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Biological allometries, such as the scaling of metabolism to mass, are hypothesized

to result from natural selection to maximize how vascular networks fill space yet

minimize internal transport distances and resistance to blood flow. Metabolic scaling

theory argues two guiding principles—conservation of fluid flow and space-filling fractal

distributions—describe a diversity of biological networks and predict how the geometry

of these networks influences organismal metabolism. Yet, mostly absent from past efforts

are studies that directly, and independently, measure metabolic rate from respiration and

vascular architecture for the same organ, organism, or tissue. Lack of these measures

may lead to inconsistent results and conclusions about metabolism, growth, and

allometric scaling. We present simultaneous and consistent measurements of metabolic

scaling exponents from clinical images of lung cancer, serving as a first-of-its-kind test

of metabolic scaling theory, and identifying potential quantitative imaging biomarkers

indicative of tumor growth. We analyze data for 535 clinical PET-CT scans of patients

with non-small cell lung carcinoma to establish the presence of metabolic scaling

between tumor metabolism and tumor volume. Furthermore, we use computer vision

and mathematical modeling to examine predictions of metabolic scaling based on the

branching geometry of the tumor-supplying blood vessel networks in a subset of 56

patients diagnosed with stage II-IV lung cancer. Examination of the scaling of maximum

standard uptake value with metabolic tumor volume, and metabolic tumor volume with

gross tumor volume, yield metabolic scaling exponents of 0.64 (0.20) and 0.70 (0.17),

respectively. We compare these to the value of 0.85 (0.06) derived from the geometric

scaling of the tumor-supplying vasculature. These results: (1) inform energetic models of

growth and development for tumor forecasting; (2) identify imaging biomarkers in vascular

geometry related to blood volume and flow; and (3) highlight unique opportunities to

develop and test the metabolic scaling theory of ecology in tumors transitioning from

avascular to vascular geometries.
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1. INTRODUCTION

Since Max Kleiber’s finding of the remarkable biological pattern
that organismal basal metabolic rate, B, scales with body mass,
M, as B ∝ M3/4, scientists have worked to both understand
and extend the phenomenon of metabolic scaling (Kleiber, 1932).
Applications of metabolic scaling have permeated the biological
sciences, spanning evolutionary and cellular biology (DeLong
et al., 2010), predator-prey interactions at both the individual
level (Pawar et al., 2012; Hatton et al., 2015) and at the trophic
level (Brose et al., 2006), fish reproduction energetics (Barneche
et al., 2018), forest structure, demography, and dynamics
(Enquist et al., 2009; West et al., 2009), and species distribution
modeling (Harte and Newman, 2014). Explanations for the
origins of metabolic scaling in individual vascular organisms
are numerous, and all center around functional optimization
of a hierarchically branching vascular network that distributes
and delivers resources throughout the body (West et al., 1997;
Turcotte et al., 1998; Bejan, 2001; Banavar et al., 2010). The
phenomenon of metabolic scaling has been studied through
measurements of metabolism at either the whole organism level
(Schmidt-Nielsen, 1984; Mori et al., 2010), or with predictions of
metabolism rooted in vascular theory (Bentley et al., 2013; Lau
et al., 2019; Brummer et al., 2021).

Surprisingly, we could not find a single study that examines
metabolism from both of these perspectives for the same tissue,
organ, or organism (Price et al., 2012). Furthermore, proposed
theories that purport to explain the origins of metabolic scaling
in vascular organisms fail to explain why the pattern persists
in avascular organisms. To address these issues, we present
simultaneous measurements of metabolic scaling in tumors
derived from uptake of metabolic radio-tracers and of the
vasculature that comprises and surrounds the tumors. Recent
efforts to improve and expedite cancer diagnosis, treatment
planning, and tracking responses have producedmedical imaging
and computer vision technologies that offer a unique lens with
which to study metabolic scaling, particularly within tissues that
have undergone the avascular-to-vascular transition. We show
that insight from metabolic scaling theory can be leveraged
to derive vascular-based biomarkers of cancer, potentially
introducing an ensemble of biomarkers indicative of tumor
growth and the distribution and flow of blood.

Radiological images of non-small cell lung cancer (NSCLC)
are predominately analyzed from medical imaging as solid
volumes of tissue absent of surrounding vessels (Gevaert et al.,
2012; Aerts et al., 2014; Zhou et al., 2018; Ardila et al., 2019).
Yet, when viewed at an enhanced scale, these volumes are seen
to be entirely embedded in, and sometimes partially composed
of, networks of vascular tissue that are distinguishable from
surrounding healthy tissues (Figure 1) (Jain, 2005; Rao et al.,
2016; Wang et al., 2017; Alilou et al., 2018). The radiomics
paradigm of personalized medicine uses artificial intelligence
and machine learning algorithms to detect and classify NSCLCs,
and to track individual response to intervention and treatment.
This approach requires large and accurate datasets of all possible
biological features, or biomarkers, associated with disease
(Lambin et al., 2017). The current practice within radiomics

restricts the space of possible features to statistical measures
regarding tumor volume, shape, and intensity variation—the
latter being directly indicative of metabolism. This approach
necessitates the existence of solid masses in order to facilitate
detection, thus setting a fundamental limit on early detection
(Pashayan and Pharoah, 2020). As a way to support existing
metrics and to provide a more comprehensive view of the
tumor environment, we propose a way forward that leverages the
connectivity of the vessels that compose and surround an NSCLC
and that incorporates results and insights from theory on tumor
metabolism and growth. (West et al., 2001; Guiot et al., 2003,
2006; Herman et al., 2011; Milotti et al., 2013; Ribeiro et al., 2017;
Pérez-García et al., 2020).

Established theory predicts average empirical branching
properties at the whole-network level by minimizing energy to
pump and distribute blood and ensuring that vessels efficiently
reach and feed all cells. However, there exists wide variation
around predictions for these average properties. Variation in
measures of vessel branching, connectivity, and scaling have
been shown to serve as biomarkers of disease (Yao et al.,
2011; Huang et al., 2018; Pandey et al., 2018; Apte et al.,
2019). Furthermore, there exist competing theories relating organ
and organismal growth and metabolism to vascular branching
patterns—relationships that result from the optimization of
fluid transport and resource distribution (West et al., 1997;
Zamir, 2006; Savage et al., 2008; Huo and Kassab, 2009a,b;
Banavar et al., 2010; Dodds, 2010). Extensions of these
theories predict the growth trajectories of tumors, incorporating
the angiogenic transition from avascular, diffusion-dominated
growth to vascularized growth that often precedes metastasis
(West et al., 2001; Guiot et al., 2003, 2006; Herman et al., 2011;
Milotti et al., 2013; Ribeiro et al., 2017; Pérez-García et al.,
2020). Yet, no rigorous application of these theories has been
conducted to examine energetic measures of metabolic scaling
in tumors to the underlying vasculature supplying tumor growth
and maintenance. We analyze clinical human NSCLC X-ray
images to identify the vascular branching features most prevalent
with NSCLC presence. We then map these vascular patterns to
variation in the metabolic scaling of tumors as measured from
metabolic imaging techniques of nuclear medicine.

2. MATERIALS AND METHODS

2.1. PET-CT Imaging
As tumors undergo rapid cellular proliferation they subsequently
have higher metabolic demands. The deregulated uptake of
glucose to sustain growth and maintenance in tumors can
be observed with the nuclear imaging technique of positron
emission tomography (PET). The radioactive tracer [18F]fluro-
2-deoxyglucose (18F-FDG) is utilized to measure glucose uptake
in tumors in clinical settings. The standard uptake values (SUV)
of glucose uptake are measured as SUV = r/(a′/w), where r is
the concentration of radioactivity (measured in kiloBecquerels
per milliliter, kBq/mL) detected, a′ is the radioactivity of the full
volume of injected radio-tracer (kBq) adjusted for radioactive
decay since injection, and w is the weight of the patient (g).
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FIGURE 1 | Co-registered PET-CT images (A) and sample skeletonization of pulmonary vasculature with tumor (B). (C) Regression on maximum standard uptake

value (SUVmax ) and metabolic tumor volume (MTV ) for all data compiled (black solid line), divided into the histological categories of adenocarcinoma (ADC) and

squamous cell carcinoma (SCC). Regressions demonstrate a significant scaling relationship between SUVmax and MTV with scaling exponents approximately equal to

0.71 (Table 1). **Indicates p < 0.005. Bold symbols represent data with accompanying clinical imaging used in vascular analyses, whereas transparent symbols

represent data collected without original clinical imaging. Data was truncated at MTV ≈ 4cm3 to avoid errors from the partial volume effect.
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Importantly, implicit assumptions are made that tissue imaged
has a density of 1 g/mL, and that, aside from the more highly
metabolic tissues of the brain, liver, and tumors, the radio-tracer
injected is uniformly distributed throughout the body. Thus,
an SUV of 1 can be loosely interpreted as normal (Kinahan
and Fletcher, 2010). Due to the potential for variation between
individuals, imaging machines and imaging protocols, SUV
measures are presently used as a qualitative biomarker for disease
to examine relative metabolic demand.

Advances in medical imaging technology allow for the
simultaneous use of PET and X-ray computerized tomographic
(PET-CT) imaging to extract overlapping images of tissue
metabolism and soft-to-hard tissue presence. When coupled
with computer vision software, collections of two-dimensional
image “slices” can be reconstructed into three-dimensional
volumes from which spatial patterns can be extracted for
disease diagnostics. These technologies are not without
crucial limitations. The two-dimensional image slices have
a finite resolution and thickness, and consequently errors
can occur when examining structures near these resolution-
thickness limits. These errors are broadly categorized as
partial-volume effects (PVE), and require careful consideration
(Soret et al., 2007).

In order to introduce typical imaging metrics, it is important
to first consider any volume or region of interest (ROI) as being
subdivided into a collection of N cubes, or voxels, of uniform
volume. These voxel volumes are determined by the image slice
thickness and resolution. Importantly, CT imaging maps the
spatial distribution of biologic structures, while PET imaging
maps the metabolic uptake of those structures. Any given ROI
will have a total volume V as determined from CT imaging as
the sum of each voxel volume vi within that large volume. Each
voxel volume has its own corresponding SUV measure, SUVi,
determined from PET imaging. Conventional tumor evaluation
involves measuring the following: total, or gross tumor volume
(GTV) as the sum of all voxel volumes vi that comprise the tumor
as observed strictly from CT imaging. Metabolic tumor volume
(MTV) is the sum of all voxel volumes vi that comprise the tumor
with a corresponding SUVi exceeding a conventional threshold
of 2.5. Total lesion activity (TLA) is the summed product of
voxel volume and SUVi, or TLA =

∑

i SUVivi. Tumor size is a
common clinical metric determined from semi-major and semi-
minor tumor diameters. Finally, various summary statistics for
SUV may be computed over a whole ROI, such as maximum,
SUVmax, median, SUVmed, mean, SUVmean, or over a temporal
range, such as peak SUVpeak (Bailey et al., 2005; Valk et al., 2006).
In radiomics studies, this small collection of metrics quickly
runs into the hundreds, as many metrics are analyzed as spatial
distributions with many accompanying statistical features.

2.2. Establishment of Metabolic Scaling
In this work we compiled data from four separate studies of PET-
CT imaging of NSCLC patients (Furumoto et al., 2018; Mattonen
et al., 2019; Chardin et al., 2020; Pérez-García et al., 2020). These
studies consisted of pre-treatment PET-CT scans for 535 patients,
of which 401 were adenocarcinoma and 134 were squamous cell
carcinoma. Imaging acquisition and patient information for each

study can be found in the original publications. The metrics we
chose to focus onwere SUVmax as ameasure ofmetabolism,MTV
as a measure of glucose consuming tumor volume, and GTV as a
measure of total tumor volume that includes glucose consuming
tissue in addition to all other tumor tissues (e.g., metabolically
active but glucose inactive tissues, and necrotic tissues). SUVmax

was chosen over other SUV features as it is less susceptible to
variation in delineation of the tumor ROI.

