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Earth is changing rapidly and so are many plant species’ ranges. Here, we synthesize
eco-evolutionary patterns found in plant range studies and how knowledge of species
ranges can inform our understanding of species conservation in the face of global
change. We discuss whether general biogeographic “rules” are reliable and how they
can be used to develop adaptive conservation strategies of native plant species across
their ranges. Rules considered include (1) factors that set species range limits and
promote range shifts; (2) the impact of biotic interactions on species range limits; (3)
patterns of abundance and adaptive properties across species ranges; (4) patterns of
gene flow and their implications for genetic rescue, and (5) the relationship between
range size and conservation risk. We conclude by summarizing and evaluating potential
species range rules to inform future conservation and management decisions. We
also outline areas of research to better understand the adaptive capacity of plants
under environmental change and the properties that govern species ranges. We advise
conservationists to extend their work to specifically consider peripheral and novel
populations, with a particular emphasis on small ranges. Finally, we call for a global
effort to identify, synthesize, and analyze prevailing patterns or rules in ecology to help
speed conservation efforts.

Keywords: species range limits, biotic interactions, local adaptation, gene flow, range size, management, climate
change

Sustained by previous discoveries, we can go forth into the future, and by foreseeing the consequences of
phenomena, we can understand once and for all the laws to which nature subjected itself.

– Alexander von Humboldt and Aimé Bonpland (1807)

INTRODUCTION

A core component of ecology is to recognize and understand patterns in nature (MacArthur,
1972). Since the early studies of biogeography (e.g., von Humboldt and Bonpland, 1807), scientists
have put forward a variety of ecological hypotheses, some of which have become entrenched or
taken for granted enough to be considered paradigms or “rules,” and these efforts continue today
(Sagarin and Gaines, 2002; Connallon and Sgrò, 2018; Liu et al., 2020). For example, there is
recent interest in establishing “rules of life” to understand and predict how properties of living
systems (i.e., environment, phenotype, evolution, etc.) interact (National Science Foundation, 2016;
Midlands Integrative Biosciences Training Partnership, 2019) and how these rules can inform
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conservation (Kindsvater et al., 2016). A central issue is
predicting how species will respond to climate change.
Accelerated biodiversity loss (Urban, 2015) and disruptions
to global patterns of community assembly (Trisos et al., 2020)
are already underway. Thus, we urgently need to understand
how species respond to rapid change at the geographic scale, and
whether there are broad geographic patterns or phenomena that
may lead to enhanced conservation and ecosystem management.
Although many species are likely to become endangered or
go extinct, targeted conservation measures can save many
species from this fate. Every species has a story to tell, and
its geographic range (e.g., range size, gene flow patterns, etc.)
can provide important insights as to how it can be conserved,
managed, and restored.

Whether or not ecological or evolutionary patterns can
serve as reliable rules is debatable since few strict laws
exist in ecology, but many general ones may (Lawton, 1999;
Temperton et al., 2004; Dickey et al., 2021). Broadly, we
consider rules to be effective, predictive hypotheses with strong
empirical support. Like any good rule, they will be broken
due to the idiosyncrasies among species and the vast variation
life represents. Nevertheless, knowing whether species ranges
provide generalizable ecological rules, such as in patterns of
abundance, distribution, and interactions, or evolutionary rules,
such as in patterns of selection, drift, and gene flow, would allow
more informed management decisions at large geographic scales
(Pelletier et al., 2018).

In this article, we evaluate various paradigms as potential
“rules” within five eco-evolutionary realms of species ranges—
some long-held—that are important for species conservation
and biogeography. We highlight new and emerging findings
throughout, including needed areas of future research, and
we include conservation recommendations within each section.
Although this topic applies to all forms of life, we focus our
examples and conservation prescriptions primarily on plants.
As primary producers, all ecosystems depend on their plant
communities to influence a suite of essential ecological processes,
including resource use efficiency, biomass production, and
nutrient recycling (Cardinale et al., 2011). Therefore, managing
for healthy, resilient plant communities is of primary concern
for ecosystem conservation and restoration. We end the paper by
summarizing our general findings for each rule and its associated
conservation implications (Table 1).

HOW ARE SPECIES RANGES DEFINED
AND TRACKED?

The Essence of Plant Species Ranges
Plants respond to stress and rapid environmental change
through several mechanisms. As sessile organisms in terrestrial
ecosystems, plants greatly employ a local scale of adaptation
(Alpert and Simms, 2002; Palacio-López et al., 2015). However,
there is also a large geographic scale at which plant populations
vary in their attributes, environments, modes of communication
among populations (i.e., gene flow), and interactions with abiotic
and biotic factors (Darwin, 1859; Griggs, 1914; MacArthur, 1972;

Brown, 1984). This scale is commonly known as the species
range (Gaston, 2003), which is assumed to be a projection of
niche availability in geographic space (Sexton et al., 2009). In this
vein, a classic paradigm that has garnered enough support to be
considered a rule is that range limits are niche limits, beyond
which populations tend to decline along with their available
niche attributes. Nevertheless, some edges are limited more by
dispersal. Recent and current work has sought to identify the
relative importance of niche vs. dispersal limitation for focal
species, mainly through the use of transplant experiments and
species distribution models (SDMs) (Hargreaves et al., 2014; Lee-
Yaw et al., 2016; Connallon and Sgrò, 2018; Bayly and Angert,
2019; Ackerly et al., 2020). From these studies, we can form
generalizations about what types of edges are most likely to
fall into each of these two categories, or both. Transplant and
modeling approaches have strengths and weaknesses (reviewed
in Araújo and Peterson, 2012; Ehrlén and Morris, 2015; Greiser
et al., 2020). Moreover, with respect to species ranges, climate
edges may not always correlate with geographic edges due to
climate heterogeneity and geographic scale effects on climate
properties (Oldfather et al., 2020). Thus, range limits are
perceptible and approximate niche limits at particular scales, but
also shift as climates change (Sexton et al., 2009; Halbritter et al.,
2018).

