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Litter decomposition plays a pivotal role in the global carbon cycle, but is difficult to
measure on a global scale, especially by citizen scientists. Here, citizen scientists, i.e.,
school students with their teachers, used the globally applied and standardized Tea Bag
Index (TBI) method to collect data on litter decomposition in urban areas in Austria.
They also sampled soils to investigate the linkages between litter decomposition and
soil attributes. For this study, 54 sites were selected from the school experiments and
assembled into a TBI dataset comprising litter decomposition rates (k), stabilization
factors (S), as well as soil and environmental attributes. An extensive pre-processing
procedure was applied to the dataset, including attribute selection and discretization of
the decomposition rates and stabilization factors into three categories each. Data mining
analyses of the TBI data helped reveal trends in litter decomposition. We generated
predictive models (classification trees) that identified the soil attributes governing litter
decomposition. Classification trees were developed for both of the litter decomposition
parameters: decomposition rate (k) and stabilization factor (S). The main governing
factor for both decomposition rate (k) and stabilization factor (S) was the sand content
of the soils. The data mining models achieved an accuracy of 54.0 and 66.7% for
decomposition rates and stabilization factors, respectively. The data mining results
enhance our knowledge about the driving forces of litter decomposition in urban soils,
which are underrepresented in soil monitoring schemes. The models are very informative
for understanding and describing litter decomposition in urban settings in general.
This approach may also further encourage participatory researcher-teacher-student
interactions and thus help create an enabling environment for cooperation for further
citizen science research in urban school settings.

Keywords: Tea Bag Index (TBI), decomposition rate (k), stabilization factor (S), citizen science, knowledge
discovery, machine learning, classification trees
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INTRODUCTION

More than 50% of the world’s citizens are city dwellers inhabiting
urban environments (Seto et al., 2014). These environments may
triple in size between 2000 and 2030 if current predictions of
urbanization continue (Seto et al., 2012). Accordingly, the closest
connection to soils of billions of city dwellers is urban soils,
which also represent one of the potential key factors for their
wellbeing. Urban soils undergo complex interactions between
human populations and the environment while delivering
essential functions for society, including climate regulation
and habitat for biodiversity (Schulte et al., 2014). At the
same time, urban soils face several major challenges due to
human influences, i.e., anthropization, including soil sealing,
compaction, pollution, heat island effects and loss of biodiversity
(Lorenz and Lal, 2009; Guilland et al., 2018). The cycling
of carbon in the soil ecosystem, e.g., via decomposition, can
be altered when humans alter the vegetation structure and
composition, leading to changes in above-and below-ground
plant litter dynamics (Kaye et al., 2006; Byrne, 2007). Earthworm
abundance and biomass also play a role in the decomposer
food web (McDonnell et al., 1997). Despite these challenges
and the importance of soils for society, for example in terms
of carbon sequestration and storage (Edmondson et al., 2012;
Churkina, 2016), urban soils have not been extensively studied.
A review by Guilland et al. (2018) showed that only 1% of
articles on soils between 1960 and 2016 investigated such soils.
The most common urban settings for soils are grasslands,
street trees and urban forests, urban wastelands, sports grounds,
urban gardens of residents or communities and green roofs
(Guilland et al., 2018). Human activities on urban soils such
as replacement, disturbance, construction of artificial soils,
fertilization and pest management make it difficult to monitor
as well as assess how they respond to management and land
use changes (Lorenz and Lal, 2009, 2017). The urban landscape
has been described as a whole new geoscientific sphere, the
astysphere (Norra, 2009). Urban soils are often classified as
Technosols (IUSS Working Group WRB, 2014), which are
characterized by significant amounts of artifacts, i.e., human-
made material such as concrete, bricks, sewage sludge and ash.
Technosols are often constructed by humans with sometimes
careless decisions about what kind of material to put where
in the landscape. The global trend of urbanization and the
steep increase in city dwellers calls for more research on urban
soils to underline their ecological and societal importance in
delivering soil functions.