Measures of maximum standard uptake value (SUVmax)
and metabolic tumor volume (MTV) were graphed on a log-
log scale to identify the existence of a scaling relationship
between these variables (Figure 1). In addition to regressing
on the whole dataset, these data were also categorized by
the histological classifications of adenocarcinoma (ADC) and
squamous cell carcinoma (SCC) to allow for possible variations
in metabolic scaling due to tumor heterogeneity. Standard major
axis regressions were performed as interest is primarily on the
regression slope, and the axes of variation have fundamentally
different units. Of the data collected, a subset have the original
PET-CT imaging available on The Cancer Imaging Archive
(Clark et al., 2013; Prior et al., 2013). For this subset of data,
log-log graphs were analyzed to investigate scaling between
SUVmax and MTV as well as MTV and gross tumor volume
(GTV) (Figure 2). Regression statistics are located in Table 1. To
account for the partial volume effect associated with small voxel
thresholding in PET imaging, we analyzed the data by imposing
a hard threshold on tumors less than 4cm3 in volume. Tumors
smaller than this volume are known to exhibit greater than 10%
error on measurements of SUVmax from PET imaging due to the
partial volume effect (Soret et al., 2007; Kinahan et al., 2009).
After filtering for the partial volume effect, left for analysis were
207 ADC and 109 SCC data points.

2.3. Segmentation of CT Images for
Vascular Measurement
This data is part of the Radiogenomics dataset from Gevaert
et al. (2012) and Zhou et al. (2018) and consists of CT scans
of 211 NSCLC patients with manual annotations delineating
tumor boundaries and PET-CT imaging available for 150 of these
patients. We selected patients with clinical staging of II or greater
to ensure tumors were sufficiently large enough for identifiable
vasculature. Within this group we examined vasculature where
pulmonary vessels could be easily identified as supplying tumors
with blood, resulting in 56 patients.

Image processing prior to segmentation is crucial for
expediency and accuracy. To extract only lung interior regions of
interest, we implemented the watershed technique (Shojaii et al.,
2005; D’Sa et al., 2019) with a black top-hat transform for re-
inclusion of juxtapleural nodes and near-hilar vessels (Singadkar
et al., 2018). This routine is followed by contrast limited adaptive
histogram equalization (CLAHE) (Jin et al., 2001) and iterated
global thresholding (Samet and Yildirim, 2016) to enhance the
signal to noise ratio (Figure 3).

Segmentation of vasculature is accomplished using the open-
source software Angicart, developed by the Savage Lab at UCLA
(Newberry et al., 2015; Brummer et al., 2021). Angicart software

Frontiers in Ecology and Evolution | www.frontiersin.org 4 October 2021 | Volume 9 | Article 691830

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Brummer and Savage Metabolic Scaling in Lung Cancer

FIGURE 2 | Regressions for maximum standard uptake value (SUVmax) vs. metabolic tumor volume (MTV ) (A) and MTV vs. gross tumor volume (GTV ) (B). Data is

divided by the histological classifications of adenocarcinoma (ADC) and squamous cell carcinoma (SCC). Black solid lines represent regressions on whole datasets.

Summaries of regressions are presented in Table 1. *Indicates p < 0.05, and ** indicates p < 0.005. Standard major axis regression shows that both methods result

in significant and consistent measurements of metabolic scaling exponents.

TABLE 1 | Estimates of metabolic scaling exponents.

Metabolic scaling exponent measurements (θ )

Histology SUV/MTVmeta SUV/MTVsubset MTV/GTVsubset Vascular est.

Adenocarcinoma 0.73 ± 0.09** 0.63 ± 0.23* 0.73 ± 0.21** 0.85 ± 0.03

Squamous cell carcinoma 0.59 ± 0.10** 0.69 ± 0.54 0.62 ± 0.37* 0.87 ± 0.02

Combined 0.71 ± 0.07** 0.64 ± 0.20* 0.70 ± 0.17** 0.85 ± 0.06

Significance of regression based exponents are indicated with asterisks, where * indicates p < 0.05, and ** indicates p < 0.005. Sample sizes are: meta-analysis dataset

NADC = 207,NSCC = 109; subset analysis NADC = 27,NSCC = 10; vascular-based estimates NADC = 54,NSCC = 20. Note that the vascular estimates do not have p-values as

they were calculated directly from vascular data as opposed to regression data. Also, all regressions performed were standard major axis regressions to accommodate differences in

axes’ units as well as the emphasis being on the value of the regression slope (Newberry et al., 2015).

reconstructs digital representations of vascular networks from
medical images of any modality. The segmentation routine uses
a spherical-growth algorithm to map the vascular network. It
is a fully automated software (as defined in Myatt et al., 2012)
that only requires vessels of interest to be brighter on a grayscale
than surrounding tissues. Angicart output consists of vessel
radii, lengths, branching angles, connectivity, and centerline
coordinates. Angicart results have been published for: µCT
mouse lung data, human thoracic CT scans, and pulmonary
vasculature (Newberry et al., 2015; Tekin et al., 2016; Brummer
et al., 2021).

2.3.1. Errors From the Segmentation and

Skeletonization Procedures
Three types of errors in the data acquisition process consisted
of: (1) individual vessels disconnected from vascular trees,

(2) nonvascular tissue misidentified as vascular trees (3)
misidentification of vascular tree roots.

The segmentation procedure can produce disconnected
individual artifacts that Angicart automatically identifies as
singular vessels. As the framework of metabolic scaling theory
relies on vascular networks, such artifacts are simply filtered from
the resulting skeletonization. Similarly, certain non-vascular
tissues that pass the segmentation procedure may result in
erroneous vascular trees. Common examples of such errors are
non-vascular tissues in the hilar and sternal regions of the lungs.
These errors are easily identified and removed manually.

Finally, misidentification of vascular tree roots occurs due
to programming in Angicart intended to identify roots based
on vessel radius, an assumption based on models of healthy
vascular networks. This assumption does not hold in this
study however as pulmonary vascular networks embedded with
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tumors are known to have vessels with unusually large diameters
within the boundary of the tumor (Wang et al., 2017). Thus,
to identify vascular tree roots, we calculated the geometric
centroid of all vessel coordinates for each half of the lungs in
an effort to approximate the location of the hilar vessel roots.
Vascular tree roots were then identified as those nearest to the
centroid position.

2.4. Modeling Vascular Data
Metabolic scaling theory is a first principles model linking
biologic scaling phenomena to hierarchically branching resource
distribution networks. It was initially proposed as a model for
Kleiber’s law—the scaling of organismal metabolism, B, with
body mass, m, expressed as B = B0m

θ (Kleiber, 1932; West
et al., 1997). It has since been applied to a myriad of systems
spanning plant metabolism, forest demography, city scaling, and
organismal growth and development (Enquist et al., 1998; West
et al., 1999, 2001; Bettencourt et al., 2007). Importantly, both
theoretical and empirical studies have demonstrated allometric
relationships based on vascular branching within many different
organs and tissue types, spanning heart, lungs, cerebral arterial
trees, muscle tissue, and the torso (Majumdar et al., 2005;
Huo and Kassab, 2009a; Wright et al., 2013). Despite apparent
differences in absolute metrics such as blood pressure, flow
resistance, and vessel number-density, a crucial component of
vascular branching from the perspective of biological allometries
is that they provide scale-free metrics of different organs and
tissues. Thus, the combination of scale-dependent and organ-
specific metrics (e.g., diameter, length, and pressure at the initial
and terminal generations) and scale-free metrics (e.g., ratios of
vessel diameters and lengths) can provide functional information
related to biologic rates, namely metabolism. Here we summarize
the pertinent variables used to describe vascular branching in
metabolic scaling theory, the mechanistic constraints that predict
values for these variables, and how metabolic scaling theory can
be applied to investigate PET-CT imaging data for NSCLC. For
further background, see (West et al., 2001; Savage et al., 2008;
Herman et al., 2011; Brummer et al., 2017, 2021).

2.4.1. Branching Variables
Metabolic scaling theory idealizes vascular trees as having
cylindrically shaped, pipe-like branching architectures
(Figure 4A). Here, the fundamental units are individual
bifurcations consisting of a parent vessel that divides into two
child vessels. Any vessel can be parameterized by its radius, r,
length, l, and branching generation, j, the latter of which takes the
value j = 0 at the root and j = N for an N generational network.
We next define the following asymmetric scale factors: the
average and difference radial scale factors β̄ = (rj,µ + rj,ν)/(2rj−1)
and1β = (lj,µ− lj,ν)/(2lj−1), and the average and difference length
scale factors γ̄ = (lj,µ + lj,ν)/(2lj−1) and 1γ = |lj,µ − lj,ν |/(2lj−1).

These four scale factors can be constrained through two
optimizations that: (1) maximize the number of capillaries
per unit volume of tissue and (2) minimize the resistance to
fluid flow. Here we outline the conceptual arguments for these
constraints at the single bifurcation level. Maximizing capillaries
per unit volume is done by modeling the system as a space-filling

fractal (Mandelbrot, 1982; Barnsley, 2012). In the context of
vascular branching systems, this can be demonstrated through an
iterative process (Savage et al., 2008). To supply blood to the NN
terminal vessels in generationN, each comprising a blood volume
of vN , the NN−1 vessels of the preceding generation N − 1 must
have a matching volume of blood across all vessels, each with a
blood volume of vN−1. Iterating this argument across multiple
generations results in the expression that NNvN = NN−1vN−1 =

. . . = N0v0. To apply this argument at the level of a single
bifurcation, we approximate the blood service volumes by the
vessel lengths, vN ∝ l3N , allow for asymmetric branching, and
express this iterative argument instead by considering first a
generic parent service volume in generation j − 1 that supplies
all child vessels distal to it, yielding lj−1 = (l3j,µ + l3j,ν)

1/3.

Writing this expression in terms of the asymmetric branching
scale factors yields,

1 = (γ̄ + 1γ )3 + (γ̄ − 1γ )3 (1)

Minimizing the resistance to fluid flow results in two separate
constraints depending on whether the flow is pulsatile—with
resistance Zj ∝ 1/r2j —or laminar—with resistance Zj ∝ l/r4j . In

pulsatile flow, reflections can occur as pulses cross a bifurcation.
Thus, impedance matching across a given bifurcation minimizes
reflections and results in,

1 = (β̄ + 1β)2 + (β̄ − 1β)2 (2)

Of note, Equation (2) preserves the cross-sectional area from a
parent vessel to its child vessels, which results in a constant blood
flow rate across the bifurcation. For laminar flow, resistance due
to friction is minimized, which results in,

1 = (β̄ + 1β)3 + (β̄ − 1β)3 (3)

In Equation (3) the cross-sectional area increases from a parent
vessel to its child vessels, which subsequently slows the rate of
blood flow across the bifurcation. We note that Equation (3) is
a variation on the canonical Murray’s Law (Murray, 1926), only
here the vessels radii have been expressed in terms of the radial
branching scale factors β̄ and 1β .

We also examined the Horton-Strahler length scale factor, γHS,
a measure of length scaling that originates from an alternative
generational labeling scheme first proposed in (Horton, 1945;
Strahler, 1957) and examined in greater detail in (Yekutieli and
Mandelbrot, 1994; Turcotte et al., 1998; Eloy et al., 2017). This
scheme starts with labeling all identified terminal tips as the
starting generation N = 1, and, working upstream toward the
root vessel, advances the generation index only when two equally
labeled vessels merge, as shown in Figure 4B. After labeling,
vessels are redefined by their Horton-Strahler index such that a
“new” vessel does not “begin” unless the Horton-Strahler index
has changed. This relabeling between canonical generation (CG)
labeling and Horton-Strahler (HS) labeling is demonstrated in
Figures 4C,D. In Figure 4E, we compare distributions of the
symmetrically defined length scale factor fromCG labeling γCG =
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FIGURE 3 | Segmentation procedure for CT scans. (a) Initial image. (b) Lung boundary markers determined using watershed. (c) Mask with boundaries re-included

by black top-hat transform. (d) Segmented image. (e) Contrast enhanced image with adaptive mesh (red) overlaid for limited equalization (CLAHE). (f) Final image after

enhancement and de-noising via thresholding. Examples of pixel brightness histograms prior to enhancement (g), after enhancement (h), and with a de-noising filter

(i). (j) Left lung vessel skeletonization output from Angicart following steps described previously. Vessels are colored by canonical generation labeling (see Figure 4).

TABLE 2 | Summaries of vessel network properties.