Plant Species Ranges on the Move in a
Changing Climate
In response to global warming, plant species ranges are shifting,
contracting, and expanding into new territories and into refugia
characterized by milder climate conditions and greater water
availability (Hampe and Petit, 2005; Lenoir et al., 2008(Feeley,
2012; de Lafontaine et al., 2018; Freeman et al., 2018; Meng
et al., 2019; Miller et al., 2020; Mamantov et al., 2021; Reed
et al., 2021; Zu et al., 2021). In most cases, plant species
range limits are moving quickly. The general pattern for plant
species ranges is to move to higher latitudes, elevations, and
cooler environments with higher precipitation to escape rising
temperatures and drought, often resulting in range contraction
(Kelly and Goulden, 2008). This pattern of uphill range shifts is
documented in many ecosystems, including deserts, such as the
Newberry mountains of the Mojave Desert (NV, United States)
(Guida et al., 2014), the tropical Andes mountains (Peru, South
America) (Feeley et al., 2011; Feeley, 2012), the subtropical
mountains of Mt. Gongga (Sichuan, China) (Zu et al., 2021),
and other montane systems worldwide (Mamantov et al., 2021).
However, tracking of climate change in montane species may be
more pronounced in the tropics, where seasonality is reduced
(Ghalambor et al., 2006), than in temperate zones (Freeman
et al., 2018). Rapid plant community change is also a symptom
of climate change. In coastal ecosystems, as sea levels rise, the
globally distributed mangrove, Avicennia sp. (Acanthaceae), is
replacing existing habitats (e.g., salt marsh ecosystems) as their
distributions expand (Saintilan et al., 2014). Nevertheless, there
are plant species with static ranges that are so far resilient to
climate change, such as with some heat-adapted desert shrubs
(Tielbörger and Salguero-Gómez, 2014).
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TABLE 1 | Rules of plant species ranges, their open research questions, conservation applications, and supporting literature.

Research directions: unanswered questions Conservation suggestions: well-supported applications References

Range limits often coincide with niche limits. (Section 2)

1. What are the best strategies to facilitate colonization at the leading
edge of a species range? What strategies conserve the rear edge?

2. What attributes best increase a plant species’ capacity to move its
range?

3. Does a species’ capacity to track changing climate vary across
ecosystems (e.g., tropical vs. temperate conditions)?

1. Future habitat for ranges predicted to move should be considered for conservation.
2. Assume most areas of a species range are limited by suitable habitat, except for

leading edges, which are likely dispersal-limited.
3. Assume that species ranges are moving poleward or higher in elevation. Plan to

conserve trailing edge populations, which are at risk for range contraction.

Hampe and Petit, 2005; Sexton et al., 2009;
Stanton-Geddes et al., 2012; Hargreaves et al.,
2014; Lee-Yaw et al., 2016; Sexton and
Dickman, 2016; Halbritter et al., 2018; de
Lafontaine et al., 2018; Cross and Eckert,
2020; Reed et al., 2021

Biotic interactions set range limits in both warm and cold climates. (Section 3)

1. How do biotic interactions vary across a plant species’ range? How do
biotic interactions vary by time (e.g., by season or year) or by climate
(e.g., at warm limits versus cold limits)?

2. Are there specific species or communities of species required for
populations to establish in new territories?

3. What types of biotic interactions and how many are necessary to
include in species distribution models (SDMs) to maximize accuracy?

1. Assume there are myriad biotic interactions important across a plant’s species
range.

2. Biotic interactions are important for overall ecosystem health and should be
considered in conservation activities (e.g., assisted migration).

3. Soil microbial communities are important for successful plant habitat restoration.
4. During field surveys, note species that are co-occurring with target species.

Sample for environmental data (eDNA) when possible, to produce a database of
potential interacting species, including microbes.

Hille Ris Lambers et al., 2013; Afkhami et al.,
2014; Louthan et al., 2015; Bueno de Mesquita
et al., 2016; Freeman et al., 2018; Koziol et al.,
2018; Benning and Moeller, 2019; Hargreaves
et al., 2019a; Phillips et al., 2020; Rolshausen
et al., 2020

Local adaptation is widespread across species ranges. (Section 4)

1. Will rapid adaptation allow species to adapt to changing conditions
rather than shifting their ranges?

2. How does adaptive potential and/or local adaptation vary across
species ranges and affect the capacity for species range limits to
expand or contract under climate change?

3. To what extend do small, peripheral populations harbor unique,
adaptive genotypes?

4. What proportions of plant populations’ adaptive potential are held
within their seed banks, relative to the adaptive potential expressed
above-ground in a given year?

5. Does plant population genetic variation (adaptive potential) decline at
species niche or geographic margins?

1. Assume genetic variation is high in large populations and variable across the
species range.

2. Assume that unique (e.g., having distinct phenotypes or occurring on rare soils) or
old populations (e.g., refugia) harbor important genetic variants and are locally
adapted, even if these populations are small.

3. Collect seeds widely across species ranges, from central to peripheral areas, to
conserve important genetic variation (e.g., Project Baseline; Etterson et al., 2016).

Ellstrand and Elam, 1993; Lesica and Allendorf,
1995; Channell and Lomolino, 2000; Sagarin
and Gaines, 2002; Hampe and Petit, 2005;
Sexton et al., 2009; Moeller et al., 2011;
Etterson et al., 2016; Dallas et al., 2017;
Hoffmann et al., 2017; Pironon et al., 2017;
Papuga et al., 2018; Hargreaves and Eckert,
2019; Anderson and Wadgymar, 2020; Angert
et al., 2020; Pennington et al., 2021

Ranges are largely genetically structured by isolation by distance (IBD), isolation by environment (IBE), or both. (Section 5)

1. How do gene flow rates and dispersal capability of different plant life
forms compare with current and projected rates of climate change?

2. Do patterns of genetic isolation across species ranges differ at different
spatial and environmental scales? By plant life form or taxon age?

3. Do outcomes of genetic rescue depend on the plant life stages
examined?

4. How can seed mixes, representing different genetic distances, affect
climate-related range shifts?

5. How do climate change-related phenological shifts impact adaptation
and adaptive potential?

6. How does assisted migration affect genetic differentiation of
populations?

1. Assume that among-population genetic variation and gene flow is geographically
structured, regardless of the size of the range.

2. Assume that gene flow will be beneficial to small or declining populations but
choose source populations with beneficial traits for target populations.

3. In plants under climate-related conservation concern, prescriptive gene flow or
genetic rescue from distant (for IBD) and environmentally different (e.g., warmer; for
IBE) populations may be warranted. Use adaptive management frameworks.

4. Utilize seed-saving and rescue gene flow for populations with low adaptive
potential.

5. Practice experimental gene flow in non-model and understudied taxa, and at a
wide variety of spatial and ecological scales

6. Assume IBD is present across large spatial extents and IBE is in play across
heterogenous environments and landscapes.

7. Species suffering from habitat fragmentation will benefit from employing genetic
rescue to restore disrupted gene flow.

