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The assessment of relative model performance using information criteria like AIC and

BIC has become routine among functional-response studies, reflecting trends in the

broader ecological literature. Such information criteria allow comparison across diverse

models because they penalize each model’s fit by its parametric complexity—in terms of

their number of free parameters—which allows simpler models to outperform similarly

fitting models of higher parametric complexity. However, criteria like AIC and BIC

do not consider an additional form of model complexity, referred to as geometric

complexity, which relates specifically to the mathematical form of the model. Models of

equivalent parametric complexity can differ in their geometric complexity and thereby

in their ability to flexibly fit data. Here we use the Fisher Information Approximation

to compare, explain, and contextualize how geometric complexity varies across a

large compilation of single-prey functional-response models—including prey-, ratio-,

and predator-dependent formulations—reflecting varying apparent degrees and forms of

non-linearity. Because a model’s geometric complexity varies with the data’s underlying

experimental design, we also sought to determine which designs are best at leveling

the playing field among functional-response models. Our analyses illustrate (1) the

large differences in geometric complexity that exist among functional-response models,

(2) there is no experimental design that can minimize these differences across all

models, and (3) even the qualitative nature by which some models are more or less

flexible than others is reversed by changes in experimental design. Failure to appreciate

model flexibility in the empirical evaluation of functional-response models may therefore

lead to biased inferences for predator–prey ecology, particularly at low experimental

sample sizes where its impact is strongest. We conclude by discussing the statistical

and epistemological challenges that model flexibility poses for the study of functional

responses as it relates to the attainment of biological truth and predictive ability.
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1. INTRODUCTION

Seek simplicity and distrust it.
Whitehead (1919) Alfred North Whitehead, The Concept of

Nature, 1919.

The literature contains thousands of functional-response
experiments (DeLong and Uiterwaal, 2018), each seeking to
determine the relationship between a given predator’s feeding
rate and its prey’s abundance. In parallel, dozens of functional-
response models have been proposed (Jeschke et al., 2002,
Table 1), each developed to encapsulate aspects of the variation
that exists among predator and prey biologies. The desire to sift
through these and identify the “best” model on the basis of data
is strong given the frequent sensitivity of theoretical population-
dynamic predictions to model structure and parameter values
(e.g., Fussmann and Blasius, 2005; Aldebert and Stouffer, 2018).
Information-theoretic model comparison criteria like the Akaike
Information Criterion (AIC) and the Bayesian Information
Criterion (BIC) have rapidly become the preeminent tool for
satisfying this desire in a principled and quantitative manner
(Okuyama, 2013), mirroring their increasing ubiquity across
the ecological literature as a whole (Ellison, 2004; Johnson
and Omland, 2004; Aho et al., 2014). Generically, criteria like
AIC and BIC make the comparison of model performance an
unbiased and equitable process. For standard linear regression
models (and most other models), increasing model complexity
by including additional free parameters will always result in a
better fit to the data. Therefore, by the principle of parsimony
or because such increases in fit typically come at the cost of
generality beyond the focal dataset, model performance is judged
by the balance of fit and complexity when other reasons to
disqualify a model do not apply (Burnham and Anderson, 2002;
Höge et al., 2018; but see Evans et al., 2013; Coelho et al., 2019).

While differing fundamentally in their underlying
philosophies, motivations, and assumptions (Aho et al.,
2014; Höge et al., 2018), both AIC and BIC implement the
balance of fit and complexity in a formal manner by penalizing
a model’s likelihood with a cost that depends on its number of
free parameters. Specifically, for each model in the considered
set of models,

AIC = −2 lnL(θmle|y)+ 2k (1)

and

BIC = −2 lnL(θmle|y)+ k ln(n) , (2)

with the model evidencing the minimum value of one or the
other criterion being judged as the best-performing model. For
both criteria, the first term is twice the model’s negative log-
likelihood (evaluated at its maximum likelihood parameter values
θmle) given the data y. This term reflects the model’s goodness-of-
fit to the data. The second term of each criterion is a function
of the model’s number of free parameters k. This term reflects
a model’s parametric complexity. For AIC, a model’s complexity
is considered to be independent of the data while for BIC it is
dependent on the dataset’s sample size n; that is, BIC requires
each additional parameter to explain proportionally more for

datasets with larger sample size. The statistical clarity of the best-
performing designation is typically judged by a difference of two
information units between the best- and next-best performing
models (Kass and Raftery, 1995; Burnham and Anderson, 2002).