Metric
Tissue supplied by vessel tree

Sym. MST pred.

ADC SCC Healthy tissue

Number of generations 3.58 ± 0.08 4.02 ± 0.07 5.23 ± 0.16 N

Number of terminal tips 13.84 ± 0.99 14.62 ± 0.44 49.11 ± 4.50 2N

Root length (mm) 18.72 ± 1.26 18.41 ± 0.90 17.59 ± 1.17 l0

Root radius (mm) 1.23 ± 0.03 1.15 ± 0.02 1.12 ± 0.03 r0

Root volume (mm3) 91.84 ± 6.52 70.31 ± 3.33 71.86 ± 5.28 r20 l0

Tip length (mm) 10.26 ± 0.89 9.55 ± 0.77 11.28 ± 0.87 lN = γ̄ N l0

Tip radius (mm) 0.98 ± 0.02 0.97 ± 0.02 0.78 ± 0.01 rN = β̄Nr0

Tip volume (mm3 ) 31.40 ± 2.79 29.13 ± 2.50 22.35 ± 2.11 r2N lN

Average radial scale factor 0.85 ± 0.02 0.85 ± 0.02 0.75 ± 0.01 β̄ ≈ 0.71

Difference radial scale factor -0.06 ± 0.01 -0.06 ± 0.01 -0.06 ± 0.01 1β = 0

Average length scale factor 1.59 ± 0.22 1.72 ± 0.25 1.73 ± 0.24 γ̄ ≈ 0.79

Difference length scale factor 0.45 ± 0.06 0.49 ± 0.06 0.44 ± 0.06 1γ = 0

Horton-Strahler length scale factor 0.65 ± 0.11 0.73 ± 0.32 0.48 ± 0.07 γHS ≈ 0.79

Volumetric scale factor 2.41 ± 0.36 2.52 ± 0.34 2.05 ± 0.27 ν ≈ 0.79

Measurements are for the vascular networks supplying either adenocarcinomas (ADC), squamous cell carcinomas (SCC), or healthy tissue. These measurements are compared to

predictions from the symmetric metabolic scaling theory, in which all sibling vessels are identical (1β = 1γ = 0). Reported values are geometric means with associated standard errors.

lj/lj−1, which ignores sibling branch variation, to the length scale
factor from HS labeling γHS = lHS,j/lHS,j−1.

Measurements of the branching scale factors, β̄ , γ̄ ,1β ,
and 1γ , were made for all segmented pulmonary vessels.
Additionally, the following branching network metrics were
collected: number of generations and number of terminal vessels
across all identified vascular networks; root-vessel length, radius,
and volume; terminal vessel length, radius, and volume. Two

additional metrics that were collected were the Horton-Strahler
length scale factor and the volumetric scale factor. Summary
statistics for vascular network metrics collected are presented
in Table 2. The volumetric scale factor represents the scaling
of blood volume across a bifurcation, and is defined as ν =

2β̄2γ̄ + 4β̄1β1γ + 2γ̄ 1β2. This metric is informative for
examining how vascular based estimates ofmetabolic scaling vary
with network size.
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FIGURE 4 | (A) Canonical generation (CG) labeling for asymmetric bifurcation demonstrates how vessel endpoints are determined by presence of bifurcation.

(B) Horton-Strahler (HS) labeling demonstrating how vessel endpoints are determined by changes in HS label. (C) Example vessel network color coded by different

(Continued)
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FIGURE 4 | vessels labeled according CG method. (D) Same network as in (C), now color coded by difference vessels defined according to HS labeling.

(E) Histogram of length-scale factors calculated using CG labeling (red) or HS labeling (blue). Importantly, metabolic scaling theory predicts that vessel lengths branch

according to lDj−1 = lDj,µ + lDj,ν , where D represents the fractal dimension and should be equivalent to the Euclidean dimension of the space being filled. Estimates of the

fractal dimension using HS labeling fall within the expected range of D ∈ [2, 3], compared to the non-intuitive value of D = −2.47 for CG labeling.

2.4.2. Measurement Procedures
To examine patterns and variations in vascular branching
features between vessels that supply tumor tissue and those
that supply healthy tissue, vessels first had to be categorized
into these two different groups. To identify vessels directly
responsible for supplying tumors, we identified all vessels from
the Angicart segmentation output that intersected with the
manual annotation of the tumor boundary. Next, all parent
vessels to those intersecting the tumor boundary were added to
the group of tumor supplying vessels. This process was iterated
until reaching the vessel root for any given pulmonary vessel
network. For multiple examples of tumor supplying vessels
identified in this manner, see Figure 5. Importantly, some vessels
that comprised these tumor supplying vessel subnetworks had
either sibling or child vessels that did not service the tumor. These
vessels were treated as part of the collection of vessels supplying
healthy tissue.

We used a kernel density estimator (KDE)method to compare
vascular branching scale factor distributions between tumor
supplying and non-tumor supplying networks as reported in
(Brummer et al., 2021). This approach can be interpreted as
a multidimensional extension of the univariate Kolmogorov-
Smirnov test (KS-test) (Duong et al., 2012). We compared two-
dimensional distributions for the constrained scale factor pairs
of (β̄ ,1β) and (γ̄ ,1γ ), shown in Figure 6. The local KDE test
identifies contours within the compared data that are uniquely
responsible for driving differentiation between compared groups
above a user defined threshold. This threshold has a natural
translation into the conventional p-value of hypothesis testing
(Duong, 2013). We chose to search for regions corresponding to
the conventional p-value of 0.05, presented in Figure 6C. This
technique is akin to layer-wise relevance propagation in deep
learning algorithms (Montavon et al., 2019).

2.5. Metabolic Scaling From Vascular
Measurements
By treating total metabolism of the supplied tissue as the sum of
the metabolism of every terminal unit (e.g., cells and capillaries),
Btot = BcapNcap, and examining the total volume, Vtot , of the
vascular network that supplies the volume of cells, one can exactly
express the metabolic scaling exponent, θ , as,

θ =

{

ln(2N )
ln(2N )+ln(1−νN+1)−ln(νN (1−ν))

for ν 6= 1
ln(2N )

ln((N+1)2N )−N ln(ν)
for ν ≈ 1

(4)

where N represents the total number of generations within the
network and ν represents the scaling of blood volume across a
bifurcation and is equal to ν = 2β̄2γ̄ + 4β̄1β1γ + 2γ̄ 1β2.
The piecewise definition of Equation (4) is required due to
the asymptotic limit when ν ≈ 1, or when the combined

volume of two child branches is equal to that of their parent
branch. Two important assumptions underlying Equation (4)
are that the network is strictly bifurcating (two child vessels for
every parent vessel) and that the degree of asymmetry in the
network does not result in significant self-pruning of vessels at
high generations. This second assumption has the interpretation
that the number of vessels N generations distal from a given
parent vessel is approximately 2N . For detailed analyses of
self-pruning in asymmetric pulmonary vascular networks see
(Majumdar et al., 2005). An important conceptual interpretation
of Equation (4), and metabolic scaling theory in general, is that it
links the geometric distribution and delivery of blood supply to a
given volume of metabolizing tissue.

To calculate metabolic scaling exponents for vascular trees
using Equation (4), distributions of volumetric scale factors ν

were first calculated for all bifurcations within the network.
Geometric means for these distributions in ν were calculated
to identify the average scaling of volume within each vascular
tree. Estimates for the number of branching generations, N,
within each vascular tree were determined from the number of
terminal vessels, Ntips within each tree using the expression N =

log(Ntips)/ log(2). As this expression produces non-integer values
for the number of generations,N was then rounded to the nearest
integer. Examination of how the rounding of N influences final
estimates of θ demonstrated no significant change.

2.6. Metabolic and Gross Tumor Volume
Scaling
An important prediction of metabolic scaling theory is a
power-law relationship between the metabolic tumor volume
(MTV) and the gross tumor volume (GTV) that incorporates
the metabolic scaling exponent (θ). The full derivation of
this formula incorporates aspects of oxygen diffusion, vessel
recruitment, and vascular branching arguments, and it can be
found in the Supplementary Material. We present here the
results of that argument,

MTV = V0(GTV)
2
3θ (5)

where V0 is a normalization constant. The 2/3 exponent reflects
the fact that the metabolically active region of the tumor is
an exterior shell, and thus a Euclidean surface-area-to-volume
scaling occurs between this region and the total tumor volume.
Equation (5) provides an important method to extract metabolic
scaling exponents from PET-CT imaging, as the metabolically
active tumor volume (MTV) is measured with both PET and CT
modalities, while the gross tumor volume (GTV) is measured
only with the CT modality. This is in addition to the scaling of
maximum standard uptake value to metabolic tumor volume,
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FIGURE 5 | Examples of tumors, the pulmonary vasculature in which they are embedded and supplied by, and remaining pulmonary vasculature of the lungs. Tumors

are the rounded shapes colored in gray, and vessels are cylindrical shapes colored according to HS generation labeling. Tumor-supplying vasculature is drawn in

full-color with zero transparency, while healthy-tissue supplying vasculature are drawn in color but with partial transparency.

given as

SUVmax = W0(MTV)θ (6)

where W0 is a normalization constant. Both of Equations (5)
and (6) are used to examine PET-CT data collected for this
study, shown in Figures 1, 2. Having dual measurements for the
metabolic scaling exponent at the whole-tumor level gives added
support when comparing these measurements against vascular
based estimates using Equation (4).

3. RESULTS

3.1. Allometric Regressions
Examination of PET-CT imaging data shows clear allometric
trends in Figures 1, 2. For the larger dataset, we found that
estimates of metabolic scaling exponents, θ , based on SUVmax ∝

MTVθ are θ = 0.71 ± 0.07, with histologically specific values
of θ = 0.73 ± 0.09 for adenocarcinomas (ADCs) and θ =

0.59 ± 0.10 for squamous cell carcinomas (SCCs) (see Table 1).
These measurements are consistent with those from the subset
of the PET-CT data from which vascular segmentations were
examined. However, variation in SUVmax is large enough that,
with the smaller sample size for this latter subset, estimates
for the metabolic scaling exponent θ are found to be less-
significant for ADC and the combined data, and non-significant
for SCCs. Estimates of θ based on the scaling of metabolic
tumor volume and gross tumor volume, as in Equation (5), were

found to be significant for both ADC (θ = 0.73 ± 0.21), SCC
(θ = 0.62 ± 0.37), and the combined groups (θ = 0.70 ±

0.17). This finding indicates a potential robustness in image-
based metabolic biomarkers that are distributed over the tumor
volume, as opposed to those that are derived from the single
brightest voxel.

3.2. Scale Factor Analysis
Scale factor analysis demonstrated significant differences
between vasculature that supplies tumors and that which
supplies healthy lung tissue. In Figure 6A, the joint distributions
of the radial scale factors (β̄ ,1β) for healthy-tissue supplying
vasculature can be seen to adhere well to the area preservation
constraint of Equation (2), particularly in the presence of
asymmetry (1β 6= 0). Whereas the tumor supplying
vasculature tends to exhibit area increasing radial scaling.
This is supported by the average scale factor values for β̄

presented in Table 2, where β̄ = 0.85 ± 0.02 for both ADC
and SCC tumor vasculature, and β̄ = 0.75 ± 0.01 for healthy-
tissue vasculature. This is reinforced by the local KDE test
in Figure 6B. Here the distinguishing regions of the different
vessel category distributions are those corresponding precisely
to area-preservation scaling for healthy tissue, and extreme
area increasing scaling for the tumor vasculature. These
differences have important physiological consequences related
to fluid flow rates and blood volume supply that we explore in
the Discussion.
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FIGURE 6 | Comparison of branching scale factors between tumor-supplying vessels (blue) and healthy tissue-supplying vessels (red). (A) Joint and marginal

distributions for radial scale factors. White dashed lines correspond to predicted constraint equations for cubic, area-increasing scaling, Equation (3), (top line) and

square, area-preserving scaling, Equation (2), (bottom line). Note that both categories of vessel groups closely follow area-preserving scaling, yet variation in the

tumor-supplying vessel groups trend toward area-increasing scaling. (B) Significance contours identifying regions in the radial scale factor feature space responsible

for differentiation. Unlike the radial scale factors, length scale factors (C) defined using canonical generation labeling do not result in significant differentiation between

vessel groups.