Hirao and Kudo, 2004; Moyle, 2006; Eckert
et al., 2008; Sgrò et al., 2011; Williams, 2011;
Temunović et al., 2012; Aitken and Whitlock,
2013; Sexton et al., 2014; Wang and Bradburd,
2014; Haddad et al., 2015; Whiteley et al.,
2015; Bell et al., 2019; Torres-Martínez et al.,
2019; Twyford et al., 2020; Fitzpatrick and
Funk, 2019; Kottler et al., 2021; Lien et al.,
2021; Morente-López et al., 2021
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Conclusions, Future Directions, and
Conservation Applications
A general rule is that species range limits often coincide with
niche limits and as a consequence, are shifting in response to
climate change (Reed et al., 2021). Dispersal limitation can
cause discordance between shifting niche limits and range limits
(Stanton-Geddes et al., 2012; Lee-Yaw et al., 2016; Sexton and
Dickman, 2016; Cross and Eckert, 2020). Range limits continue
to offer a compelling spatial context for conservation research
(Serra-Diaz and Franklin, 2019). Research on how to best
facilitate new colonizations at the leading edges and conserve
rear edges of species ranges is needed (Kottler et al., 2021;
Table 1). Through the use of transplant experiments and robust
SDMs, key drivers and patterns across species ranges can be
uncovered (Franklin et al., 2017). Studies that identify and
distinguish between the capacity for ranges to move, versus rapid
adaptation that stabilizes range limits, will be useful in predicting
future range shifts or lack of shifts, respectively. Further research
into whether a species’ capacity to track climate varies across
ecosystems (e.g., tropical vs. temperate conditions), or why some
plant ranges (e.g., annuals, perennials, trees, etc.) are better than
others at tracking conditions, is greatly needed.

Conservationists and managers should assume most areas
outside of a species range are limited by suitable habitat, except
for the leading edges, which are likely to be more limited by
dispersal. The trailing edges of species ranges are, in many
cases, at risk for contraction and should be another priority
for conservation by saving seeds from warm-adapted regions
to facilitate and enable genetic rescue (see section 5.5). Regions
that represent future habitat for ranges that are moving should
also be conserved and protected. In general, more research and
protection are needed in tropical systems where biodiversity
loss will be greatest and in the Southern Hemisphere where
ecosystems are understudied.

HOW DO BIOTIC INTERACTIONS
INFLUENCE SPECIES RANGES?

Evidence for the Importance of
Biological Interactions on Species
Ranges
Biotic interactions are an integral component of a species’ realized
niche (Peay, 2016; Phillips et al., 2020) and are essential to
consider in range limit contexts (Hargreaves et al., 2014; Freeman
et al., 2018) and species distributions (Hille Ris Lambers et al.,
2013). For millennia, natural climate change events have altered
the dynamic of these important interactions (Blois et al., 2013;
Hamann et al., 2021), affecting their co-evolution (Parmesan,
2006), and influencing their role in facilitating range shifts (Hille
Ris Lambers et al., 2013). Darwin (1859) predicted that negative
biotic interactions (i.e., competition, predation, herbivory, and
parasitism) establish range limits at warm edges where species
diversity is higher. Since then, this paradigm has received
extensive support (MacArthur, 1972; Brown et al., 1996; Gaston,
2003; Normand et al., 2009; Paquette and Hargreaves, 2021) and
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is the leading hypothesis for how biotic interactions influence
species ranges (Barton, 1993; Bullock et al., 2000; Scheidel and
Bruelheide, 2001; Holt and Barfield, 2009; Louthan et al., 2015).

Over time, Darwin’s theory has been expanded to acknowledge
that both positive (i.e., pollination, facilitation, and mutualism)
and negative interactions influence plant species range limits at
both warm and cold climate limits (Afkhami et al., 2014; Louthan
et al., 2015; Benning et al., 2019; Benning and Moeller, 2021a).
For example, in Clarkia xantiana ssp. xantiana (Onagraceae)
fitness decreased beyond its cold limit due to a lack of positive
interactions (e.g., pollinators) and the presence of negative
interactions (e.g., herbivores) (Benning and Moeller, 2019).
When pollen was supplemented and herbivores were removed,
fitness beyond the range tripled, demonstrating the importance
of these positive and negative interactions for range shifts and
expansions. In a second example, Ettinger and Hille Ris Lambers
(2017) found that competition between neighboring trees limited
performance within ranges, whereas facilitative interactions
between adults and juveniles demonstrated the potential to
accelerate upward range expansion. Most studies focus on one
or a limited set of interactions, often due to logistical constraints,
and rarely have multiple interactions been studied simultaneously
in range-limit contexts. Given their clear ecological importance,
identifying and including an array of biotic interactions will
increase accuracy when predicting species range shifts under
climate change (Van der Putten et al., 2010).

Both Positive and Negative Interactions
Matter in Setting Warm and Cold Range
Limits
From the above, the prevailing paradigm is that negative
interactions, particularly competition, drive warm-edge range
limits (Schemske et al., 2009; Sexton et al., 2009; Louthan et al.,
2015; Paquette and Hargreaves, 2021). Although this is often
true, there are examples in which other negative interactions
affect plant distributions. For example, seed predation is known
to influence cold-edge expansion (Brown and Vellend, 2014;
Hargreaves et al., 2019b) and herbivory-induced delays in
phenology and subsequent reductions in fitness (e.g., biomass or
height) limit the species range of susceptible plants (Louda, 1982;
Lau et al., 2008; Benning et al., 2019). In California serpentine
environments, Lau et al. (2008) found that increased herbivory
was one factor that reduced survival and persistence in the
native herb Collinsia sparsiflora (Plantaginaceae), restricting the
species, realized niche to serpentine habitats (Lau et al., 2008).
Depending on which species is under consideration, negative
biotic interactions can limit or facilitate expansion of a plant
species range; in some cases, herbivory of one plant is beneficial
to another plant. For instance, in tundra experiencing climate
warming, herbivory of competing species protected native plant
populations (Eskelinen et al., 2017), allowing range expansion of
the tundra community (Kaarlejärvi et al., 2017).

More recently, positive interactions have emerged as
relevant and important for consideration in climate-range
research. Mutualisms are abundant in stressful conditions
(Callaway et al., 2002), affect plant fitness (Lau and Lennon,

2012), mitigate climate stress on species distributions (Bulleri
et al., 2016), and influence local adaptation (Pickles et al.,
2015). Facultative mutualisms can facilitate expansion of species
ranges into stressful habitats (Afkhami et al., 2014; Millar and
Bennett, 2016; Benning and Moeller, 2021b) in addition to novel
environments (Crotty and Bertness, 2015; Bueno de Mesquita
et al., 2020). A key example of a mutualism that expands the plant
realized niche is pollination (Phillips et al., 2020). In general,
pollinator species distributions are strongly linked to their
visiting plant geographic ranges (Duffy and Johnson, 2017). In a
four-year study of Clarkia xantiana ssp. xantiana (Onagraceae),
pollinator availability declined with distance from the center of
the plant range, contributing to the maintenance of the species
range limit (Moeller et al., 2012). Climate change continues to
reduce the quantity and quality of pollination services globally
(Burkle et al., 2013; Gérard et al., 2020), leading to contractions
and reductions of plant species ranges (Chalcoff et al., 2012;
Moeller et al., 2012).