Urban soils and landscapes are ideal for school citizen
science, i.e., the participatory generation of new knowledge
with school teachers and students (Ryan et al., 2018), based
on their close proximity to a large number of schools and
teachers. Focusing on the urban environment enables the
teachers to take the classes outdoors nearby and to highlight
the important functions urban soils deliver to society, including
primary productivity. Agriculture and soil science are rarely
topics for citizen science projects (Ryan et al., 2018) even though
several historical monitoring examples exist (Wildschut, 2017).
The importance of agricultural citizen science is increasing in

urban settings, where the connections between food systems
and consumption are more fragmented than in the countryside.
Citizen science fosters bidirectional exchange of information
between schools, farmers and researchers, gets students engaged
in science through hands-on activities, and enables the students
to become active in the democratic processes in their local
communities (Ryan et al., 2018). Research partnerships can
also have positive impacts on students’ science and social
skills (Harnik and Ross, 2003), including problem solving,
setting working standards and being creative. Using citizen
science mobile applications embraces the possibilities of online
community building around the respective research theme.
This helps foster future collaborations and social networking
between citizen scientists themselves or between citizen scientists
and researchers in a form that would otherwise not take
place (Wildschut, 2017). However, attractive the benefits may
sound, teachers still face challenges with outdoor teaching.
These include the fact that outdoor teaching has no formal
status in the curriculum, the difficulty of getting started
and gaining confidence to teach new topics, as well as
physical constraints (van Dijk-Wesselius et al., 2020). These
challenges can be overcome with the appropriate mindset,
determination and curiosity (van Dijk-Wesselius et al., 2020),
which should be backed up by superiors. Measuring litter
decomposition with the Tea Bag Index (Keuskamp et al.,
2013) as part of the teaching curriculum has successfully
been used in school settings in Sweden and Austria, with
the involvement of motivated teachers (Sandén et al., 2020).
Showing teachers that their intelligence, knowledge and creativity
are appreciated by and included in the project promotes
beneficial participatory cooperation that can be sustained long-
term (Wildschut, 2017).

Data mining has been used in all scientific fields to discover
new patterns and knowledge from large amounts of data
(Trajanov et al., 2018). Its use in citizen science is not
new: enormous amounts of data that have been generated
through citizen scientist experiments remain to be analyzed
and understood (Ceccaroni et al., 2019). Data mining can be
used in citizen science in two stages, namely data collection
or in analyzing the collected data. When applied during data
collection it offers guidance for the planned analyses (e.g.,
classification tasks), minimizing errors and maximizing data
quality (Lukyanenko et al., 2020). When applied to citizen
scientist data, it can be used to find causal relationships
or patterns in the observations, or to detect biases in the
data (Chen and Gomes, 2019). The numerous examples of
using data mining in citizen science projects include but
are not limited to astronomy, life sciences, environmental
sciences and oceanography (Franzen et al., 2021). While citizen
science offers enormous opportunities, for example in training
classification algorithms, there is also a need for rigorous
procedures to ensure data quality (Balázs et al., 2021), as in any
scientific research.

This study was designed to predict litter decomposition, i.e.,
stabilization factors and decomposition rates, and to identify
the soil attributes that govern litter decomposition by means of
data mining. To this end, we addressed the following questions
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within the framework of the urban sites investigated by the citizen
scientists:

(i) Do the selected soil attributes influence litter
decomposition?

(ii) What are the driving factors of litter decomposition in the
urban sites investigated by citizen scientists?

(iii) Can data mining help develop reliable predictive models of
litter decomposition based on citizen scientists’ data?

We hypothesized that soil attributes have a significant
influence on litter decomposition and that e.g., soil texture and
soil organic carbon are driving the decomposition process. The
data mining was expected to give robust predictive models that
can be further utilized when studying urban soils, with and
without public participation.