Unlike the radial scale factors, no significant differences
were observed between the tumor supplying and healthy tissue
supplying vasculature in the average and difference length scale
factor feature space (γ̄ ,1γ ), as seen in Figure 6C and Table 2.
However, upon relabeling vessels using the Horton-Strahler

topology, and remeasuring lengths and the Horton-Strahler
length scale factor γHS, we found significant differences between
the healthy vessel and tumor vessel populations (Figure 4).
Specifically, we found that healthy vessels had an HS length scale
factor of γHS = 0.48 ± 0.07, while ADC HS length scale factors
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averaged γHS = 0.65±0.11 and SCCs averaged γHS = 0.73±0.32.
Theory does not presently exist to rigorously translate Horton-
Strahler length scale factors into fractal dimensions of scaling.
However, assuming that the fractal dimension can still be defined
under the conventional manner as D = − log(2)/ log(γHS), then
one can still calculate the fractal dimension for a bifurcating
system. In this case, the fractal dimension for the healthy tissue
vasculature usingHorton-Strahler labeling isD = 0.94, for ADCs
is D = 1.61 and for SCCs is D = 2.20.

In addition to the conventional branching scale factors related
to length and radius, we also analyzed the volumetric scale
factor, ν, the ratio of the volume of both child branches to the
volume of the parent branch across a bifurcation. Expressed
in terms of the radial and length average and difference scale
factors, ν = 2β̄2γ̄ + 4β̄1β1γ + 2γ̄ 1β2. We measured
distributions of ν for every bifurcation across all vessel categories.
We found significant differences in volumetric scaling between
the two tumor categories of ADC and SCC and the healthy tissue
supplying vasculature. Specifically, we measured the average
volumetric scale factor for healthy tissue vasculature was ν =

2.05 ± 0.27, where for ADCs ν = 2.41 ± 0.36 and for SCCs
ν = 2.52 ± 0.34. This pronounced difference in the volume of
blood supplied by the vasculature is due in part to the observed
difference in radial scaling, and has important consequences for
metabolic scaling given the dependence on ν in Equation (4).

3.3. Vascular Based Estimates of Metabolic
Scaling
Evaluation of Equation (4) to estimate metabolic scaling
exponents from vascular branching resulted in average values
for ADCs of θ = 0.85 ± 0.03 and for SCCs θ = 0.87 ±

0.02 (see Table 1). These values are within the 95% confidence
intervals of the PET-CT imaging based estimates using the scaling
of metabolic tumor volume (MTV) to gross tumor volume
(GTV) from Equation (5). Importantly, the consistency of these
two, simultaneous measurements marks a first-of-its-kind test of
metabolic scaling theory.

Further analysis of the vascular based estimates of the
metabolic scaling exponents is shown in Figure 7, where the
dependence of the metabolic scaling exponent on volumetric
scaling and total network generation is presented, with results
for vasculature supplying ADCs, SCCs, and healthy lung tissue.
We find that the tumors and healthy tissues cluster separately
within the feature space of metabolic scaling exponent, θ ,
number of network generations, N, and volumetric scale factor,
ν. Specifically, the ADCs have values of N = 3.58 ± 0.08 and
ν = 2.41 ± 0.36, the SCCs have values of N = 4.03 ± 0.07
and ν = 2.52 ± 0.34, and the healthy tissue vascular networks
have values of N = 5.23 ± 0.16 and ν = 2.05 ± 0.27. These
and other measured network values are reported in Table 2.
The differences in the number of branching generations and
volumetric scaling exist despite the fact that the tumors and
healthy tissue vessel networks result in the same average values
for the metabolic scaling exponent. This result serves to reinforce
the potential value of vascular scale factors as imaging biomarkers
for tumors.

4. DISCUSSION

In this work we demonstrate the potential for clinical cancer
imaging to serve as a novel test of metabolic scaling theory. The
nuclear and structural imaging modalities of positron emission
tomography and X-ray computed tomography (PET-CT) provide
a unique lens with which to examine metabolic scaling theory,
with non-small cell lung cancer tumors serving as a model
subject. We report several key findings as a result of this
work, and summarize and discuss their implications. (i) We
have conducted a first-of-its-kind simultaneous measurement of
metabolic scaling. We utilize PET imaging to measure tumor
glucose uptake as an estimate of metabolism via Equations (5)
and (6), and CT imaging to measure the tumor-supplying
vasculature that leads to vascular-based estimates of metabolic
scaling via Equation (4). We report consistent measurements
between these two approaches, a result that serves to validate the
metabolic scaling theory of ecology. Furthermore, we highlight
how growth models rooted in energetic partitioning connect
these morphologic changes in tumor-supplying vasculature
to tumor growth trajectories. (ii) We measure tumor-specific
metabolic scaling exponents based on morphologic changes
to the geometric scaling of the tumor-supplying vasculature.
These structural changes in vascular scaling may serve as future
imaging biomarkers to aid in disease detection, diagnosis, and
stratification. (iii) We emphasize the opportunity for cancer to
serve as a model subject to probe metabolic scaling theory at the
onset of vascular development through the examination of small
avascular tumors that transition to large vascularized tumors. (iv)
Finally, we close by discussing several extensions and limitations
of the work presented.

4.1. Simultaneous Measurements and
Tumor Growth Trajectories
4.1.1. Simultaneous Measurements
Since the original inception of metabolic scaling theory in (West
et al., 1997), simultaneous measurements of metabolic scaling
have been elusive. However, these measurements are crucial
for identifying strengths and weaknesses in the methods and
theory of metabolic scaling, and for refining our understanding
of metabolic scaling as a phenomenon (Price et al., 2012).

Our work presents a new and complementary perspective
to the field of cancer biology which has recently seen a surge
of interest in the scaling of tumor metabolism to tumor mass.
Here, metabolic scaling is used as a quantitative framework for
understanding the de-regulated growth of tumors facilitated by
aerobic glycolysis, also known as the Warburg effect (Warburg,
1956; Vander Heiden et al., 2009). In these differing schools
of thought, variation in metabolic scaling can be attributed to:
variation in turnover rates from proliferative to necrotic states,
resulting in transitions from linear to sub-linear scaling as in
(Milotti et al., 2013); cell migration and competition as a driver
of tumor subpopulations evolving from single to heterogenous
states, resulting in transitions from sub-linear to super-linear
scaling as in (Pérez-García et al., 2020); or sudden increases
in oxygen supply levels as a result of angiogenesis, resulting
in momentary accelerations in tumor growth and temporary
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FIGURE 7 | Vascular based estimates of metabolic scaling exponents as a function of volumetric scale factor for tumor supplying vessel networks (adenocarcinoma in

green and squamous cell carcinoma in orange) and healthy tissue supplying vessel networks (gray). The direction of increasing network size, as measured by

generation number N, is into the upper left corner. Note the distinct clustering of the healthy tissue supplying networks along ν ≈ 2 and the tumor supplying networks

along ν > 2.

super-linear scaling as in (Azimzade et al., 2021). Here, we
present a perspective that connects variation in metabolic scaling
to variation in the geometric scaling of the tumor-supplying
vasculature. While the many proposed mechanisms of variation
in metabolic scaling offer complementary views of tumor growth
and heterogeneity, they can also inform possible reasons for
treatment failures.

Important benefits of simultaneous measurements are their
ability to test the robustness of models and measurable features
from experimental and clinical data. Although the two different
regression methods of measuring metabolic scaling exponents
in Equations (5) and (6) led to consistent results, both
measurements rely heavily on the maximum standard update
value (SUVmax) from the PET imaging. Despite the fact that
SUVmax will have little variation from differences in contouring,
it can still vary from effects such as machine variability, patient
physiology, and the partial volume effect. The latter of these
is quite significant for metabolic scaling studies as it precludes
many clinical PET imaging metrics from tumors smaller than
4 cm3. While important work is being done in the realm of
quantitative imaging biomarker discovery to standardize metrics

(see Sullivan et al., 2015), we comment here on two other metrics
of growing interest, total lesion activity (TLA) and glucose
metabolic rate (MRglu).

Recalling that TLA is the summed product of voxel volume
and SUVi, or TLA =

∑

i viSUVi, we argue caution should be
made in using TLA for examining metabolic scaling as it can
introduce potentially spurious super-linear scaling. To see this,
we highlight that if one calculates a volume-weighted average
of SUV as 〈SUV〉V =

∑

i viSUVi/
∑

i vi, the definition of TLA
appears in the numerator. Solving for TLA here results in, TLA =

V〈SUV〉V . Thus, in comparing TLA toMTV as candidate metrics
for a scaling phenomenon, a potential extra factor of volume
can appear that may bias inferred scaling exponents toward the
super-linear regime.

On the other hand, dynamic PET imaging may offer improved
resolution of scaling phenomenon. Work by Visser et al. (2008)
demonstrated that the combination of pharmacokinetic models
of glucose uptake and dynamic PET imagingmethods to measure
the tumor glucose metabolic rate (MRglu) result in systematic
reduction in estimates of tumor volume when compared to static
PET images. However, comparison of tumor volume estimates
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from both static and dynamic PET imaging to tumor volumes
measured after surgical resection show that both imaging metrics
under-predicted tumor volume by as much as 50% (Meijer
et al., 2017). Despite these varied differences, such work can
still be valuable for metabolic scaling studies as over- or under-
predicting tumor volume can be corrected as long as the
deviations are systematic.

4.1.2. Growth Trajectories
Interpretation of the value of the metabolic scaling exponent for
tumors is most easily done through the context of growthmodels.
Although the data considered in this study consists entirely
of single point-in-time measurements, the metabolic scaling
exponent can provide insight into tumor growth trajectories.
Metabolic scaling theory can be extended to model the growth
trajectory of an organ or organism using energetic partitioning.
Derivations and analyses of the following model can be found
in the literature (West et al., 2001; Guiot et al., 2006; Herman
et al., 2011). Here we summarize the main points of an energetic
tumor growth model, and in particular as it relates to the vascular
supply network.

The growth of tumor mass over time can be expressed in the
following differential equation,

dm

dt
=

B0mc

Ec
mθ −

Bc

Ec
m (7)

where mc is the mass of an individual cell, Ec is the
energetic cost of cellular division, Bc is the metabolic cost of
cellular maintenance, and B0 is the normalization constant for
the metabolic scaling allometry. Equation (7) is derived by
partitioning the total metabolic power available into two terms:
one for cellular growth and the other for the cost of cellular
maintenance. In Equation (7), the resulting growth term appears
on the left-hand-side, while the terms for total metabolism
minus the cost of maintenance appear on the right-hand-side.
Historically, Equation (7) is also known as the Bertalanffy-
Richards model of growth (Von Bertalanffy, 1957; Richards,
1959).

An important feature of Equation (7) is how the stability of
the equilibrium mass, meq, changes with respect to the metabolic
scaling exponent θ . For super-linear metabolic scaling, where
θ > 1, the equilibrium mass is an unstable fixed point.
Furthermore, if m < meq, the maintenance term in Equation (7)
dominates the behavior and the system converges to meq =

0, whereas if m > meq then the cost term is negligible, and
the tumor mass grows without bound. For linear metabolic
scaling, associated with laminar blood flow and where θ = 1,
Equation (7) reduces to that of exponential growth, with no stable
equilibrium. Finally, for sub-linear scaling, where θ < 1, the
equilibrium mass is a stable fixed point.

The combination of Equations (4) and (7) highlights how
patterns in vascular development during tumor angiogenesis
can determine a growth trajectory (this is in addition to the
histologically specific values of mc,Ec,Bc, and B0. In particular,
as a tumor neoplasm develops, it first exists in the linear
metabolic scaling regime with no equilibrium state and exhibits

runaway growth. Once the tumor begins secreting angiogenic
factors, new vasculature develops to supply the tumor with blood,
subsequently reshaping the local vascular branching geometry
and driving the tumor into the sub-linear metabolic scaling
regime with a stable equilibrium. Thus, in the context of
metabolic scaling theory, the geometric scaling of the tumor
vasculature can serve as a measurable bifurcation parameter of
the tumor growth trajectory.