Microbes are also important plant mutualists. As such,
microbes are an integral part of a plant’s habitat (Peay, 2016)
and their absence contributes to defining suitable limits as well
as hindering expansion (Benning and Moeller, 2019). In the
endangered Hypericum cumulicola (Hypericaceae), soil microbes
boosted population growth and persistence and allowed the
plant to expand into previously uninhabitable environments
(David et al., 2019). Similarly, soil microbes in the Rocky
Mountains interacted with alpine bunchgrass, Deschampsia
cespitosa (Poaceae), to allow establishment and growth in new,
unvegetated areas beyond the range, suggesting the significance
of microbes in climate-induced range expansions (Bueno de
Mesquita et al., 2020). In the absence of mutualistic soil microbes
beyond the species range edge, host plants experienced reduced
fitness, limiting this expansion capacity (Benning and Moeller,
2021a). Climate change can alter plant-microbe interactions in
a variety of ways, including changing microbial species ranges,
community composition, functionality, fitness, and occurrence
of host plant species (Rudgers et al., 2020). Plant genotype
and root exudates affect microbial community composition
(Bulgarelli et al., 2012), allowing plants to counter the impacts
of climate-induced stress (Liu et al., 2015; Rodriguez and Durán,
2020). In turn, the spatial variation in microbial communities
affects patterns of plant local adaptation (Pickles et al., 2015)
and influences the location of a plant’s species range (Van
der Putten et al., 2010). Understanding microbial community
structure across species ranges will provide a better view of
mutualist-mediated niche dynamics, especially as it relates to
expansion in response to environmental pressures from climate
(Rolshausen et al., 2020).

Conclusions, Future Directions, and
Conservation Applications
From the above evidence, it is still difficult to say whether
biotic interactions are more limiting at warm versus cold
limits, but a general rule that can be gleaned is that biotic
interactions often set range limits in both warm and cold
climate extremes. More studies are needed to identify and

Frontiers in Ecology and Evolution | www.frontiersin.org 5 October 2021 | Volume 9 | Article 700962

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-700962 October 28, 2021 Time: 10:14 # 6

Shay et al. Rules of Plant Species Ranges

understand important biotic interactions across plant species
ranges (Wisz et al., 2013). Mutualisms are more important than
classically appreciated for range limits in a changing climate,
especially when introducing a plant to a new habitat or predicting
future range shifts (Hille Ris Lambers et al., 2013; Freeman
et al., 2018; Benning and Moeller, 2021a). Range limit research
should aim at understanding interactions through species co-
occurrence data (e.g., presence/absence data, field observations,
etc.) to effectively model distributions and predict range shifts
under climate change (Araújo and Luoto, 2007; Kissling et al.,
2012; Bueno de Mesquita et al., 2016; Miele et al., 2021). To
help track ecosystem biodiversity and change in biota over
time, environmental samples from sediment, soil, air, or surfaces
can be analyzed using metabarcoding and metagenomics and
characterized through reference databases to more completely
identify interacting taxa and communities (Moore et al., 2021).
This process employs environmental DNA (eDNA) techniques
and is known as ecological forensics, and this field has
broad implications for conservation, especially for identifying
associated soil microbial communities that confer ecosystem
resistance and resilience to climate disruption (Koziol et al., 2018;
Rudgers et al., 2020). Overall, species interactions are largely
under-researched, especially across large biogeographic scales or
in remote or unique habitats (Table 1).

Restoration efforts should consider the presence and
significance of biotic interactions, including soil microbes.
Assisted migration efforts are an important conservation
strategy and can help plants occupy novel, habitable regions
(Hällfors et al., 2017), but traditionally ignore biotic interactions
and how they might influence transplanted populations
(Bucharova, 2017). When protecting predicted range regions
for transplantation or seeding, it is important to assess whether
key biotic interactions can persist in these new territories, with
special attention given to native soil communities. As we gain
more perspective into positive and negative biotic interactions
of conservation-targeted species, we can incorporate these
occurrence data of interacting species into models (Giannini
et al., 2013). For example, a recent model developed by Miele
et al. (2021) combines species interaction data, environmental
data, and species occurrences to disentangle the effects of abiotic
and biotic interactions on species distributions (see ELGRIN
model, Miele et al., 2021).

DO DIFFERENT REGIONS OF SPECIES
RANGES HOLD PREDICTABLE
ADAPTIVE OR RESILIENCE
PROPERTIES?

The Abundant Center Hypothesis Is Not
a General Rule
Whether specific regions of species ranges (e.g., peripheral,
central, warmer, older, etc.) differ in ecological and evolutionary
properties is an essential question for guiding management of
plant populations under global change. As discussed earlier,
range limits are generally niche limits when ranges are in

climate equilibrium, and the dynamics between and within
different regions of plant species’ ranges have evoked several
hypotheses to consider. For example, Lesica and Allendorf
(1995) proposed that peripheral regions of species ranges
should harbor genetically unique and isolated genotypes that
are useful for conservation purposes. In agreement with this
hypothesis, peripheral populations in shrinking species ranges
are just as likely as central populations to serve as refugia
(Channell and Lomolino, 2000).

A handful of paradigms have developed regarding the center
of the species range. One classic paradigm is the abundant
center hypothesis (ACH), which posits that populations are
most abundant at the center of their range and will decrease
in both size and density towards range margins (Brown, 1984);
nevertheless, this does not appear to hold as a general rule
(Sagarin and Gaines, 2002; Sexton et al., 2009; Dallas et al., 2017;
Pironon et al., 2017). Another paradigm is the niche-distance-
abundance (NDA) hypothesis, which proposes that species will
be most abundant at the center of their niche (Dallas and
Hastings, 2018; Osorio-Olvera et al., 2019); however, this has
also received mixed support (Dallas et al., 2017; Weber et al.,
2017; Dallas and Hastings, 2018; Jiménez-Valverde et al., 2021).
A recent study of the endemic Iberian Peninsula snapdragon,
Antirrhinum lopesianum (Plantaginaceae), found a negative
relationship with abundance and distance from the species’ niche
center (Hernández-Lambraño et al., 2020). Similarly, an analysis
of European vascular plants found evidence of a negative niche
distance-abundance relationship, but the relationship was weak
and highly variable (Sporbert et al., 2020). There are many
examples where range position, niche position, and abundance
do not correlate (Sagarin and Gaines, 2002; Eckert et al., 2008;
Sexton et al., 2009, 2016; Dallas et al., 2017; Pironon et al.,
2017; Kennedy et al., 2020), and in some cases, plant population
density actually increases towards range limits (e.g., Sexton et al.,
2016). A growing body of research suggests that the history of
a population is more indicative of its patterns of abundance and
genetic variation than contemporary measures of the population’s
size, its range position, or the species’ range size (Abeli et al., 2014;
Koski et al., 2019; Cruz-Nicolás et al., 2020).