MATERIALS AND METHODS

TeaTime4Schools—Citizen Scientist
Experiments
An initial call was disseminated in August 2016 to scout
interested teachers, followed by a second call in September
2017 to encourage Austrian schools to participate in the
TeaTime4Schools1 activities, i.e., to measure litter decomposition
in soils with the help of tea bags. In total, 150 school classes signed
up. In April 2018, an interactive workshop was organized for
the participating teachers, in which the project tasks including
the Tea Bag Index methodology (Keuskamp et al., 2013) were
explained and additional information and ideas provided on how
to include soils in their curriculum. In May 2018, the teachers
received the required materials (a total of 450 pairs of tea bags)
by post, along with links to additional video guidance2 on how
to study litter decomposition over a 3-month period (June-
September 2018) with their students. The school classes weighed
and buried commercially available tea bags (green tea (EAN 87
22700 05552 5) and rooibos (EAN 87 22700 18843 8) produced
by Lipton (Unilever) in non-woven polypropylene mesh bags)
as miniature litter bags. They were buried pairwise at a depth
of 8 cm in the school surroundings, following the standardized
Tea Bag Index methodology (Keuskamp et al., 2013). After the
tea bags were retrieved in September 2018, they were dried for
at least 3 days at a warm, dry location, cleaned of adhering soil
particles and re-weighed. Thereafter, the schools classes reported
their data directly to the global Tea Bag Index database3. Using
the mass losses of green tea and rooibos, the TeaTime4Schools
researcher team calculated the decomposition rates (k) and the
litter stabilization factors (S) according to Keuskamp et al. (2013).
Each school class also took one composite soil sample of 10–
12 individual soil samples with a spade from 0–10 cm depth
at the experimental site in September 2018 and sent it to the
researchers for soil analyses (see section “Soil and Environmental

1https://teatime4schools.at/
2https://www.youtube.com/playlist?list=PLR7SjaVR2HuOzcyVGYch5s0ECGMtg
PUHc
3http://www.teatime4science.org/data/submit-one-data-point/

Characteristics”). The preliminary results were reported back
to the school classes in a final workshop (in presence and
online) in March 2019.

Soil and Environmental Characteristics
After arriving in the laboratory, the soil samples were sieved
through a 2 mm stainless sieve and air-dried prior to further
analyses. Soil pH was measured electrochemically (pH/mV
Pocket Meter pH 340i, WTW, Weilheim, Germany) in 0.01 M
CaCl2 at a soil-to-solution ratio of 1:5 (ÖNORM L1083). Plant
available phosphorous (P) and potassium (K) were determined
by calcium-acetate-lactate (CAL) extraction (ÖNORM L1087).
Total soil organic C (TOC) concentrations were analyzed by dry
combustion in a LECO RC-612 TruMac CN (LECO Corp., St.
Joseph, MI, United States) at 650◦C (ÖNORM L1080). Total
N (Ntot) was determined according to ÖNORM L1095 with
elemental analysis using a CNS (carbon, nitrogen, sulfur) 2000
SGA-410–06 at 1250◦C. KMnO4 determination of labile carbon
was analyzed according to Tatzber et al. (2015). Potential nitrogen
mineralization was measured by the anaerobic incubation
method (Keeney, 1982), as modified according to Kandeler
(1993). Texture was determined according to ÖNORM L1061-
1 and L1062-2. The environmental characteristics—annual mean
air temperature and sum of precipitation for 2018—were taken
from the Central Institution for Meteorology and Geodynamics
(ZAMG) webpage4, specifically from their weather stations that
were closest to the sampling sites.

Statistical Analyses and Data Mining
Methods
As a first step, the statistical analyses of k, S, soil and
environmental characteristics were performed using the IBM
SPSS Statistics 26 software package. The normality of data was
checked with Shapiro-Wilk’s test and their descriptive statistics
were calculated. Correlations between variables were presented
as Pearson correlation coefficients.

As a second step, we used data mining algorithms to model
the decomposition rate and stabilization factor from the data
obtained from the citizen scientist experiments. In particular,
we used algorithms for decision tree induction (Breiman et al.,
1984; Witten et al., 2011). Decision trees are predictive models
that predict the value of a dependent variable [also called target
attribute, in our case decomposition rate (k) and stabilization
factor (S)] from a set of independent (descriptive) attributes. They
represent a hierarchical structure with a root node, branches and
leaf (terminal) nodes. Each internal node contains a test on an
attribute in which the value of that attribute is compared to a
constant value. The branches coming out of the node represent
the outputs of the test. The leaf (terminal) nodes contain the
predictions of the target attribute that apply to all samples that
fall into that leaf. To predict the value of the target attribute
of a new sample, it is routed down the tree according to the
values of the outcomes of the tests in each internal node. When
the sample reaches a leaf, it is given the prediction assigned to
that leaf. Decision trees are generated automatically from data,

4https://www.zamg.ac.at/cms/de/klima/klimauebersichten/jahrbuch
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and the modeler’s influence on the structure of the generated
model is solely through the settings of the algorithm parameters
and is therefore minimal. The attributes that appear in the tree
are the ones that carry the most information for predicting the
target attribute.