The vascular-based tuning of growth demonstrates the
importance for future measurements of both metabolic
scaling exponents and tumor microenvironment variables
extracted from pathology samples and/or altogether new
metabolic radio-tracers to determine the overall tumor growth
trajectory (Momcilovic et al., 2019). These efforts are especially
important in understanding variation in tumor growth due to
differences in tumor histology (e.g., squamous cell carcinoma
and adenocarcinoma) and heterogeneity.

4.2. Vascular Morphogenesis
Our work in examining metabolic scaling in tumors relies heavily
on measurements of the pulmonary vascular-network that is
supplying the tumors with blood. We propose a procedure for
identifying the tumor-supplying vessels as those that penetrate
the segmented tumor contours, and a routine for identifying
the vascular tree in which these vessels are connected. We
subsequently demonstrate that these tumor-supplying vascular
trees exhibit markedly different radial scaling than the healthy
lung tissue-supplying vascular networks (Figure 6). These
differences have important connections to volumetric blood-
flow rates.

There are two potential physiological consequences for the
observed differences in radial scaling. Conservation of fluid flow
dictates that area increasing scaling will result in a slowing of
the blood flow from parent to child vessels across a bifurcation.
Large tumors will necessarily attach to large diameter vessels,
which diminishes the number of branching generations that
would normally be present to slow the flow of blood. Thus,
vessel widening may be viewed as a compensatory mechanism
to facilitate the slowing down of blood flow in the absence of a
sufficient number of branching generations.

The second consequence for increased radial scaling is
increasing the total blood volume delivered per unit time. This
is supported by the observed increase in volumetric scaling for
tumor-supplying vessels over healthy tissue-supplying vessels
(Figure 7 and Table 2). As a tumor grows it places an increasing
demand on nutrient supply in terms of blood volume. This can
be accomplished by increasing either the vessel length or vessel
radius. However, an increase in vessel length can only occur
through the process of growing wholly new vessels, or by pruning
existing vessels at a branch point, whereas increasing vessel radius
can be achieved in any existing vessel. Furthermore, as changes in
vessel volume are constant with respect to length and linear with
respect to radius, the benefit of increasing radius is two-fold. That
is, doubling the length only doubles the volume, but doubling the
radius will quadruple the volume.
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4.3. Metabolic Scaling in Avascular
Systems
Finally, this work highlights important opportunities for insights
and perspectives from cancer biology to inform ecology and
evolutionary biology. Although applications of metabolic scaling
in ecology and evolutionary biology permeate a myriad of
systems (e.g., food webs, predator-prey interactions, forrest
demography, and species-area distributions) a central hallmark
of metabolic scaling theory is the reliance on a well-defined
vascular network distributing resources. Thus, in systems absent
of resource distribution networks, deviations from metabolic
scaling predictions can be challenging to interpret.

The biological processes of tumor growth and angiogenesis
represent a unique opportunity to study metabolic scaling theory
beyond the vascular regime. Many conventional tumor growth
and angiogenesis models are cast as reaction-diffusion processes
that highlight different phenomena operating at different scales
(Hormuth et al., 2021). Cellular-scale models incorporate any
number of terms specific to cellular growth, death, interactions,
and importantly include cellular motion due to diffusion,
advection and chemical attraction (Frieboes et al., 2010). Tissue-
scale models balance the demands of fluid transport within
vascular networks, fluid flux through vessel walls, and interstitial
flow that links the embedding tissues with the supplying vessels
(Wu et al., 2020).

Metabolic scaling theory may serve to bridge these
phenomenological scales by linking geometric patterns of
tissue vasculature to the metabolic demands of cellular processes.
Alternatively, framing the cell and tissue scale processes in the
context of metabolic scaling theory may help to inform the
modeling of other biological systems conventional to ecology
and evolutionary biology. For example, models of cellular
diffusion bear much resemblance to those of species aggregation
and migration, and could inform recent efforts in landscape
disturbance ecology (Harte et al., 2021). Similarly, the interaction
between tumor driven angiogenesis and changes in the tumor
microenvironment may guide studies on the interaction between
environmental drivers and biomechanical limits to cellular
evolution (Malerba and Marshall, 2021).

4.4. Extensions and Limitations
Here we outline several extensions and limitations of this
work. These span: improvements in technical analyses and
model approaches; the focus of pulmonary arterial networks
over bronchial arterial networks; applications in tumor directed
chemotherapy, embolization, and malignancy determination;
and the general study of other cancers.

4.4.1. Small Lesions and Partial Volume Limitations
A challenge of the current study is the inability to accurately
apply metabolic scaling theory to the study of small lesions, here
defined as having a tumor volume less than 4 cm3. This is a
consequence of the partial volume effect, an imaging artifact in
which objects near the resolution limit may appear larger than
they actually are (Soret et al., 2007). The partial volume effect can
skew measurements of tumor and vessel volumes extracted from
CT imaging, in addition to metabolic measurements from PET

imaging. Important work has been done to quantify the size of the
partial volume effect in PET imaging by using imaging phantoms
(materials designed with known radioactivities) (Kinahan et al.,
2009), as well as to define analysis protocols to correct for the
partial volume effect based on background PET measurements
in the vicinity of a lesion (Salavati et al., 2017). Regarding
CT imaging, recent studies of variation in image acquisition
(dose and resolution) and reconstruction methods are providing
important insight into the source and nature of variation in lesion
detection and quantification (Lo et al., 2016). Finally, recent work
leveraging mathematical theorems of vessel shape and geometry
have identified systematic procedures for subsampling vessel
image data to resolutions beyond the imaging modality limit
(Brummer et al., 2021). Thus, while small lesions were omitted
from this work, future efforts have multiple avenues available for
their inclusion.

4.4.2. Horton-Strahler Corrections to Vascular

Branching Architecture
The biased differences between the PET-CT derived estimates for
the metabolic scaling exponents and the vascular based estimates
can be partially resolved with careful examination of the length
scale factors of the vascular networks. A common finding in
measuring length scale factors is the heavy-tailed structure of
their distributions (Newberry et al., 2015; Tekin et al., 2016;
Brummer et al., 2021). This results in large distributionmeans for
length scale factors (〈γ̄ 〉 > 1), which can subsequently increase
the estimate of the metabolic scaling exponent. A benefit of the
Horton-Strahler labeling scheme is that it systematically lowers
the estimates for length scaling and results in more biophysically
realistic estimates of the fractal dimension for the network
(Figure 4E and Table 2). Furthermore, we can approximate the
impact of the length scaling bias on estimates of the metabolic
scaling exponent by utilizing the Horton-Strahler length scale
factor and the fact that the vascular networks studied exhibit
radial symmetry.

An exact derivation of Equation (4) for the Horton-Strahler
topology remains elusive, primarily due to the challenges of
bridging the formalisms for asymmetrically branching networks.
However, our measurements show that the vascular systems
exhibit radial symmetry, 〈1β〉 ≈ 0 (see Figure 6 and Table 2).
Thus, the definition of the volume scale factor reduces to ν ≈

2β̄2γHS, where we have substituted γ̄ with γHS under a symmetric
approximation. Evaluating Equation (4) with this approximate
form of ν and values taken from Table 2 results in estimates of
the metabolic scaling exponent of θHS = 0.60 for ADCs and
θHS = 0.65 for SCCs, values that are intriguingly closer to those
extracted from the PET-CT allometric scaling measurements.
This suggests the HS topology may be a more appropriate
labeling scheme for these types of vasculature (Table 1).

4.4.3. Pulmonary vs. Bronchial (Systemic) Arterial

Networks
A unique feature of the lung is that it possesses a dual arterial
blood supply. The pulmonary arterial trees are responsible for
oxygenating the blood supply and dispelling byproducts of
systemic cellular respiration, while the bronchial (or systemic)
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arterial trees provide oxygenated blood specifically to lung
tissue for their own cellular respiration. This dual blood supply
feature of the lungs is also shared with lung tumors (Milne,
1967), and resolving the extent to which the different vascular
networks are involved in tumor initiation, growth, histology, and
metastasization is an active field of research (Nguyen-Kim et al.,
2015; Eldridge et al., 2016; Deng et al., 2020).

Importantly for this study, the diameters of the vessels in
the bronchial arterial tree are an order of magnitude smaller
than those found in the pulmonary arterial tree. This results
in many of the bronchial vessels not being detected in typical
clinical CT imaging devices and likely being absent from our
study. There exist methods to simultaneously measure both
pulmonary and bronchial arterial networks using carefully
designed perfusion CT imaging. However, these methods are
technologically demanding and require exceptionally large doses
of radiation to be given to patients, precluding their widespread
adoption (Yuan et al., 2012; Nguyen-Kim et al., 2015).

The absence of bronchial vascular networks from our
study may contribute to the observed difference between the
allometric-based and vascular-branching-based measurements
of metabolic scaling exponents (Table 1). The exact size of
the contribution of the bronchial networks to the total
tumor metabolism is not currently known. However, current
understanding suggests as tumors increase in size they begin to
undergo hypoxia internally and subsequently develop necrotic
cores. As a result, vessel recruitment through either angiogenesis
or cooption of the pulmonary arterial vessels can occur at the
tumor boundary to facilitate an increase in tumor blood supply.
Thus, we presume that by focusing this study to larger tumors
of clinical staging II-IV, the reliance on bronchial arterial supply
is minimized.

4.4.4. Tumor Directed Therapies and Embolization
Tumor directed therapies—ones that try to localize treatment
more to the local tumor and not the whole body—may
be greatly informed by distinguishing between bronchial and
pulmonary tumor vascular supply, providing a major motivator
for future studies in that direction. Expansive knowledge
of the vascular supply to hepatic tumors has led to a
multitude of standard treatment options that combine vascular
embolization with any of radio-, chemo-, or immunotherapy
(Erinjeri et al., 2019). These methods provide localized tumor
directed treatment and alleviate many of the complicating
side-effects associated with systemic (whole-body) approaches
or surgical intervention. In the treatment of lung cancer,
transpulmonary chemoembolization has proven successful as
an interventional technique, yet has questionable impact
on overall patient survival (Lindemayr et al., 2007; Vogl
et al., 2013). We propose our framework of coupling tumor
vascular supply to tumor metabolism as a method for
screening for patients that are likely to respond to tumor
directed therapies. Specifically, tumors whose vascular supply
is dominated by the pulmonary arterial vasculature may be
good candidates for these therapies as the likelihood of
treatment escape through the bronchial arterial supply should
be minimal.

4.4.5. Malignancy Determination in Lung Cancer
The methods and results presented here have potential to serve
as biomarkers of tumor malignancy. Previous work by others
has demonstrated the ability of blood vessel branching metrics
to serve as indicators of tumor malignancy. In a radiomics-
inspired study, blood vessel volume was identified as an imaging
biomarker that could distinguish between adenocarcinomas
and granulomas in the networks supplying and surrounding
the nodules (Alilou et al., 2018). Blood vessel volume would
be most directly related to our volumetric scale factor, ν,
which we found to indicate significant differences between
blood vessel networks supplying healthy and tumor burdened
lungs (Table 2). Furthermore, another study identified blood
vessel diameter as being indicative of malignant vs. benign
classification in a patient cohort with comorbidities of chronic
obstructive pulmonary disorder (e.g., emphysema) (Wang et al.,
2017). Blood vessel diameter constitutes our radial average and
difference scale factors, β̄ and 1γ , which also demonstrated
significant differences between healthy and tumor burdened
pulmonary vessels (Table 2). Finally, our measurements of vessel
length scaling, specifically the average length scale factor, γ̄ ,
and the Horton-Strahler length scale factor, γHS, identified
modest differences between adenocarcinomas and squamous cell
carcinomas, suggesting that histologically-based differences in
tumor-supplying vasculature may exist (Table 2). These results
motivate future work to better quantify the diagnostic potential
of blood vessel biomarkers both for malignancy determination
and histological stratification.