Genetic Variation Determines Adaptive
Potential of Populations
To conserve threatened species, it is useful to identify populations
that are most vulnerable and those that have the potential
to help other populations of the species adapt to changing
climate conditions. Adaptive potential is determined by genetic
variation, which allows a population’s traits to change in response
to changes in the environment (Pennington et al., 2021).
Quantitative genetic variation (QGV) is a measure of genetically
based phenotypic variation and, ultimately, the evolutionary
adaptive potential of populations (Rice and Emery, 2003; Conner
and Hartl, 2004). Populations with larger effective population
sizes tend to be higher in QGV (Hoffmann et al., 2017), and so
are important for conservation. Nevertheless, small populations,
especially those in adverse conditions (e.g., stressful soils), may
harbor unique variation that is also important for conservation
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(Ellstrand and Elam, 1993). Furthermore, older populations and
populations that may have been glacial refugia may also retain
important variation (Hampe and Petit, 2005), but may not have
large numbers of individuals in their populations. Evidence
suggests that larger, older, and unique populations are more likely
to be important sources of QGV, and these may occur anywhere
within species ranges, centrally or peripherally. Given that the
ACH is not supported as a general rule, QGV, and therefore
adaptability, may not be highest in central regions of species
ranges. Overall, more research is needed in this area, including
replicated sampling and comparison of peripheral and central
regions within species ranges (Pennington et al., 2021).

Local Adaptation Follows Adaptive
Potential
Local adaptation occurs throughout species ranges and is often
driven by climate (Anderson and Song, 2020; Anderson and
Wadgymar, 2020; Bontrager et al., 2021). Local adaptation has
been observed in myriad species and results in differential
responses to climate change across species ranges (Hargreaves
et al., 2014; Harrison et al., 2019; Peterson et al., 2019; Torres-
Martínez et al., 2019; Anderson and Wadgymar, 2020; Patsiou
et al., 2020). Peripheral populations are critical when considering
climate-driven fitness variation and conservation (Lesica and
Allendorf, 1995; Channell and Lomolino, 2000; Macdonald et al.,
2017; Papuga et al., 2018) because they are often locally adapted
to more extreme habitats and are home to phenotypes that are
not expressed in other areas of the range (Moeller et al., 2011;
Papuga et al., 2018; Hargreaves and Eckert, 2019; Angert et al.,
2020; Morente-López et al., 2021). For example, in a reciprocal
transplant of the ‘ōhi‘a lehua tree (Metrosideros polymorpha) from
tropical Hawaii, seedlings that are locally adapted to historically
wet regions germinated less than seedlings adapted to drought in
contemporary dry regions (Barton et al., 2020).

Further such studies are needed, including more studies that
reveal patterns of population genetic variation and size across
plant species ranges (Pennington et al., 2021). As climate change
alters local adaptation (Anderson and Wadgymar, 2020), patterns
of adaptive variation and abundance may change. Besides directly
measuring QGV across species ranges, other methods to quantify
differences in adaptive potential such as artificial selection and
resurrection studies—in which prior generations are compared
to contemporary populations for their trait values—are useful
for contrasting historical patterns with contemporary patterns
to understand how populations are responding to climate
change. Recent plant resurrection studies have captured varying
phenological change in response to climate change and illustrate
that some degree of rapid adaptation is possible for many plant
species (Franks et al., 2018; Dickman et al., 2019; Vtipil and Sheth,
2020; Wooliver et al., 2020; Anstett et al., 2021; Kooyers et al.,
2021).

Conclusions, Future Directions, and
Conservation Applications
Patterns of adaptive potential and local adaptation are in
need of better understanding, especially at range edges where

potential expansion or contraction may occur in response to
rapidly changing climate. Nevertheless, peripheral populations
are understudied and, as a result, underprotected (Caissy et al.,
2020). A general rule is that local adaptation is widespread across
species ranges. SDMs that incorporate local adaptation, such
as 1TraitSDMs (Garzón et al., 2019), should be considered
when predicting species’ range responses to climate change.
Small populations in unique environments and older populations
may harbor important, but underexplored, genetic variation.
The abundant center-hypothesis, although supported in some
species, is not a rule and, instead, a niche-abundance relationship
deserves further study. Both central and peripheral populations
are equally important to consider in research and conservation
contexts. Deeper explorations of the relationship between niche,
range, and abundance patterns across plant species ranges
will provide better predictions of important populations for
conservation. Overall, these questions need to be explored in
more systems as these patterns vary widely by species (Angert
et al., 2020; Reed et al., 2021).

To avoid losing unknown adaptive potential, plant
conservationists should first assume that local adaptation is
widespread, and that adaptive potential is equal across study
species ranges, until shown otherwise. Populations with high
adaptive potential and populations with unique genotypes are
of particular interest to conservation. Small, young populations
are likely to have lower adaptive potential and are, therefore,
more vulnerable. Wherever possible, populations should be
evaluated for their adaptive potential, especially in areas that
are at risk to climate change. Small populations with high
genetic variation or unique adaptations can be as important for
a species’ conservation as large populations. Conservationists
should collect seeds widely across species ranges, including edge
populations to conserve genetic variation and adaptive potential
(see Project Baseline, Etterson et al., 2016). Additionally, to our
knowledge, it is an open question what proportions of plant
populations’ adaptive potential are held within their seed banks,
relative to the adaptive potential expressed above-ground in a
given year. The proportion of genetic variation of a population
contained within its soil seed bank should vary greatly by plant
life form. Finally, measuring and mapping genetic variation
and using approaches that estimate responses to selection such
as resurrection studies are useful to assist in conservation and
management of plant populations. These strategies can inform
managers about which populations are most vulnerable to
change, and whether certain areas of a species’ range should be
prioritized for conservation.

ARE THERE PREDICTABLE PATTERNS
AND EFFECTS OF GENE FLOW ON
ADAPTATION ACROSS SPECIES
RANGES?

Gene Flow Across Species Ranges
Gene flow is widely recognized for both its enhancement and
inhibition of adaptation, and it is one of the best evolutionary
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tools for managing species range responses to climate change
(Aitken and Whitlock, 2013; Sexton et al., 2014; Smith et al.,
2014; Bontrager and Angert, 2019; Kottler et al., 2021). Thus,
understanding rules of gene flow across plant species ranges is
key for a conservation biologist. Prescribing gene flow is also
a game of chance, of course (Bell et al., 2019), but it can be
successful with good planning and strategy (Sgrò et al., 2011).
Environmental, geographical (spatial), or temporal patterns of
gene flow are prevalent across species ranges (Sexton et al., 2014;
Peters and Weis, 2019). At species range limits, gene flow is
theorized to enhance genetic variation to expand a species’ niche
(Holt and Gomulkiewicz, 1997), or gene flow may potentially
limit or collapse a range (Kirkpatrick and Barton, 1997). The
lack of gene flow is also theorized to set range limits in marginal
populations that have small population sizes and high rates of
inbreeding depression (Antonovics, 1976; Hoffmann and Blows,
1994; Morente-López et al., 2021). Finally, different patterns of
gene flow occur simultaneously and interact with each other
to influence eco-evolutionary outcomes across species ranges
(Sexton et al., 2014; Bontrager and Angert, 2019; Nadeau and
Urban, 2019).