When the values of the target attribute are numeric, the leaves
of the decision tree can either contain piece-wise linear regression
equations, or constant values that represent the average value
of the target attribute of the samples that reach that leaf. In the
first case, the decision trees are termed model trees, in the latter
case, regression trees. When the values of the target attribute are
categorical, the decision trees are termed classification trees.

In this study, the decision trees were obtained using the data
mining package WEKA (Witten et al., 2011), which implements
a large number of data mining algorithms for different data
mining tasks. In particular, we used J48 for induction of
classification trees.

Data
The data from the citizen scientist experiments were
preprocessed prior to statistical analyses and data mining.
Out of the 150 school classes (450 pairs of tea bags) that signed
up, 130 (390 pairs of tea bags) partly or fully carried out the
project tasks. Out of those, 83 school classes sent soil samples
to the TeaTime4School researcher team, and 69 school classes
successfully sent soil samples and submitted their results into
the global Tea Bag Index database5. Here, we focus on data that
was sent from urban areas, i.e., artificial surfaces, across Austria

5http://www.teatime4science.org/

(Figure 1), altogether from 54 sites (15 sites were filtered out).
From each site, data from 1–3 pairs of tea bags (1 green tea,
1 rooibos) were calculated into an average to be used in the
data analyses. The schools described their sites as cropland,
grassland or forest, but for simplicity, we used the CORINE Land
Cover artificial surfaces to extract these sites from our data set.
From some of the sites, only data on litter decomposition and
environmental characteristics were available due to insufficient
amounts of soil sent for analyses. The dataset comprised
information about the soil and environmental characteristics
described in Section “Soil and Environmental Characteristics”
and “Tea Bag Index, Soil and Environmental Characteristics”.
The decomposition rate (k) and stabilization factor (S) were
our dependent variables for which predictive models (model,
regression and classification trees) were developed.

In order to strengthen the explanatory power of the data
mining results, the values of k and S were discretized into three
categories (1, 2 and 3) for each attribute. The discretization
was carried out automatically using the discretization filtering
method Discretize in the WEKA data mining package, which
discretizes a selected attribute into a predefined number of
classes. The decomposition rate was discretized into three classes
according to the following thresholds: low (≤0.0127 g d−1),
medium (0.0127–0.0210 g d−1), high (>0.0210 g d−1). The
stabilization factor was discretized into three classes according to
the following thresholds: low (≤0.15, medium (0.15–0.29), high
(>0.29). The discretization thresholds for both attributes are in
accordance with Keuskamp et al. (2013).

In the subsequent step, we recognized annual precipitation
and annual temperature and land use that the citizen scientists

FIGURE 1 | Distribution of urban sites investigated across Austria.
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defined as not soil-related attributes and excluded them from
the analyses. In addition, we created two scenarios for the data
mining analyses in which we used different combinations of
attributes. In one scenario, we used detailed information about
the soil texture (coarse sand, medium sand, fine sand, coarse silt,
medium silt, fine silt), whereas in the second scenario we used
aggregated information about the soil texture (sand and silt).

RESULTS

TeaTime4Schools Participation
In total, 130 school classes and at least 2,376 students participated,
of which at least 868 were female and 764 male: some school
classes did not report the number of students or the number of
female and male students. Typical challenges for school classes
that failed to complete their tasks were that: (i) the tea bags
had disappeared over the course of 3 months, (ii) the tea bags
had holes or were otherwise damaged during the experiments,
(iii) weighing of the tea bags was unsuccessful due to problems
with using the pocket scales (e.g., incorrect unit was used or the
final weight exceeded the starting weight), or (iv) the teacher
originally involved in the project had changed school class or job
and the new teacher could not include the planned activities in
her/his curriculum.