4.4.6. General Study of Other Cancers
While this work focused on the application of metabolic
scaling theory to the study of non-small cell lung carcinoma
and PET-CT imaging, it should be applicable to other
cancers and imaging modalities. Recent work by Pérez-García
et al. (2020) has demonstrated the existence of metabolic
allometries in brain, lung, breast, rectal, and head and neck
cancers. The challenge that persists is accurate segmentation
of the supplying vasculature, and more so, the vasculature
that comprises the tumor itself. This is a challenge at the
intersection of imaging modality and computer vision. We
chose to focus on the lung in order to minimize the
presence of background tissue that may complicate accurate
vessel segmentation using high dose CT. However, ongoing
efforts that utilize vessel segmentation to guide therapeutic
interventions and track treatment response in liver and breast
cancer using diffusion-weighted contrast-enhanced magnetic
resonance imaging (see Marčan et al., 2015; Wu et al., 2020)
may benefit from metabolic scaling theory, or even contribute
to its development. In fact, the highly vascularized nature of
liver tumors offers a unique opportunity to test the assumption
that tumor-supplying vessels are a sufficient proxy for tumor-
comprising vessels.

5. CONCLUSION

We present a first-of-its-kind test of metabolic scaling theory.
Leveraging clinical PET-CT imaging across a cohort of patients,
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and computer vision methods to extract pulmonary vascular
segmentation, we simultaneously measure metabolic scaling
exponents from allometric regressions on tumor metabolism and
mass as well as geometric models of the vascular branching
architecture. The consistency of these measurements supports
the framework of metabolic scaling theory, and introduces
new opportunities for imaging biomarkers in the detection,
diagnostics, and tracking of non-small cell lung carcinoma.
Specifically, we find that the pulmonary vascular networks
that supply tumors with blood exhibit area-increasing radial
scaling with essential physiological consequences. This scaling
facilitates a slowing of blood flow and an increase in total
blood volume delivered. In combination with measurements of
tumor cell proliferation from histological studies, these vascular
imaging features can be utilized for the prediction of tumor
growth. Additionally, this work highlights unique opportunities
to further develop and test themetabolic scaling theory of ecology
in avascular systems.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found at the Cancer Imaging Archive: https://
www.cancerimagingarchive.net/ at the repository titled
“Radiogenomics”. Data collected and generated are available on
a Github repository https://github.com/alexbbrummer/NSCLC_
metabolic_scaling.

ETHICS STATEMENT

Ethical review and approval was not required for the
study on human participants in accordance with the
local legislation and institutional requirements. Written
informed consent for participation was not required for this

study in accordance with the national legislation and the
institutional requirements.

AUTHOR CONTRIBUTIONS

ABB and VMS designed the study. ABB assembled the data,
performed all the analyses, and wrote the first draft of the
manuscript. Both authors have discussed the results and
contributed extensively to the final manuscript.

FUNDING

ABB was supported in part by the National Science Foundation
(grant 1254159).

ACKNOWLEDGMENTS

The authors would like to acknowledge the following individuals
who contributed data to this study as well as comments on the
initial draft: Sarah Mattonen (Mattonen et al., 2019), Yoshihasa
Shimada and Yojiro Makino (Furumoto et al., 2018), David
Chardin and Olivier Humbert (Chardin et al., 2020), and
Jesús Bosque Martínez and Víctor Manuel Pérez García (Pérez-
García et al., 2020). Furthermore, the authors would like to
acknowledge the following individuals for insightful discussions
during the development of this work and manuscript: Mary Sehl,
David Shackelford, Russell Rockne, Michael McNitt-Gray, Aaron
Lisberg, Eric Deeds, and Vikram Adhikarla.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fevo.
2021.691830/full#supplementary-material

REFERENCES

Aerts, H. J., Velazquez, E. R., Leijenaar, R. T., Parmar, C., Grossmann, P.,

Carvalho, S., et al. (2014). Decoding tumour phenotype by noninvasive

imaging using a quantitative radiomics approach. Nat. Commun. 5:4006.

doi: 10.1038/ncomms5644

Alilou, M., Orooji, M., Beig, N., Prasanna, P., Rajiah, P., Donatelli, C., et al.

(2018). Quantitative vessel tortuosity: a potential CT imaging biomarker for

distinguishing lung granulomas from adenocarcinomas. Sci. Rep. 8:15290.

doi: 10.1038/s41598-018-33473-0

Apte, R. S., Chen, D. S., and Ferrara, N. (2019). Vegf in signaling

and disease: beyond discovery and development. Cell 176, 1248–1264.

doi: 10.1016/j.cell.2019.01.021

Ardila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reicher, J. J., Peng, L.,

et al. (2019). End-to-end lung cancer screening with three-dimensional deep

learning on low-dose chest computed tomography. Nat. Med. 25, 954–961.

doi: 10.1038/s41591-019-0447-x

Azimzade, Y., Saberi, A. A., and Gatenby, R. A. (2021). Superlinear

growth reveals the allee effect in tumors. Phys. Rev. E 103:042405.

doi: 10.1103/PhysRevE.103.042405

Bailey, D. L., Maisey, M. N., Townsend, D. W., and Valk, P. E. (2005). Positron

Emission Tomography: Basic Sciences, Vol. 2. London: Springer.

Banavar, J. R., Moses, M. E., Brown, J. H., Damuth, J., Rinaldo, A., Sibly,

R. M., et al. (2010). A general basis for quarter-power scaling in animals.

Proc. Natl. Acad. Sci. U.S.A. 107, 15816–15820. doi: 10.1073/pnas.10099

74107

Barneche, D. R., Robertson, D. R., White, C. R., and Marshall, D. J. (2018).

Fish reproductive-energy output increases disproportionately with body size.

Science 360, 642–645. doi: 10.1126/science.aao6868

Barnsley, M. F. (2012). Fractals Everywhere. Boston: Academic Press.

Bejan, A. (2001). The tree of convective heat streams: its thermal

insulation function and the predicted 3/4-power relation between

body heat loss and body size. Int. J. Heat Mass Transfer 44, 699–704.

doi: 10.1016/S0017-9310(00)00138-1

Bentley, L. P., Stegen, J. C., Savage, V. M., Smith, D. D., von Allmen, E. I., Sperry,

J. S., et al. (2013). An empirical assessment of tree branching networks and

implications for plant allometric scaling models. Ecol. Lett. 16, 1069–1078.

doi: 10.1111/ele.12127

Bettencourt, L. M., Lobo, J., Helbing, D., Kühnert, C., and West, G. B. (2007).

Growth, innovation, scaling, and the pace of life in cities. Proc. Natl. Acad. Sci.

U.S.A. 104, 7301–7306. doi: 10.1073/pnas.0610172104

Brose, U., Williams, R. J., and Martinez, N. D. (2006). Allometric scaling

enhances stability in complex food webs. Ecol. Lett. 9, 1228–1236.

doi: 10.1111/j.1461-0248.2006.00978.x

Brummer, A. B., Hunt, D., and Savage, V. (2021). Improving blood vessel

tortuosity measurements via highly sampled numerical integration of

the Frenet-Serret equations. IEEE Trans. Med. Imaging 40, 297–309.

doi: 10.1109/TMI.2020.3025467

Frontiers in Ecology and Evolution | www.frontiersin.org 17 October 2021 | Volume 9 | Article 691830

https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
https://github.com/alexbbrummer/NSCLC_metabolic_scaling
https://github.com/alexbbrummer/NSCLC_metabolic_scaling
https://www.frontiersin.org/articles/10.3389/fevo.2021.691830/full#supplementary-material
https://doi.org/10.1038/ncomms5644
https://doi.org/10.1038/s41598-018-33473-0
https://doi.org/10.1016/j.cell.2019.01.021
https://doi.org/10.1038/s41591-019-0447-x
https://doi.org/10.1103/PhysRevE.103.042405
https://doi.org/10.1073/pnas.1009974107
https://doi.org/10.1126/science.aao6868
https://doi.org/10.1016/S0017-9310(00)00138-1
https://doi.org/10.1111/ele.12127
https://doi.org/10.1073/pnas.0610172104
https://doi.org/10.1111/j.1461-0248.2006.00978.x
https://doi.org/10.1109/TMI.2020.3025467
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Brummer and Savage Metabolic Scaling in Lung Cancer

Brummer, A. B., Lymperopoulos, P., Shen, J., Tekin, E., Bentley, L. P., Buzzard, V.,

et al. (2021). Branching principles of animal and plant networks identified by

combining extensive data, machine learning and modelling. J. R. Soc. Interface

18:20200624. doi: 10.1098/rsif.2020.0624

Brummer, A. B., Savage, V. M., and Enquist, B. J. (2017). A general model for

metabolic scaling in self-similar asymmetric networks. PLoS Comput. Biol.

13:e1005394. doi: 10.1371/journal.pcbi.1005394

Chardin, D., Paquet, M., Schiappa, R., Darcourt, J., Bailleux, C., Poudenx, M.,

et al. (2020). Baseline metabolic tumor volume as a strong predictive and

prognostic biomarker in patients with non-small cell lung cancer treated

with pd1 inhibitors: a prospective study. J. Immunother. Cancer 8:e000645.

doi: 10.1136/jitc-2020-000645

Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., et al.

(2013). The cancer imaging archive (TCIA): maintaining and operating

a public information repository. J. Digital Imaging 26, 1045–1057.

doi: 10.1007/s10278-013-9622-7

DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M., and Brown, J. H.

(2010). Shifts in metabolic scaling, production, and efficiency across major

evolutionary transitions of life. Proc. Natl. Acad. Sci. U.S.A. 107, 12941–12945.

doi: 10.1073/pnas.1007783107

Deng, L., Tang, H., Qiang, J., Wang, J., and Xiao, S. (2020). Blood supply

of early lung adenocarcinomas in mice and the tumor-supplying vessel

relationship: a micro-CT angiography study. Cancer Prevent. Res. 13, 989–996.

doi: 10.1158/1940-6207.CAPR-20-0036

Dodds, P. S. (2010). Optimal form of branching supply and collection networks.

Phys. Rev. Lett. 104:048702. doi: 10.1103/PhysRevLett.104.048702

D’Sa, R., Lewis, K., Pereira, J., Thomas, V., Chavan, D., et al. (2019). “Comparative

analysis of lung segmentation,” in Proceedings of International Conference on

Communication and Information Processing (ICCIP). doi: 10.2139/ssrn.3424473

Duong, T. (2013). Local significant differences from nonparametric two-sample

tests. J. Nonparametric Stat. 25, 635–645. doi: 10.1080/10485252.2013.810217

Duong, T., Goud, B., and Schauer, K. (2012). Closed-form density-based

framework for automatic detection of cellular morphology changes. Proc. Natl.

Acad. Sci. U.S.A. 109, 8382–8387. doi: 10.1073/pnas.1117796109

Eldridge, L., Moldobaeva, A., Zhong, Q., Jenkins, J., Snyder, M., Brown, R. H., et al.

(2016). Bronchial artery angiogenesis drives lung tumor growth.Cancer Res. 76,

5962–5969. doi: 10.1158/0008-5472.CAN-16-1131

Eloy, C., Fournier, M., Lacointe, A., and Moulia, B. (2017). Wind loads and

competition for light sculpt trees into self-similar structures. Nat. Commun.

8:1014. doi: 10.1038/s41467-017-00995-6

Enquist, B. J., Brown, J. H., and West, G. B. (1998). Allometric scaling of plant

energetics and population density. Nature 395, 163–165. doi: 10.1038/25977

Enquist, B. J., West, G. B., and Brown, J. H. (2009). Extensions and evaluations of a

general quantitative theory of forest structure and dynamics. Proc. Natl. Acad.

Sci. U.S.A. 106, 7046–7051. doi: 10.1073/pnas.0812303106

Erinjeri, J. P., Fine, G. C., Adema, G. J., Ahmed, M., Chapiro, J., Den Brok, M.,

et al. (2019). Immunotherapy and the interventional oncologist: challenges and

opportunities—a society of interventional oncology white paper. Radiology 292,

25–34. doi: 10.1148/radiol.2019182326

Frieboes, H. B., Jin, F., Chuang, Y.-L., Wise, S. M., Lowengrub, J. S., and

Cristini, V. (2010). Three-dimensional multispecies nonlinear tumor growth—

II: tumor invasion and angiogenesis. J. Theoret. Biol. 264, 1254–1278.

doi: 10.1016/j.jtbi.2010.02.036

Furumoto, H., Shimada, Y., Imai, K., Maehara, S., Maeda, J., Hagiwara, M.,

et al. (2018). Prognostic impact of the integration of volumetric quantification

of the solid part of the tumor on 3DCT and FDG-PET imaging in

clinical stage IA adenocarcinoma of the lung. Lung Cancer 121, 91–96.

doi: 10.1016/j.lungcan.2018.05.001

Gevaert, O., Xu, J., Hoang, C. D., Leung, A. N., Quon, A., Rubin, D. L.,

et al. (2012). Non-small cell lung cancer: identifying prognostic imaging

biomarkers by leveraging public gene expression microarray data-methods

and preliminary results. Radiology 264, 387–396. doi: 10.1148/radiol.121

11607

Guiot, C., Degiorgis, P. G., Delsanto, P. P., Gabriele, P., andDeisboeck, T. S. (2003).