An issue for criteria like AIC and BIC is that a model’s ability
to fit data is not solely a function of its parametric complexity and
mechanistic fidelity to the processes responsible for generating
the data. This can be problematic because all models—whether it
be due to their deterministic skeleton or their stochastic shell—
are phenomenological to some degree in that they can never
faithfully encode all the biological mechanisms responsible for
generating data (see also Connolly et al., 2017; Hart et al., 2018).
Consequently, a given model may fit data better than all other
models even when it encodes the mechanisms or processes for
generating the data less faithfully.

One way in which this can happen is when models differ
in their flexibility. A model’s flexibility is determined by its
mathematical form and can therefore differ among models
having the same parametric complexity. For example, although
the models y = α + βx and y = αxβ have the same number
of parameters and can both fit a linear relationship, the second
model has a functional form that is more flexible in that it can
also accommodate nonlinearities. In fact, the second model may
fit some data better than the first even if the first is responsible for
generating them. The chance of this happening will vary with the
design of the experiment (e.g., minimizing noise and maximizing
the range of x) and decreases as sample size increases (i.e., as the
ratio of signal to noise increases). Unfortunately, sample sizes in
the functional-response literature are often not large (Novak and
Stouffer, 2021), and the degree to which experimental design is
important given the variation in mathematical forms that exists
among functional-response models has not been addressed.

Here our goal is to better understand the contrasting
flexibility of functional-response models and its impact on their
ranking under the information-theoretic model-comparison
approach. We quantify model flexibility by geometric complexity
(a.k.a. structural complexity) as estimated by the Fisher
Information Approximation (FIA; Rissanen, 1996). Doing so
for an encompassing set of functional-response models across
experimental designs varying in prey and predator abundances,
we find that geometric complexity regularly differs substantially
among models of the same parametric complexity, that
differences between some models can be reversed by changes
to an experiment’s design, and that no experimental design can
minimize differences across all models. Although choices among
alternative functional-response models should be informed by
motivations beyond those encoded by quantitative or statistical
measures of model performance and we do not here seek to
promote the use of FIA as an alternative information criterion,
our results add caution against interpreting information-
theoretic functional-response model comparisons merely at
face value.

2. MATERIALS AND METHODS

2.1. Fisher Information Approximation
The Fisher Information Approximation is an implementation
of the Minimum Description Length principle (Rissanen, 1978)
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TABLE 1 | The deterministic functional-response models we considered for describing the per predator rate at which prey are eaten as a function of prey abundance N,

predator abundance P, and the parameter(s) θ .

Name Abbrev. Model F(N,P, θ ) Reference

One-parameter models (k = 1)

Holling I H1 aN Lotka, 1925; Volterra, 1926

Linear ratio-dependent (donor control) LR aN/P Pimm, 1982; Arditi and Ginzburg, 1989

Barbier–Wojcik–Loreau I BWL1 a
√
N/

√
P Barbier et al., 2021

Two-parameter models (k = 2)

Holling II H2 aN
1+abN Holling, 1959

Michaelis–Menten MM aN
b+N Michaelis and Menten, 1913

Holling III H3 aN2

1+abN2 Holling, 1965; Real, 1977

Hyperbolic tangent HT 1
b
tanh(abN) Jassby and Platt, 1976

Gause–Ivlev GI 1
b

(

1− exp[−aN]
)

Gause, 1934; Ivlev, 1955

Gause–Ivlev–Aldebert GIA 1
b

(

1− exp[−abN]
)

Aldebert et al., 2016a,b

Gutierrez–Baumgärtner GB 1
b

(

1− exp[−aN/P]
)