Tea Bag Index, Soil and Environmental
Characteristics
The decomposition rate (k) ranged between 0.004 and 0.029 g
d−1, and the stabilization (S) of the labile fraction of green tea
ranged between 0.01 and 0.43 (Table 1). The decomposition
rate was positively correlated with total annual precipitation
(r2 = 0.283, p < 0.05) and negatively correlated with mean
annual temperature (r2 = −0.322, p < 0.05). In addition,
positive correlations were found with coarse and middle sand
fractions (r2 = 0.494, p < 0.01; r2 = 0.325, p < 0.05) and
negative correlation with the latitude (r2 = 0.279, p < 0.05).
For stabilization factor, no correlations were found with
either decomposition rates, soil attributes or environmental
characteristics. Soil pH ranged from acidic 5.16 to alkaline 7.61.
A wide range of plant available phosphorous (P) and potassium
(K) were observed across the investigated sites, 5.00–763 and
61.0–778 mg kg−1, respectively. TOC ranged between 1.22 and
12.5%, whereas Ntot ranged between 0.13 and 1.11%. Moreover,
labile carbon and potentially mineralisable N showed large
variation between the sites, as did texture (Table 1). Mean annual
temperature ranged between 9.1 and 13.5◦C and total annual
precipitation between 552 and 1,345 mm across the investigated
sites (Table 1).

Data Mining Models for Litter
Decomposition
To model the decomposition rate and stabilization factor, we
generated four classification trees: one for each dependent
variable, k and S, and for each scenario (detailed vs. aggregated
soil texture). The accuracy and the root mean squared

TABLE 1 | Summary of results for the Tea Bag Index, i.e., decomposition rate (k)
and stabilization factor (S), soil and environmental characteristics for the sites
investigated in TeaTime4Schools, presented as minimum, maximum and mean
(±standard deviation).

n Min Max Mean (± SD)

k (g d−1) 50 0.004 0.029 0.012 (± 0.005)

S 54 0.01 0.43 0.20 (± 0.09)

pH 48 5.16 7.61 7.17 (± 0.41)

PCAL (mg kg−1) 48 5.00 763 143 (± 167)

KCAL (mg kg−1) 48 61.0 778 253 (± 176)

TOC (%) 48 1.22 12.5 4.53 (± 2.68)

Ntot (%) 48 0.13 1.11 0.37 (± 0.21)

C/N 48 9.40 18.4 12.2 (± 1.97)

Labile C (mg kg−1) 47 414 1426 910 (± 254)

Potentially mineralisable N (mg kg−1 7 d−1) 48 36.8 350 168 (± 78)

Sand (%) 39 13.7 65.9 35.4 (± 10.9)

Silt (%) 39 26.6 64.6 42.3 (± 8.3)

Clay (%) 39 5.40 42.5 22.3 (± 8.8)

Annual mean air temperature in 2018 (◦C) 54 9.10 13.5 11.6 (± 0.9)

Annual sum of precipitation in 2018 (mm) 54 552 1345 697 (± 141)

error of each tree are given in Table 2 and show a
moderate predictive performance. The best classification trees
for predicting decomposition rate (k) and stabilization factor
(S) were obtained using the aggregated soil texture attributes,
which resulted in 54.0 and 66.7% accuracy, respectively. Figure 2
presents the classification tree for decomposition rate (k) using
aggregated soil texture attributes. It indicates the pivotal role of
sand content and total nitrogen for decomposition rates. The
classification tree for predicting the stabilization factor using
aggregated soil texture attributes (Figure 3) shows that sand
contents as well as plant available potassium and phosphorous
played a significant role in stabilizing the labile material.

DISCUSSION

Litter Decomposition
Our results support both previous global (Keuskamp et al., 2013)
and local (Sandén et al., 2020) studies on litter decomposition
based on the Tea Bag Index methodology. The decomposition
rates we calculated were similar to those reported for the
Pannonian environmental zone by Sandén et al. (2020), which
reflects the fact that most of our present sites are in the
Pannonian environmental zone. The stabilization factors were
somewhat higher, 0.20 compared to 0.14, than for the Pannonian
environmental zone in Sandén et al. (2020), possibly due to
the nature of urban soils in our study compared to croplands,
grasslands and forests in the other study. Interestingly, our
results on stabilization factors agree well with Duddigan et al.
(2020) who studied Tea Bag Index in domestic gardens in the
United Kingdom, even though the climatic factors were quite
different to our sites. Fung et al. (2021) recently reported on
litter decomposition using Tea Bag Index in urban Singapore
soils and Tresch et al. (2018) from urban gardens in Switzerland,
however, they did not calculate the decomposition rates and
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TABLE 2 | Predictive performance (accuracy and RMSE) of the four classification
trees generated for modeling decomposition rate and stabilization factor.