Does tumor growth follow a “universal law”? J. Theoret. Biol. 225, 147–151.

doi: 10.1016/S0022-5193(03)00221-2

Guiot, C., Delsanto, P. P., Carpinteri, A., Pugno, N., Mansury, Y., and

Deisboeck, T. S. (2006). The dynamic evolution of the power exponent

in a universal growth model of tumors. J. Theoret. Biol. 240, 459–463.

doi: 10.1016/j.jtbi.2005.10.006

Harte, J., and Newman, E. A. (2014). Maximum information entropy:

a foundation for ecological theory. Trends Ecol. Evol. 29, 384–389.

doi: 10.1016/j.tree.2014.04.009

Harte, J., Umemura, K., and Brush, M. (2021). Dynamete: a hybrid maxent-

plus-mechanism theory of dynamic macroecology. Ecol. Lett. 24, 935–949.

doi: 10.1111/ele.13714

Hatton, I. A., McCann, K. S., Fryxell, J. M., Davies, T. J., Smerlak, M., Sinclair, A. R.,

et al. (2015). The predator-prey power law: biomass scaling across terrestrial

and aquatic biomes. Science 349:aac6284. doi: 10.1126/science.aac6284

Herman, A. B., Savage, V. M., and West, G. B. (2011). A quantitative theory of

solid tumor growth, metabolic rate and vascularization. PLoS ONE 6:e22973.

doi: 10.1371/journal.pone.0022973

Hormuth, D. A., Phillips, C. M., Wu, C., Lima, E. A. B. F., Lorenzo, G.,

Jha, P. K., et al. (2021). Biologically-based mathematical modeling of tumor

vasculature and angiogenesis via time-resolved imaging data. Cancers 13:3008.

doi: 10.3390/cancers13123008

Horton, R. E. (1945). Erosional development of streams and their drainage basins;

hydrophysical approach to quantitative morphology. Geol. Soc. Am. Bull. 56,

275–370. doi: 10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2

Huang, Q., Hu, X., He, W., Zhao, Y., Hao, S., Wu, Q., et al. (2018). Fluid shear

stress and tumor metastasis. Am. J. Cancer Res. 8:763.

Huo, Y., and Kassab, G. S. (2009a). A scaling law of vascular volume. Biophys. J. 96,

347–353. doi: 10.1016/j.bpj.2008.09.039

Huo, Y., and Kassab, G. S. (2009b). The scaling of blood flow resistance:

from a single vessel to the entire distal tree. Biophys. J. 96, 339–346.

doi: 10.1016/j.bpj.2008.09.038

Jain, R. K. (2005). Normalization of tumor vasculature: an emerging concept in

antiangiogenic therapy. Science 307, 58–62. doi: 10.1126/science.1104819

Jin, Y., Fayad, L. M., and Laine, A. F. (2001). “Contrast enhancement by multiscale

adaptive histogram equalization,” in Proc. SPIE 4478, Wavelets: Applications in

Signal and Image Processing IX. doi: 10.1117/12.449705

Kinahan, P. E., Doot, R. K., Wanner-Roybal, M., Bidaut, L. M., Armato III,

S. G., Meyer, C. R., et al. (2009). PET/CT assessment of response to therapy:

tumor change measurement, truth data and error. Transl. Oncol. 2, 223–230.

doi: 10.1593/tlo.09223

Kinahan, P. E., and Fletcher, J. W. (2010). Positron emission tomography-

computed tomography standardized uptake values in clinical practice and

assessing response to therapy. Semin. Ultrasound CT MRI 31, 496–505.

doi: 10.1053/j.sult.2010.10.001

Kleiber, M. (1932). Body size and metabolism. Hilgardia 6, 315–353.

doi: 10.3733/hilg.v06n11p315

Lambin, P., Leijenaar, R. T., Deist, T. M., Peerlings, J., De Jong, E. E.,

Van Timmeren, J., et al. (2017). Radiomics: the bridge between medical

imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14:749.

doi: 10.1038/nrclinonc.2017.141

Lau, A., Martius, C., Bartholomeus, H., Shenkin, A., Jackson, T., Malhi, Y.,

et al. (2019). Estimating architecture-based metabolic scaling exponents of

tropical trees using terrestrial lidar and 3Dmodelling. Forest Ecol. Manage. 439,

132–145. doi: 10.1016/j.foreco.2019.02.019

Lindemayr, S., Lehnert, T., Korkusuz, H., Hammerstingl, R., and Vogl, T. J. (2007).

Transpulmonary chemoembolization: a novel approach for the treatment

of unresectable lung tumors. Tech. Vasc. Intervent. Radiol. 10, 114–119.

doi: 10.1053/j.tvir.2007.09.010

Lo, P., Young, S., Kim, H., Brown, M., and McNitt-Gray, M. (2016). Variability

in CT lung-nodule quantification: effects of dose reduction and reconstruction

methods on density and texture based features. Med. Phys. 43, 4854–4865.

doi: 10.1118/1.4954845

Majumdar, A., Alencar, A. M., Buldyrev, S. V., Hantos, Z., Lutchen, K. R.,

Stanley, H. E., et al. (2005). Relating airway diameter distributions to

regular branching asymmetry in the lung. Phys. Rev. Lett. 95:168101.

doi: 10.1103/PhysRevLett.95.168101

Malerba, M. E., and Marshall, D. J. (2021). Larger cells have relatively smaller

nuclei across the tree of life. Evol. Lett. 5, 306–314. doi: 10.1002/ev

l3.243

Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. San Francisco, CA:

W. H. Freeman and Co.

Frontiers in Ecology and Evolution | www.frontiersin.org 18 October 2021 | Volume 9 | Article 691830

https://doi.org/10.1098/rsif.2020.0624
https://doi.org/10.1371/journal.pcbi.1005394
https://doi.org/10.1136/jitc-2020-000645
https://doi.org/10.1007/s10278-013-9622-7
https://doi.org/10.1073/pnas.1007783107
https://doi.org/10.1158/1940-6207.CAPR-20-0036
https://doi.org/10.1103/PhysRevLett.104.048702
https://doi.org/10.2139/ssrn.3424473
https://doi.org/10.1080/10485252.2013.810217
https://doi.org/10.1073/pnas.1117796109
https://doi.org/10.1158/0008-5472.CAN-16-1131
https://doi.org/10.1038/s41467-017-00995-6
https://doi.org/10.1038/25977
https://doi.org/10.1073/pnas.0812303106
https://doi.org/10.1148/radiol.2019182326
https://doi.org/10.1016/j.jtbi.2010.02.036
https://doi.org/10.1016/j.lungcan.2018.05.001
https://doi.org/10.1148/radiol.12111607
https://doi.org/10.1016/S0022-5193(03)00221-2
https://doi.org/10.1016/j.jtbi.2005.10.006
https://doi.org/10.1016/j.tree.2014.04.009
https://doi.org/10.1111/ele.13714
https://doi.org/10.1126/science.aac6284
https://doi.org/10.1371/journal.pone.0022973
https://doi.org/10.3390/cancers13123008
https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
https://doi.org/10.1016/j.bpj.2008.09.039
https://doi.org/10.1016/j.bpj.2008.09.038
https://doi.org/10.1126/science.1104819
https://doi.org/10.1117/12.449705
https://doi.org/10.1593/tlo.09223
https://doi.org/10.1053/j.sult.2010.10.001
https://doi.org/10.3733/hilg.v06n11p315
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1016/j.foreco.2019.02.019
https://doi.org/10.1053/j.tvir.2007.09.010
https://doi.org/10.1118/1.4954845
https://doi.org/10.1103/PhysRevLett.95.168101
https://doi.org/10.1002/evl3.243
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Brummer and Savage Metabolic Scaling in Lung Cancer

Marčan, M., Kos, B., and Miklavčič, D. (2015). Effect of blood vessel segmentation

on the outcome of electroporation-based treatments of liver tumors. PLOSONE

10:e0125591. doi: 10.1371/journal.pone.0125591

Mattonen, S. A., Davidzon, G. A., Bakr, S., Echegaray, S., Leung, A. N., Vasanawala,

M., et al. (2019). [18f] fdg positron emission tomography (PET) tumor and

penumbra imaging features predict recurrence in non–small cell lung cancer.

Tomography 5:145. doi: 10.18383/j.tom.2018.00026

Meijer, T. W., de Geus-Oei, L.-F., Visser, E. P., Oyen, W. J., Looijen-Salamon,

M. G., Visvikis, D., et al. (2017). Tumor delineation and quantitative assessment

of glucose metabolic rate within histologic subtypes of non–small cell lung

cancer by using dynamic 18f fluorodeoxyglucose PET. Radiology 283, 547–559.

doi: 10.1148/radiol.2016160329

Milne, E. N. (1967). Circulation of primary and metastatic pulmonary neoplasms:

a postmortem microarteriographic study. Am. J. Roentgenol. 100, 603–619.

doi: 10.2214/ajr.100.3.603

Milotti, E., Vyshemirsky, V., Sega, M., Stella, S., and Chignola, R. (2013). Metabolic

scaling in solid tumours. Sci. Rep. 3, 1–6. doi: 10.1038/srep01938

Momcilovic, M., Jones, A., Bailey, S. T., Waldmann, C. M., Li, R., Lee, J. T., et al.

(2019). In vivo imaging of mitochondrial membrane potential in non-small-cell

lung cancer. Nature 575, 380–384. doi: 10.1038/s41586-019-1715-0

Montavon, G., Binder, A., Lapuschkin, S., Samek, W., and Müller, K.-R.

(2019). “Layer-wise relevance propagation: an overview,” in Explainable AI:

Interpreting, Explaining and Visualizing Deep Learning, eds W. Samek, G.

Montavon, A. Vedaldi, L. Hansen, and K. R. Müller (Springer), 193–209.

doi: 10.10007/978-3-030-28954-6_10

Mori, S., Yamaji, K., Ishida, A., Prokushkin, S. G., Masyagina, O. V., Hagihara,

A., et al. (2010). Mixed-power scaling of whole-plant respiration from

seedlings to giant trees. Proc. Natl. Acad. Sci. U.S.A. 107, 1447–1451.

doi: 10.1073/pnas.0902554107

Murray, C. D. (1926). The physiological principle of minimum work: I. The

vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. U.S.A.

12:207. doi: 10.1073/pnas.12.3.207

Myatt, D., Hadlington, T., Ascoli, G., and Nasuto, S. (2012). Neuromantic – from

semi-manual to semi-automatic reconstruction of neuron morphology. Front.

Neuroinform. 6:4. doi: 10.3389/fninf.2012.00004

Newberry, M. G., Ennis, D. B., and Savage, V. M. (2015). Testing foundations of

biological scaling theory using automated measurements of vascular networks.

PLoS Comput. Biol. 11:e1004455. doi: 10.1371/journal.pcbi.1004455

Nguyen-Kim, T. D. L., Frauenfelder, T., Strobel, K., Veit-Haibach, P., and Huellner,

M. W. (2015). Assessment of bronchial and pulmonary blood supply in non-

small cell lung cancer subtypes using computed tomography perfusion. Investig.