Gutierrez and Baumgärtner, 1984

Abrams 0 A0 aN

1+ab
√
N

Abrams, 1982

Abrams I A1
√

aN
1+abN Abrams, 1990

Abrams III A3 a
√
N

1+ab
√
N

Abrams, 1990

Sokol–Howell SH aN
1+abN2 Sokol and Howell, 1981

Arditi–Ginzburg AG aN/P
1+abN/P

Sutherland, 1983; Arditi and Ginzburg, 1989

Cosner–DeAngelis–Ault–Olson CDAO aN/
√
P

1+abN/
√
P

Cosner et al., 1999

AG–Kratina AGK a(N/P)2

1+ab(N/P)2
Kratina et al., 2009

Rosenzweig R aNu Rosenzweig, 1971

Hassell–Varley HV aN/Pv Hassell and Varley, 1969

Three-parameter models (k = 3)

Holling–Real III H3R aNu

1+abNu Real, 1977

Abrams–Stouffer AS
(

aN
1+abN

)u
This study

Hassell–Lawton–Beddington HLB aN2

1+cN+abN2 Hassell et al., 1977

Monod–Haldane MH aN
1+cN+abN2 Andrews, 1968

Tostowaryk T aN
1+abN+cN3 Tostowaryk, 1972

Fujii–Holling–Mace FHM aN exp[dN]
1+abN exp[dN] Fujii et al., 1986

Abrams II A2 aN

1+abN+
√

acN(1+abN)
Abrams, 1990

Steady State Satiation SSS 2aN

1+a(b+c)N+
√

1+aN(2(b+c)+aN(b−c)2 )
Jeschke et al., 2002

Ruxton–Gurney–de Roos RGD 2aN

1+abN+
√

(1+abN)2+8ac(P−1)
Ruxton et al., 1992; Cosner et al., 1999

Beddington–DeAngelis BD aN
1+abN+c(P−1) Beddington, 1975; DeAngelis et al., 1975

Crowley–Martin CM aN
1+abN+c(P−1)+abcN(P−1) Crowley and Martin, 1989

Tyutyunov–Titova–Arditi TTA aN
1+abN+cP−(1−exp[−cP]) Tyutyunov et al., 2008

Barbier–Wojcik–Loreau II BWL2 aNuPv−1 Barbier et al., 2021

Arditi–Akçakaya AA aN/Pv

1+abN/Pv
Arditi and Akçakaya, 1990

Schenk–Bersier–Bacher SBB
a(N/Pv)

2

1+ab(N/Pv)2
Schenk et al., 2005

Watt W 1
b

(

1− exp[−aN/Pv ]
)

Watt, 1959

Four-parameter models (k = 4)

BD–Okuyama–Ruyle BDOR aNu

1+abNu+c(P−1) Okuyama and Ruyle, 2011

CM–Okuyama–Ruyle CMOR aNu

1+abNu+c(P−1)+abcNu (P−1) Okuyama and Ruyle, 2011

AA–Okuyama–Ruyle AAOR aNu/Pv

1+abNu/Pv Okuyama and Ruyle, 2011

Stouffer–Novak I SN1 aN
1+abN+c(P−1)+abc(1−d)N(P−1) Stouffer and Novak, 2021

Stouffer–Novak II SN2 aN(1+c(1−d)(P−1))
1+abN+c(P−1)+abc(1−d)N(P−1) This study

From these per predator rates, the total count of prey eaten corresponds to the functional response, F (N,P, θ ), multiplied by the number of predators P and the time period T of the

experiment. The number of parameters k refers to the number of free parameters in each model because only these determine the mean and variance of prey eaten under the Poisson

likelihood which we assumed. Note that, where appropriate, we use P− 1 rather than P for Holling-type predator-dependent models because P represents a count of predators in our

synthetic experimental designs (rather than a density) and predator individuals cannot interfere with themselves. Original parameterizations are provided in Supplementary Table S1.
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which Grünwald (2000) introduced as a means for making
model comparisons (see Pitt et al., 2002; Myung et al.,
2006; Ly et al., 2017, for details). The Minimum Description
Length (MDL) principle considers the comparison of model
performance as a comparison of how well each model can
compress the information that is present in data, with the best-
performing model being the one that describes the data with the
shortest code length. In the extreme case of random noise, no
compression is possible. FIA is asymptotically equivalent to the
normalized maximum likelihood which Rissanen (1996) derived
to operationalize the MDL principle, but is easier to implement
(Myung et al., 2006). It is computed for each model as