Decomposition
rate (k)

Stabilization
factor (S)

Accuracy RMSE Accuracy RMSE

Scenario 1 Detailed soil texture
(coarse/medium/
fine sand,
coarse/medium/fine
silt, and clay)

48.0% 0.50 55.5% 0.44

Scenario 2 Aggregated soil
texture (sand, silt,
and clay)

54.0% 0.46 66.7% 0.41

stabilization factors, but only presented the total mass losses
over the burial time that makes comparison of results more
difficult. Litter decomposition dynamics in urban soils may be
hampered or accelerated because the decomposer community
may be disrupted or their microhabitat destroyed (Byrne,
2007). Moreover, the burial of topsoil decomposers or exposure
of subsoil decomposers to topsoil conditions (Craul, 1999)
due to mechanical soil mixing might explain the different
decomposition dynamics. Soil pH changes due to the human
influence on urban soils may also affect decomposer communities
(Beyer et al., 1995). showed that urbanization may affect
decomposition by altering leaf litter quality. They investigated
decomposition of five different litters and found that the local
litter was decomposing fastest in urban areas (Dorendorf et al.,
2015). This can be explained by the home-field advantage (HFA)
hypothesis that has been shown in many environments, and
estimated to contribute to about 7.5% faster decomposition at
the site where the litter originates compared to other litters on a
global scale (Veen et al., 2015). In our case, the litter, i.e., green
tea and rooibos, are the same in each study site and therefore
comparisons between urban and rural areas would be easy to
conduct. To get a better overview of differences between Tea Bag
Index in urban and rural soils, further data collection from both
urban and rural areas should be undertaken. A possible example
for how to collect further data in rural areas could be to utilize the
Long Term Socio-Ecological Research platforms (LTSER), as has
been done in France (Bretagnolle et al., 2018).

The main governing factor for both decomposition rate and
stabilization factor was the sand content of the soils according
to our data mining models (Figures 2, 3). Soil texture is
known to influence decomposition in many ways, including
its effects on soil water dynamics, nutrient availability and
pore size distribution. Note, however, that its influence on
decomposition may sometimes be shown only in combination
with its effects on soil water pressure, as in Scott et al. (1996), or
not be evident at all as in McLauchlan (2006). Many modeling
approaches of soil organic matter dynamics such as century
(Parton et al., 1987) or RothC (Jenkinson et al., 1990) focus on
silt and clay contents instead of the sand content of the soil. In
our case, higher decomposition rates at increased sand contents
(>49.5%) may be attributable to suitable pore size distribution
for soil microbes to move and to distribute microbial substrates
(Scott et al., 1996). One reason why clay content did not appear as

FIGURE 2 | Classification tree for predicting decomposition rate (k). Low
represent values (≤0.0127 g d–1), medium values (0.0127–0.0210 g d–1),
and high values (>0.0210 g d–1).

FIGURE 3 | Classification tree for predicting stabilization factor (S). Low
represent values (≤0.15), medium values (0.15–0.29), and high values (>0.29).

an important factor for stabilization in our decision trees could
be the time aspect; the tea bags were buried in the soil for only
3 months, which is an ideal timeframe for studying the initial
decomposition dynamics. These may likely be more influenced
by the sand than by the clay content.