Isolation by Distance Is Prevalent in
Plants
Dispersal and dispersal limitation are key features influencing
plant ecology, evolution, and distributions. Selection or habitat
adaptation notwithstanding, limited dispersal of both pollen or
seeds can lead to decreased gene flow and increased genetic
drift, resulting in increased genetic isolation with increased
geographic distance across the species range, known as genetic
isolation by distance (IBD) (Dobzhansky, 1937; Wright, 1943).
IBD is the most prevalent pattern of gene flow observed in
plants to date, likely due to their sessile nature (Moyle, 2006;
Eckert et al., 2008; Orsini et al., 2013; Sexton et al., 2014;
Torres-Martínez et al., 2019; Twyford et al., 2020). In this vein,
high dispersal ability usually promotes high genetic variation
in plants (Hamrick and Godt, 1996; Lander et al., 2021);
nevertheless, this variation can affect evolutionary processes
among populations differently. For example, in one plant
family (Fagaceae), there are examples of little to no adaptive
effects of gene flow from long-distance dispersal (Moracho
et al., 2016) and large adaptive effects from short distances
(Gauzere et al., 2020).

Habitat fragmentation (e.g., agriculture, urbanization, or
harvesting of natural resources) can disrupt gene flow among
contiguous populations and erode genetic diversity by decreasing
the effective population size and increasing the spatial isolation
of populations. This can result in genetically depauperate
populations subject to increased genetic drift, inbreeding
depression and reduced gene flow (Young et al., 1996;
Couvet, 2002; Aguilar et al., 2019). IBD increases with habitat
fragmentation. Where IBD is detected, even at small spatial scales
(Gauzere et al., 2020), genetic variation necessary to respond
to rapid environmental change may be limiting, requiring
prescriptive or rescue gene flow (see section 5.5) from distant
sources (Willi et al., 2007).

Isolation by Environment Is Also
Common in Plants
The movement of alleles between populations from similar
habitats or environments creates a pattern known as isolation
by environment (IBE) or “ecological isolation” (Dobzhansky,
1937; Wang, 2013). IBE scenarios are driven by environmental
heterogeneity across species ranges and are caused by natural
selection or non-random mating among similar environments
(Hirao and Kudo, 2004; Temunović et al., 2012); IBE and IBD
are often correlated (Wang and Bradburd, 2014; Shafer and Wolf,
2013). IBE is the prevalent pattern of gene flow in the majority of
non-plant species examined, and is nearly as prevalent as patterns
of IBD in plants (Sexton et al., 2014; Wang and Bradburd,
2014; Morente-López et al., 2021). Recently, an IBE pattern was
found in Asian temperate deserts across the range of the broad-
leaved evergreen shrub, Ammopiptanthus mongolicus (Fabaceae).
In this example, landscape heterogeneity in precipitation was
associated with IBE (Jiang et al., 2019). Similar to scenarios with
IBD, if plants under conservation consideration exhibit local
adaptation and IBE, genetic variation necessary to respond to
rapid environmental change may require prescriptive or rescue
gene flow from different (i.e., warmer) environments (Sexton
et al., 2014; Kottler et al., 2021).

Climate warming has, in most cases, led to an earlier shift
in plant flowering phenology (Menzel et al., 2006; Wolkovich
et al., 2012; Dai et al., 2014; Leinonen et al., 2020), which
influences both plant distribution (Parmesan and Yohe, 2003;
Chuine, 2010; Song et al., 2021) and gene flow patterns (Schuster
et al., 1989; Wadgymar et al., 2015). Isolation by phenology (IBP)
is a form of IBE and occurs when phenology differences (e.g.,
flowering time) divide populations into different mating pools
(Peters and Weis, 2019). Climate warming is leading to more
uniformity in phenology, reducing IBP (Franks and Weis, 2009;
Chen et al., 2018; Vitasse et al., 2018). Unfortunately, genetically-
based evolution of phenology may happen too slowly to rescue
populations from rapid climate change (Vtipil and Sheth, 2020).
Future work is needed to examine the impact of climate shifts
on phenology across large geographic gradients and in assisted
migration conservation efforts.

Currently, most studies find that plant genetic variation is
explained by a combination of IBE and IBD (Sexton et al., 2014;
Moran et al., 2017; Nadeau and Urban, 2019; Da Silva et al., 2021).
For example, long distance seed dispersal prevented snowmelt-
driven isolation in Salix herbacea (Salicaceae) in the Swiss Alps
(Cortés et al., 2014). Future studies of gene flow patterns should
combine and parse the effects of environment and distance and
sample a wide range of environmental variables (biotic and
abiotic) across species ranges to isolate drivers of IBE.

The Myth of Gene Swamping in the
Creation of Range Limits
Maladaptive gene flow as a mechanism for stalling or degrading
adaptation is known as gene swamping and has been invoked as a
mechanism for creating range limits (Haldane and Ford, 1956;
Kirkpatrick and Barton, 1997). This long-standing paradigm
assumes that gene swamping reduces fitness and limits local
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adaptation at the range edge by flooding the region with
genes adapted to different conditions in central populations,
suppressing locally beneficial genes (Antonovics, 1976; García-
Ramos and Kirkpatrick, 1997; Kirkpatrick and Barton, 1997;
Kawecki, 2008; Lopez et al., 2008). Reduction in fitness
from mating genetically divergent populations (i.e., outbreeding
depression) has been observed in several plant species (Fenster
and Galloway, 2000; Montalvo and Ellstrand, 2001; Oakley et al.,
2015). For example, Montalvo and Ellstrand (2001) documented
outbreeding depression as a result of crossing deerweed varieties
(Lotus scoparius var. scoparius and L. s. var. brevialatus; Fabaceae)
and recommended caution when crossing plants from very
genetically divergent lines for restoration.

Although gene swamping can certainly stall adaptation, it
does not appear to be a reliable rule for explaining range limits.
A recent review found little evidence to support gene swamping
in the evolution of range limits for two reasons (Kottler et al.,
2021). First, gene flow is not universally asymmetrical from the
center of a range to its peripheries, likely because the abundant
center hypothesis is not a universal rule (see section 4), an
assumption that range-wide gene swamping relies on. Second, in
the few empirical cases where gene flow has been experimentally
introduced to plant populations at the edge of a species range, the
results are overwhelmingly positive for edge populations (Kottler
et al., 2021). This is likely due to the fact that edge populations
may suffer from reduced effective population sizes (drift) brought
about by increased isolation and strong selection (Hoffmann and
Blows, 1994; Eckert et al., 2008; Kottler et al., 2021; Pennington
et al., 2021).