FIA = − lnL(θmle|y)+
k

2
ln

( n

2π

)

+ ln

∫

D

√

det I(θ) dθ , (3)

where the first term is the negative log-likelihood of the model
given the data, the second term is a measure of a model’s
parametric complexity that is dependent on the data via the
sample size n (Figure 1), and the third term is a measure of its
geometric complexity (for which we henceforth use the symbol
G). As described further in Box 1, FIA’s geometric complexity
reflects a model’s ability to capture the space of potential
outcomes that can be obtained given an experimental design.
It thereby depends only on the model’s mathematical form and
the structure underlying the observed data, but not on n. The
contribution of geometric complexity to a model’s FIA value
consequently decreases with increasing sample size relative to the
contributions of the likelihood and parametric complexity. This
makes the effect of geometric complexity of greatest importance
for datasets with low sample sizes.

For our purposes, because both parametric and geometric
complexity are independent of the data beyond its sample size
and experimental design, the potential importance of model
flexibility to the information-theoretic ranking of models may
be assessed by comparing their parametric and geometric
complexity values or by comparing the geometric complexity
values of models having the same parametric complexity. Because
FIA converges on half the value of BIC as n becomes large, a
one-unit difference in geometric complexity reflects a substantial
impact on the relative support that two models of the same
parametric complexity could receive.

2.2. Experimental Designs
We computed the geometric complexity of 40 different
functional-response models across a range of experimental
designs.We first describe the experimental designs we considered
because aspects of these also determined our manner for
equitably bounding the permissible parameter space of all
functional-response models (Boxes 1, 2).

The experimental designs we considered exhibited treatment
variation in prey N and predator P abundances. All designs had
at least five prey-abundance levels, a minimum prey-abundance
treatment of three prey individuals, and a minimum predator-
abundance treatment of one predator individual. The designs
varied by their maximum prey and predator abundances (Nmax

and Pmax) which we achieved by correspondingly varying the

FIGURE 1 | The dependence of parametric complexity on data sample size as

estimated by the second term of the Fisher Information Approximation (FIA) for

models with k = 1, 2, 3, and 4 free parameters. The potential importance of

model flexibility to the information-theoretic ranking of functional-response

models may be assessed by comparing their parametric and geometric

complexity values or by comparing the geometric complexity values of models

having the same parametric complexity because both measures of complexity

are independent of the data beyond its sample size and structure (see main

text and Box 1). For context, n = 80 was the median sample size of all

functional-response datasets collated by Novak and Stouffer (2021).

number of prey and predator treatment levels (LN and LP); that
is, by including higher abundance levels to smaller experimental
designs. We specified the spacing between prey and predator
abundance levels to follow logarithmic series. This follows the
recommendation of Uszko et al. (2020) whose simulations
showed that a logarithmic spacing of prey abundance levels
performed well for the purpose of parameter estimation. We
used the golden ratio (φ = 1.618 . . .) as the logarithmic base
and rounded to the nearest integer to generate logistically-
feasible abundance series that increase more slowly than typically
used bases (e.g., log2 or log10). We thereby approximated the
Fibonacci series (1, 1, 2, 3, 5, 8, . . .) on which φn converges for
large n. We varied LN between 5 and 10 levels and varied
LP between 1 and 5 levels, thereby affecting Nmax and Pmax

abundances of up to 233 prey and up to 8 predator individuals.
We assumed balanced designs whereby all treatments are
represented equally. All resulting designs are depicted in the
Supplementary Materials.