Another important driver for decomposition rates was total
nitrogen (Figure 2). The importance of plant available potassium
and phosphorous became evident in the model created for the
stabilization factor (Figure 3); that model shows that, even in
urban areas, fertilization affects soil biochemical cycles (Lorenz
and Lal, 2009). The stabilization factor was higher at low to
medium phosphorous contents up to 58 mg kg−1, whereas
for potassium at least 130 mg kg−1 was needed for higher
stabilization factors. Both values of plant available nutrients
represent sufficient levels for productivity for grasslands and
croplands in Austria (BMLFUW, 2017).
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Future Potentials and Trends
The barriers between science and the public (Wildschut, 2017)
can be opened by showing that citizen scientists’ data are a
very valuable contribution to science. This is especially true
when important patterns are revealed by data mining. Ryan
et al. (2018) described the benefits of technology for citizen
science as a way to convert data into usable information. This
is precisely what data mining can do for data collected by
citizen scientists. Such data mining poses both challenges and
opportunities (Franzen et al., 2021). In this era of digitalization
and an increasingly data-oriented society, the use of data mining
to understand, analyze and obtain new knowledge is inevitable.
Importantly, applying data mining methods to citizen science
data requires caution to avoid potential bias and counter the
varying quality of the data. The benefits and opportunities of
this approach clearly outweigh the challenges. Our study, by
applying data mining and generating predictive models from the
Tea Bag Index data, has set the basis for creating educational
materials for schools about the importance of analyzing urban
soils. This sets the framework for planning experiments in
order to collect more data and improving the experimental
setup in order to obtain wider coverage on regional or national
scales. Despite the modest predictive performance of the created
models, they are informative for understanding and describing
litter decomposition in urban settings where very little data
exist (Guilland et al., 2018). To improve the models, the most
important task is to collect more data on the Tea Bag Index
and on the soil attributes governing litter decomposition. This
includes at least soil texture (sand, silt, clay contents), total
nitrogen and plant-available phosphorous and potassium.

Showing the results of the analyses to and discussing them
with the citizen scientists, i.e., the participating teachers and
students, showcases the importance of their involvement in
scientific knowledge creation. This is a major motivating factor
for their future involvement in similar citizen science projects and
may even help inspire careers in science. By sharing our results
in social media and through our school network connections, we
expect our results to encourage citizen scientists to question the
natural phenomena of litter decomposition and its connection to
the global carbon cycle. We hope this motivates them to continue
their discoveries on their own or in cooperation with us. Previous
research has shown that a brief training of citizen scientists may
not increase science literacy or overall attitudes (Crall et al., 2013).
We therefore aim at several interaction points with the teachers
and students to foster future engagement in environmental issues.
If a teacher or student is seen as an opinion leader, that person
may be able to motivate others to change their personal behavior
toward a more environmentally friendly lifestyle (Nisbet and
Kotcher, 2009). This multiplies the knowledge gained through
their participation. We aim to help citizen scientists understand
that the predictive performance of the created models—and of
any models—can only be as good as the data behind them, and
that better models may require more data, more citizen scientists
and/or even more precise data.

Through litter decomposition experiments we aim to
generate new knowledge, create learning opportunities for both
scientists and citizen scientists, and enable civic participation

in science—three aspects that were highlighted as innovation
potentials of citizen science by Turrini et al. (2018). In order
to make it simpler for new citizen scientists to participate and
to enable previous participants to continue their discoveries
with new categories of soil characterizations, the Tea Bag
Index App was created and launched in 2019, in cooperation
with agricultural high school students and their teacher6. This
approach promotes long-term engagement of citizen scientists,
motivating them to remain active and communicate with other
citizen scientists on the Tea Bag Index App or other citizen
science Apps running on the same Spotteron Platform7. We
envision that this will increase the value of the precious time
that the citizen scientists devote and that we essentially borrow
for scientific purposes (Ryan et al., 2018). Such cooperation may
lead to long-lasting collaborations in which important knowledge
networks, as are becoming increasingly common in agriculture
(Baumgart-Getz et al., 2012), are being created and science is
being done for the people, by the people.

CONCLUSION

Our study successfully created new scientific knowledge on litter
decomposition, i.e., decomposition rates (k) and stabilization
factors (S), in cooperation with school students. This approach
created new soil science learning opportunities for students in
cooperation with their teachers. The most important factor for
both k and S was the sand content of the soils. The decomposition
rates were also affected by total nitrogen contents of the soils,
whereas the stabilization factor was additionally governed by
plant-available potassium and phosphorous. We generated data
mining models for decomposition rate (k) and stabilization factor
(S) from citizen-scientist-collected Tea Bag Index (TBI) data that
are representative for poorly studied urban soils. The predictive
performance of the generated models, 54.0 and 66.7% for k and
S, respectively, could further be improved by additional data
collection and subsequent data mining, as is planned with the
newly launched Tea Bag Index App. Future discussions about
the generated models in the framework of school workshops will
be a next major step in connecting citizen scientists with the
results and promoting conversations about the driving factors of
decomposition dynamics. This is aimed at establishing a long-
term participatory cooperation in which citizen scientists and
researchers learn from one another and new ground will be
broken in participatory citizen soil science.
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