Radiol. 50, 179–186. doi: 10.1097/RLI.0000000000000124

Pandey, A. K., Singhi, E. K., Arroyo, J. P., Ikizler, T. A., Gould, E. R., Brown,

J., et al. (2018). Mechanisms of VEGF (vascular endothelial growth factor)

inhibitor–associated hypertension and vascular disease. Hypertension 71, e1–

e8. doi: 10.1161/HYPERTENSIONAHA.117.10271

Pashayan, N., and Pharoah, P. D. P. (2020). The challenge of early detection in

cancer. Science 368, 589–590. doi: 10.1126/science.aaz2078

Pawar, S., Dell, A. I., and Savage, V. M. (2012). Dimensionality of consumer

search space drives trophic interaction strengths. Nature 486, 485–489.

doi: 10.1038/nature11131

Pérez-García, V. M., Calvo, G. F., Bosque, J. J., León-Triana, O., Jiménez, J.,

Pérez-Beteta, J., et al. (2020). Universal scaling laws rule explosive growth

in human cancers. Nat. Phys. 16, 1232–1237. doi: 10.1038/s41567-020-

0978-6

Price, C. A., Weitz, J. S., Savage, V. M., Stegen, J., Clarke, A., Coomes, D. A.,

et al. (2012). Testing the metabolic theory of ecology. Ecol. Lett. 15, 1465–1474.

doi: 10.1111/j.1461-0248.2012.01860.x

Prior, F. W., Clark, K., Commean, P., Freymann, J., Jaffe, C., Kirby, J., et al.

(2013). “TCIA: an information resource to enable open science,” in Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society, IEEE Engineering in Medicine and Biology Society (NIH Public Access),

1282, 1282–1285. doi: 10.1109/embc.2013.6609742

Rao, S. R., Shelton, S. E., and Dayton, P. A. (2016). The “fingerprint” of

cancer extends beyond solid tumor boundaries: assessment with a novel

ultrasound imaging approach. IEEE Trans. Biomed. Eng. 63, 1082–1086.

doi: 10.1109/TBME.2015.2479590

Ribeiro, F. L., dos Santos, R. V., and Mata, A. S. (2017). Fractal dimension

and universality in avascular tumor growth. Phys. Rev. E 95:042406.

doi: 10.1103/PhysRevE.95.042406

Richards, F. (1959). A flexible growth function for empirical use. J. Exp. Bot. 10,

290–301.

Salavati, A., Duan, F., Snyder, B. S., Wei, B., Houshmand, S., Khiewvan, B., et al.

(2017). Optimal FDG PET/CT volumetric parameters for risk stratification

in patients with locally advanced non-small cell lung cancer: results from

the ACRIN 6668/RTOG 0235 trial. Eur. J. Nuclear Med. Mol. Imaging 44,

1969–1983. doi: 10.1007/s00259-017-3753-x

Samet, R., and Yildirim, Z. (2016). “A new methodology for blood vessel

segmentation on lung CT images,” in 2016 Nicograph International (NicoInt)

(IEEE), 1–7. doi: 10.1109/NicoInt.2016.1

Savage, V. M., Deeds, E. J., and Fontana, W. (2008). Sizing up allometric scaling

theory. PLoS Comput. Biol. 4:e1000171. doi: 10.1371/journal.pcbi.1000171

Schmidt-Nielsen, K. (1984). Scaling:Why Is Animal Size So Important?Cambridge:

Cambridge University Press.

Shojaii, R., Alirezaie, J., and Babyn, P. (2005). “Automatic lung segmentation in CT

images using watershed transform,” in IEEE International Conference on Image

Processing 2005 (IEEE), 1270. doi: 10.1109/ICIP.2005.1530294

Singadkar, G., Mahajan, A., Thakur, M., and Talbar, S. (2018). Automatic lung

segmentation for the inclusion of juxtapleural nodules and pulmonary vessels

using curvature based border correction. J. King Saud Univ. Comput. Inform.

Sci. 1–13. doi: 10.1016/j.jksuci.2018.07.005

Soret, M., Bacharach, S. L., and Buvat, I. (2007). Partial-volume effect in PET tumor

imaging. J. Nuclear Med. 48, 932–945. doi: 10.2967/jnumed.106.035774

Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. EOS

Trans. Am. Geophys. Union 38, 913–920.

Sullivan, D. C., Obuchowski, N. A., Kessler, L. G., Raunig, D. L., Gatsonis, C.,

Huang, E. P., et al. (2015). Metrology standards for quantitative imaging

biomarkers. Radiology 277, 813–825. doi: 10.1148/radiol.2015142202

Tekin, E., Hunt, D., Newberry, M. G., and Savage, V. M. (2016). Do vascular

networks branch optimally or randomly across spatial scales? PLoS Comput.

Biol. 12:e1005223. doi: 10.1371/journal.pcbi.1005223

Turcotte, D., Pelletier, J., and Newman, W. (1998). Networks with side branching

in biology. J. Theoret. Biol. 193, 577–592.

Valk, P. E., Delbeke, D., Bailey, D. L., Townsend, D. W., and Maisey, M. N. (2006).

Positron Emission Tomography: Clinical Practice. London: Springer Science &

Business Media.

Vander Heiden, M. G., Cantley, L. C., and Thompson, C. B. (2009). Understanding

the warburg effect: the metabolic requirements of cell proliferation. Science 324,

1029–1033. doi: 10.1126/science.1160809

Visser, E. P., Philippens, M. E., Kienhorst, L., Kaanders, J. H., Corstens, F. H.,

de Geus-Oei, L.-F., et al. (2008). Comparison of tumor volumes derived from

glucose metabolic rate maps and SUV maps in dynamic 18F-FDG PET. J.

Nuclear Med. 49, 892–898. doi: 10.2967/jnumed.107.049585

Vogl, T. J., Shafinaderi, M., Zangos, S., Lindemayr, S., and Vatankhah, K. (2013).

“Regional chemotherapy of the lung: transpulmonary chemoembolization in

malignant lung tumors,” in Seminars in Interventional Radiology (Thieme

Medical Publishers), 30, 176–184. doi: 10.1055/s-0033-1342959

Von Bertalanffy, L. (1957). Quantitative laws in metabolism and growth. Q. Rev.

Biol. 32, 217–231.

Wang, X., Leader, J. K., Wang, R., Wilson, D., Herman, J., Yuan, J.-M., et al. (2017).

Vasculature surrounding a nodule: a novel lung cancer biomarker. Lung Cancer

114, 38–43. doi: 10.1016/j.lungcan.2017.10.008

Warburg, O. (1956). On the origin of cancer cells. Science 123, 309–314.

West, G. B., Brown, J. H., and Enquist, B. J. (1997). A general model for the origin

of allometric scaling laws in biology. Science 276, 122–126.

West, G. B., Brown, J. H., and Enquist, B. J. (1999). A general model for the

structure and allometry of plant vascular systems. Nature 400, 664–667.

West, G. B., Brown, J. H., and Enquist, B. J. (2001). A general model for ontogenetic

growth. Nature 413:628. doi: 10.1038/35098076

West, G. B., Enquist, B. J., and Brown, J. H. (2009). A general quantitative theory

of forest structure and dynamics. Proc. Natl. Acad. Sci. U.S.A. 106, 7040–7045.

doi: 10.1073/pnas.0812294106

Wright, S. N., Kochunov, P., Mut, F., Bergamino, M., Brown, K. M., Mazziotta,

J. C., et al. (2013). Digital reconstruction and morphometric analysis of human

Frontiers in Ecology and Evolution | www.frontiersin.org 19 October 2021 | Volume 9 | Article 691830

https://doi.org/10.1371/journal.pone.0125591
https://doi.org/10.18383/j.tom.2018.00026
https://doi.org/10.1148/radiol.2016160329
https://doi.org/10.2214/ajr.100.3.603
https://doi.org/10.1038/srep01938
https://doi.org/10.1038/s41586-019-1715-0
https://doi.org/10.10007/978-3-030-28954-6_10
https://doi.org/10.1073/pnas.0902554107
https://doi.org/10.1073/pnas.12.3.207
https://doi.org/10.3389/fninf.2012.00004
https://doi.org/10.1371/journal.pcbi.1004455
https://doi.org/10.1097/RLI.0000000000000124
https://doi.org/10.1161/HYPERTENSIONAHA.117.10271
https://doi.org/10.1126/science.aaz2078
https://doi.org/10.1038/nature11131
https://doi.org/10.1038/s41567-020-0978-6
https://doi.org/10.1111/j.1461-0248.2012.01860.x
https://doi.org/10.1109/embc.2013.6609742
https://doi.org/10.1109/TBME.2015.2479590
https://doi.org/10.1103/PhysRevE.95.042406
https://doi.org/10.1007/s00259-017-3753-x
https://doi.org/10.1109/NicoInt.2016.1
https://doi.org/10.1371/journal.pcbi.1000171
https://doi.org/10.1109/ICIP.2005.1530294
https://doi.org/10.1016/j.jksuci.2018.07.005
https://doi.org/10.2967/jnumed.106.035774
https://doi.org/10.1148/radiol.2015142202
https://doi.org/10.1371/journal.pcbi.1005223
https://doi.org/10.1126/science.1160809
https://doi.org/10.2967/jnumed.107.049585
https://doi.org/10.1055/s-0033-1342959
https://doi.org/10.1016/j.lungcan.2017.10.008
https://doi.org/10.1038/35098076
https://doi.org/10.1073/pnas.0812294106
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Brummer and Savage Metabolic Scaling in Lung Cancer

brain arterial vasculature from magnetic resonance angiography. Neuroimage

82, 170–181. doi: 10.1016/j.neuroimage.2013.05.089

Wu, C., Hormuth, D. A., Oliver, T. A., Pineda, F., Lorenzo, G., Karczmar,

G. S., et al. (2020). Patient-specific characterization of breast cancer

hemodynamics using image-guided computational fluid dynamics.

IEEE Trans. Med. Imaging 39, 2760–2771. doi: 10.1109/TMI.2020.29

75375

Yao, Y., Jumabay, M., Wang, A., and Boström, K. I. (2011). Matrix gla protein

deficiency causes arteriovenous malformations in mice. J. Clin. Investig.

121:2993. doi: 10.1172/JCI57567

Yekutieli, I., and Mandelbrot, B. (1994). Horton-strahler ordering of random

binary trees. J. Phys. A Math. Gen. 27:285.

Yuan, X., Zhang, J., Ao, G., Quan, C., Tian, Y., and Li, H. (2012). Lung

cancer perfusion: can we measure pulmonary and bronchial circulation

simultaneously? Eur. Radiol. 22, 1665–1671. doi: 10.1007/s00330-012-

2414-5

Zamir, M. (2006). The Physics of Coronary Blood Flow. New York, NY: Springer

Science & Business Media.

Zhou, M., Leung, A., Echegaray, S., Gentles, A., Shrager, J. B., Jensen, K. C., et al.

(2018). Non-small cell lung cancer radiogenomics map identifies relationships

between molecular and imaging phenotypes with prognostic implications.

Radiology 286, 307–315. doi: 10.1148/radiol.2017161845

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Brummer and Savage. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 20 October 2021 | Volume 9 | Article 691830

https://doi.org/10.1016/j.neuroimage.2013.05.089
https://doi.org/10.1109/TMI.2020.2975375
https://doi.org/10.1172/JCI57567
https://doi.org/10.1007/s00330-012-2414-5
https://doi.org/10.1148/radiol.2017161845
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles

	Cancer as a Model System for Testing Metabolic Scaling Theory
	1. Introduction
	2. Materials and Methods
	2.1. PET-CT Imaging
	2.2. Establishment of Metabolic Scaling
	2.3. Segmentation of CT Images for Vascular Measurement
	2.3.1. Errors From the Segmentation and Skeletonization Procedures

	2.4. Modeling Vascular Data
	2.4.1. Branching Variables
	2.4.2. Measurement Procedures

	2.5. Metabolic Scaling From Vascular Measurements
	2.6. Metabolic and Gross Tumor Volume Scaling

	3. Results
	3.1. Allometric Regressions
	3.2. Scale Factor Analysis
	3.3. Vascular Based Estimates of Metabolic Scaling

	4. Discussion
	4.1. Simultaneous Measurements and Tumor Growth Trajectories
	4.1.1. Simultaneous Measurements
	4.1.2. Growth Trajectories

	4.2. Vascular Morphogenesis
	4.3. Metabolic Scaling in Avascular Systems
	4.4. Extensions and Limitations
	4.4.1. Small Lesions and Partial Volume Limitations
	4.4.2. Horton-Strahler Corrections to Vascular Branching Architecture
	4.4.3. Pulmonary vs. Bronchial (Systemic) Arterial Networks
	4.4.4. Tumor Directed Therapies and Embolization
	4.4.5. Malignancy Determination in Lung Cancer
	4.4.6. General Study of Other Cancers


	5. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