The Potential of Genetic Rescue in
Conservation
An alternate hypothesis to gene swamping stalling adaptation
is genetic rescue, where genetic variation from outside
populations is beneficial to populations suffering from
inbreeding depression (Tallmon et al., 2004; Hedrick et al.,
2011). Gene flow can benefit depauperate populations through
the introduction of environment-specific alleles that improve
fitness (Sexton et al., 2011; Bontrager and Angert, 2019).
When crossing monkeyflower plants (Mimulus laciniatus,
Phrymaceae) between warm-limit edge populations, Sexton
et al. (2011) found that plant fitness increased at the warm-
limit. Similarly, Bontrager and Angert (2018) investigated
gene flow effects across the Clarkia pulchella (Onagraceae)
species range in the Pacific Northwest and found a fitness
boost in cold-limit edge populations from central gene flow
due to rescue effects of warm-adapted populations in a warm,
dry climate year.

Small populations are particularly threatened by habitat
fragmentation (Haddad et al., 2015) and restoring gene flow
through genetic rescue is a viable option for protecting
fragmented species ranges (Bell et al., 2019). Genetic rescue
is an underappreciated and useful tool for conservation
of endangered species (Whiteley et al., 2015). Nevertheless,
although discussed often in the literature, genetic rescue is
rarely used as a conservation strategy (Frankham et al., 2017;

Robinson et al., 2020). The exploration and use of genetic rescue
as a conservation and management tool is still in its infancy (Bell
et al., 2019). Yet, this strategy shows great promise (Fitzpatrick
and Funk, 2019) and should be used more often in range-
wide contexts.

Conclusions, Future Directions, and
Conservation Applications
Gene flow is important for adaptation across species ranges, and
range limits can be positively influenced by gene flow events in
plant systems. A general rule is that plant species ranges are largely
genetically structured by IBD (driven by dispersal limitation and
drift), IBE (driven by selection and non-random mating), or both.
Because of the preponderance of some form of genetic isolation
across plant species ranges, assisted gene flow is an important
tool for increasing the adaptive potential of populations. IBP,
as a form of IBE, is likely to be a common phenomenon in
plants, however, it is still poorly understood for its ramifications
under climate change. Gene swamping as a creator of range
limits is not a rule, since gene flow often has beneficial effects on
local adaptation in marginal populations. To better understand
beneficial and harmful effects of gene flow in plant conservation
contexts, more research is needed at different plant life stages,
in non-model and understudied taxa, and at a wide variety of
spatial and ecological scales (Table 1). Key areas of focus should
include controlled cases of gene flow, measuring the effects of
different types of gene flow (i.e., IBD and IBE) across ranges,
and studying gene flow effects on rapid adaptation (Rehfeldt
et al., 1999; Montalvo and Ellstrand, 2001; Sexton et al., 2011;
Bontrager and Angert, 2018). Lastly, restoring gene flow through
genetic rescue is a proven technique for combating habitat
fragmentation and needs more focused application and research
(Bell et al., 2019).

Assisted gene flow can be used as a strategy to facilitate
local adaptation to climate change (Aitken and Whitlock, 2013).
Plant conservation and restoration managers are encouraged to
experiment with gene flow and to use prescriptive gene flow
more often, employing adaptive management (e.g., Williams,
2011; Lien et al., 2021) with respect to gene flow levels and
prescriptive population mixes (Sgrò et al., 2011). Collecting seeds
and experimenting with seed mixes that represent different gene
flow “distances” are important and sorely needed actions and
are especially important to test now that range shifts related to
climate are prominent.

DOES RANGE SIZE PREDICT
VULNERABILITY UNDER GLOBAL
CHANGE?

Range Size Matters
The question of why some plant species are widespread, with
large ranges, and others are rare or have restricted ranges, has
intrigued botanists for ages. For instance, the niche breadth-
range size hypothesis (Brown, 1984; Slatyer et al., 2013) predicts
that a species’ range size is a manifestation ultimately of
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its niche breadth and thus represents its ability to persist
in more or fewer environments. Besides potentially having
reduced niche breadth, small-ranged species may also have
fewer individuals and thus lower effective population sizes. As
a result, species with small ranges may be at greater risk under
global change. We refer to this phenomenon as the range size
vulnerability hypothesis.

Explanations for restricted distributions range from a lack
of genetic variation, to species being newly evolved taxa, to
species being very old and consisting of remnants of a past
range (Stebbins, 1942, 1980; Leão et al., 2020). Recent research
has supported the case that plant species generally begin small,
“budding” from parental species, often sympatrically within the
parent species range, and then expanding over time through
niche evolution and/or dispersing more widely over time
(Grossenbacher et al., 2014; Anacker and Strauss, 2014). Recent
literature mainly sustains this view (Gastauer et al., 2015; Heydel
et al., 2017; Skeels and Cardillo, 2018), but there is important
variation, nuance, and exception, and a variety of forms of
speciation and specialization in plants (Boucher et al., 2016;
Rajakaruna, 2018; Salariato and Zuloaga, 2021). For example, a
species may evolve through adaptation to a niche that is very
widespread (e.g., ruderal plants), and so it has the potential to fill
this niche quickly and will appear, geologically, as if it expanded
its niche rapidly and exploded. Alternatively, clade radiations
may fill unused habitats, creating sudden bursts of diversification,
followed by gradual broadening of ecological niches and range
sizes (Tanentzap et al., 2015; Folk et al., 2019). More diverse plant
lineages may typically be comprised of species with smaller ranges
(Leão et al., 2020).

What ultimately determines plant species range size can be
determined by myriad factors. Sheth et al. (2020) performed a
meta-analysis and review on this topic and found that niche
breadth, species’ age, niche availability (i.e., how common a
niche is), and range position (i.e., range characteristics such as
latitudinal breadth) were consistently strong factors associated
with range size, but concluded that much more research is needed
to confirm these effects on plant range sizes plus other potentially
important effects such as mating system, ploidy, and dispersal
ability. Grossenbacher et al. (2015) found strong support that
more highly selfing plants have larger range sizes, and Grant
and Kalisz (2020) recently confirmed that selfing plants indeed
generally possess greater niche breadth than more outcrossing
plant species. Moreover, polyploid plants with higher numbers
of chromosomes tend to differentiate their niches faster (Baniaga
et al., 2020). Finally, although logistically challenging, very few
studies exist testing whether rare plant species are limited by
genetic variation, but research thus far suggests that they are
(Sheth et al., 2020).