An important aspect of experimental design which we
assumed throughout our analyses was that all eaten prey are
continually replaced. The constancy of available prey allowed us
to treat observations as Poisson random variates and hence use
a Poisson likelihood to express each deterministic functional-
response model as a statistical model. This was necessary
because computing geometric complexity requires an inherently
statistical perspective (see Box 1 and below).

2.3. Functional-Response Models
The functional-response models we considered ranged from
having one to four free parameters (Table 1). We included
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BOX 1 | Unpacking the third term of the Fisher Information Approximation.

As described in greater detail in Pitt et al. (2002), Myung et al. (2006), and Ly et al. (2017), the Fisher Information Approximation estimates the geometric complexity

GM of a model M as the natural log of the integration (over all parameters θ ) of the square root of the determinant of the model’s unit Fisher Information matrix IM (θ ):

GM = ln

∫

DM

√

det IM (θ ) dθ . (4)

The Fisher Information matrix IM (θ ) is a k × k matrix comprising the expected values of the second-order derivatives of the model’s negative log-likelihood function

with respect to each of its k parameters. It therefore reflects the sensitivities of the log-likelihood’s gradient with respect to those parameters. The unit Fisher

Information matrix is the expected value of these derivatives calculated across all potential experimental outcomes weighted by those outcomes’ probabilities

given the parameters θ . When an experimental design consists of multiple treatments the expectation is averaged across these. IM (θ ) therefore represents the

expectation for a single observation (i.e., with a sample size of n = 1). For example, for a functional-response experiment having five prey-abundance treatment levels

N ∈ {10, 20, 30, 40, 50} and a single predator-density level, the expectation is taken by associating a 1/5th probability to the unit Fisher Information matrix evaluated

at each treatment level (see the Supplementary Materials for further details).

The determinant of a matrix corresponds to its geometric volume. A larger determinant of the unit Fisher Information matrix therefore corresponds to a more flexible

model that has higher gradient sensitivities for more of its parameters. Parameters that share all their information—such as parameters that only appear in a model

as a product—result in matrix determinants of zero volume. Such non-identifiable models with statistically-redundant parameters require re-parameterization. Models

can also be non-identifiable because of experimental design, such as when there is insufficient variation in predictor variables. For example, all predator-dependent

functional-response models will be non-identifiable for designs entailing only a single predator abundance level (see Supplementary Figure S1).

The domain DM of the integral reflects the range of values that the model’s parameters could potentially exhibit. When a model is not over-specified, each location

in parameter space also corresponds to a unique set of predicted model outcomes. As such, the domain of the integral reflects the space (volume) of potential

experimental outcomes over which geometric complexity is calculated. Three closely related issues are pertinent in this regard:

First, a closed-form solution of the indefinite integral in Equation (4) may not exist, and when it does it is often divergent. This means that numerical integration

methods are necessary and that parameter ranges must typically be bounded (i.e., the domainDM must be finite and some outcomesmust be rendered “impossible”).

However, how to specify bounds on mathematical grounds is not always obvious. For example, for the ratio- and consumer-dependent models such as the Hassell–

Varley (HV) model, the interference strength parameter is not mathematically limited but rather can take on any non-negative value to infinity if the “attack rate”

parameter is similarly unconstrained.

Second, for some experimental designs the range of parameter values may bemore empirically restricted than is mathematically or even biologically permissible. For

example, the handling time of the Holling Type II (H2) model (and all other models) is mathematically constrained only to be non-negative, and yet too large a handling

time would mean that no prey are ever expected to be eaten except for prohibitively long experimental durations, an outcome few experimentalists would consider

useful. Similarly, too large an attack rate would prevent an experimentalist from differentiating among models without the use of potentially intractable decreases in

an experiment’s duration. Experimental design thereby reduces the space of possible outcomes, particularly for designs in which eaten prey are continually replaced.

Third, because a model’s geometric complexity reflects the range of parameter values which are considered possible, two models can exhibit different relative

geometric complexities for different experimental designs. However, different parameterizations of the same functional form must have the same geometric complexity

for a given experimental design when the permissible range of their parameters is limited equivalently (see Box 2). This is an issue because recognizing that two

models simply reflect alternative parameterizations is not always easy (e.g., contrast the original formulation of the Steady State Satiation model by Jeschke et al.

