by the parameter α and spatial
patterning described by the metric 5(n). We predict that
this result is general across ecosystems and taxonomic groups.
We find that at all but the smallest scales, the serpentine
grassland site is consistent with the absence of a density
dependent correction and has the strong spatial aggregation
predicted by METE. This is true for both the median individual
species and at the community level. At the tropical forest
site, our results indicate that negative density dependence is
important: the median species α and the community α are
both greater than 1 at even the largest scales. Both ecosystems
show scaling of α consistent with its interpretation as the
strength of negative density dependence. Median species α and
community α are larger at smaller scales, and increase away
from 1 at scales consistent with other analyses. Overall, our
analysis of α is consistent with the interpretation of density
dependence at both sites. Because this model uses only static
spatial patterning, it can be applied in any ecosystem with
spatially explicit data.
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