No Range Should Be Left Behind in
Conservation
There are clear cases finding strong support for rarity predicting
increased vulnerability or conservation risk for plants under
climate change. For example, Zettlemoyer et al. (2019) found
that rare, more specialized plants are more likely to go extinct

in a study in Michigan, United States. Aspinwall et al. (2019)
demonstrated experimentally that Eucalyptus (Myrtaceae) trees
with smaller range sizes were more susceptible to experimental
heat waves. Many studies have found positive associations
between niche breadth and species range sizes based on SDMs
(see Slatyer et al., 2013). Such correlative species distribution
models (cSDMs) show potentially causal relationships between
range size and species performance. Nevertheless, an important
caveat is that spatial autocorrelation between the number of
possible environments sampled and larger geographic extents can
mask or overemphasize causal relationships (Moore et al., 2018;
Journé et al., 2020).

Another caveat is that such observational studies base
patterns on the observed, or realized niche, rather than
the fundamental niche, which is of primary interest for
understanding environmental tolerances (Sexton et al., 2017; Liu
et al., 2020), but see above discussions on biotic interactions
and the realized niche. Nevertheless, experimental data can
confirm true relationships between vulnerability and range size.
Historical considerations may also be quite strong. For example,
Rapoport’s Rule states that species at higher latitudes should
have larger ranges due to the greater stress and variability of
those environments (Brown et al., 1996). Thus, more tropical
species may be driven or boxed into smaller ranges than their
higher-latitude relatives due to evolutionary history. Huang et al.
(2021) recently presented evidence supporting this hypothesis in
plants: greater climate variability has a large potential effect on
the evolution of large range sizes.

There are also clear cases and considerations in contrast to
the range size vulnerability hypothesis, or cases with mixed
findings (Lacher and Schwartz, 2016; Hirst et al., 2017; Cai
et al., 2021). Micro-habitats, local, or sub-surface factors can
buffer plants under climate change stress (Franklin et al., 2013;
Gremer et al., 2015; Denney et al., 2020), and so small-ranged
species that occupy highly heterogeneous landscapes may be
able to weather rapid global change through more accessible
escape environments. For example, rarity does not appear to
limit genetic variation or preclude subpopulation structure in the
geographically restricted desert forb, Astragalus lentiginosus var.
piscinensis (Fabaceae) (Harrison et al., 2019). Indeed, adaptation
and diversification in rare, stressful environments can cause
cradles or hotspots of diversity of taxa with smaller range sizes
(Buira et al., 2021). Moreover, microhabitat variation may buffer
populations via “portfolio effects,” but such effects may not be
enough to save rare species from extirpation under rapid climate
change (Abbott et al., 2017). In this vein, a species’ realized niche
may be vastly smaller than their fundamental niche. In such
cases, a plant with a very small range may be able to weather
a great variety of climates experienced outside of its current
realized niche. Finally, a complex and nuanced reality likely exists
for many species regarding this question. For example, Hirst
et al. (2017) found only mixed results in support of the niche-
breadth range size hypothesis in Australian alpine daisies; rarer
daisy species showed evidence of increased tolerance of stressful,
specialized environments at the cost of lower growth rates in low-
stress environments, but their seeds were also resilient to a wider
range of germination environments. Thus, species may have
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reduced performance in a critical stage only and such limiting
stages may take a fair amount of experimentation to confirm.

Conclusions, Future Directions, and
Conservation Applications
Generally, the range size vulnerability hypothesis holds as a rule:
smaller ranges tend to be more vulnerable to global change,
but exceptions and patterns can vary greatly by taxon. For
example, Tanentzap et al. (2019) found range size to be
more strongly associated with extinction risk in conifers than
in palms. Thus, we recommend that special status species
with smaller geographic ranges receive high conservation
priority, including reserve establishment in regions having many
restricted endemics plants. Rare species are also important for
conservation and evolutionary study for a variety of reasons
(Stebbins, 1979) and should be assumed to be of high value,
including for ecosystem function and services (Lyons et al., 2005).
Nevertheless, larger-ranged species are no less important as
conservation targets and can be vulnerable from falling through
the cracks of political boundaries (Bisbing et al., 2021; Vázquez-
García et al., 2021). For such species, we recommend greater
focus on connectivity, dispersal habitat corridors, and multi-
stakeholder and intergovernmental conservation plans. In this
vein, local adaptation is likely to be a mechanism by which
widespread species maintain their distributions (see section 4)
and thus population conservation of populations in unique
environments is critical.

Regarding future research, several avenues can be explored
to uncover the conservation risk associated with range size
(Table 1). More experimental assessments of plant performance
at different life stages, under variable conditions, and between
different taxa with varying range sizes are required to better assess
the range size vulnerability hypothesis. Although a challenging
area of research, tests of plant species range size vulnerability
at the population and individual level are lacking (Slatyer et al.,
2013). For example, metrics such as heat shock protein response
can be used to assess the vulnerability of rare versus common
plant taxa to predicted climate change stress (Al-Whaibi, 2011;
Aspinwall et al., 2019). In order to determine if smaller ranges are
indeed more at-risk from modern habitat alterations, extinction
debt (Kuussaari et al., 2009) should be assessed in taxa varying
in range size (Jamin et al., 2020; Makishima et al., 2021).
Questions concerning the relationship between range size and
particular plant groups, or life histories, should be investigated.
For example, as stated earlier, highly selfing species are expected
to have larger geographic ranges and greater niche breadth, but
this was not found for Epipactis (Orchidaceae) species in Europe
(Evans and Jacquemyn, 2020).

CONCLUDING REMARKS

Our world is in a constant state of flux, exacerbated by rapid
climate change, and researchers, managers, and stakeholders
would benefit from adopting goals that attend to the impact
of these changes and develop methods that can accommodate
uncertainty (Rollinson et al., 2021). We have rejected some
long-standing paradigms as plant species range rules, provided
an initial list of rules for consideration, identified gaps in the
research, and outlined tasks to enhance our understanding of
how ranges are governed and how they will change (Table 1).
We strongly encourage researchers to create eco-evolutionary
projects that focus on native plant taxa that have not been
studied or have been traditionally understudied. Whenever
possible, citizen science efforts can support these initiatives and
provide educational opportunities to excite the next generation
of botanists and plant conservation biologists. We want to
acknowledge that many patterns observed among species ranges
are not independent of each other and can overlap. We also
acknowledge that there may be additional rules of species ranges
not considered in this review, and we encourage the field to shine
light on them, especially as they relate to conservation. Finally,
we encourage the scientific community at large to continue to
evaluate patterns and potential rules across disciplines in order
to inform effective conservation and ecosystem management. In
the case of ecological or biogeographical patterns, rules can be
judged or weighted by importance factors, such as phylogenetic,
geographical, or environmental parameters, etc. We trust that
future ecologists will finish uncovering the laws by which nature
can be conserved.
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