(2002) in Supplementary Table S1 to our reformulation in Table 1).

In our analyses, we overcome these three issues by imposing parameter constraints in a manner that is indirect and equitable across all models. We do so by

imposing the same minimum and maximum constraints on the expected number of prey eaten (thus limiting the space of potential experimental outcomes) for all

models, rather than on each model’s parameters individually (see Methods: Parameter constraints).

prey-, ratio-, and predator-dependent models that are commonly
assessed in the functional-response literature, as well as many
models that have received far less attention, such as those
that encapsulate emergent interference, adaptive behavior, or
both handling and satiation. We did not consider models that
explicitly include more variables than just the abundances of a
focal predator-prey pair. Given that our statistical framework
was based on experimental designs within which eaten prey
are continually replaced, we also did not include any models
which explicitly account for prey depletion or reflect the
selection of hosts by non-discriminatory parasitoids (e.g.,
Rogers, 1972). All but two of the considered models are
previously published. The exceptions were a three-parameter
model (AS) which represents an illustrative generalization
of the adaptive behavior A1 model of Abrams (1990),
and a four-parameter predator-dependent model (SN2) that
extends the Beddington–DeAngelis and Crowley–Martin models
and may be interpreted as reflecting predators that cannot

interfere when feeding and can partially feed when interfering
(see Stouffer and Novak, 2021).

That said, we do not concern ourselves with the biological
interpretation of the models as this has been discussed
extensively throughout the functional-response literature.
Rather, we focus on the models’ contrasting mathematical
forms. Across the different models, these forms include
rational, power, and exponential functions, as well as functions
that are linear, sublinear, or superlinear with respect to prey
or predator abundances. To highlight their similarities, we
reparameterized many models to “Holling form,” noting that
different parameterizations of the same functional form have
the same geometric complexity for a given experimental design
(Box 2). This included models that, as originally defined, had
statistically-redundant parameters (e.g., the models of Abrams,
1990), were written in “Michaelis-Menten form” (e.g., Sokol
and Howell, 1981), or were written with parameters affecting
divisions (e.g., we replaced 1/c → c). This also included the
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BOX 2 | Imposing equitable integration limits.

Different parameterizations of the same functional form should always have the same geometric complexity for a given experimental design. However, this will only

be true when the range of their parameter values over which the integration of Equation (4) is performed is limited equivalently, which can be challenging. This issue is

irrelevant when solutions may be obtained in closed-form, but is not irrelevant when this is not possible, as we suspect is the case for almost all functional-response

models applicable to experiments in which eaten prey are continually replaced.

The challenge of determining equitable integration limits is well-demonstrated by a comparison of the Holling and Michaelis–Menten Type II functional-response

models (Figure 2). These are typically written as

FH2 =
aN

1+ ahN
and FMM =

αN

β + N
, (5)

the equivalence of which is demonstrated by substituting α = 1/h (the maximum feeding rate equals the inverse of the handling time) and β = 1/(ah) (the abundance

at which half-saturation occurs is the inverse of the product of the attack rate and handling time).

By definition, all four parameters (a, h, α and β) are limited only in that they must be non-negative; they could each, in principle, be infinitely large (i.e.,

DH2 =
{

a ∈ [0,∞), h ∈ [0,∞)
}

and DMM =
{

α ∈ [0,∞),β ∈ [0,∞)
}

). If the integral in Equation (4) could then be computed analytically for the two models, we

would always obtain GH2 = GMM for any given experimental design.

However, because the integrals in Equation (4) for the two models are divergent, finite limits to DH2 and DMM must be applied. At first glance, it may seem

intuitive to impose these limits on the maximum parameter values. For example, we might consider imposing a ∈ [0, amax ] and h ∈ [0, hmax ]. Because of their inverse

relationships, doing so means that the equivalent limits for the Michaelis–Menten model are α ∈ [1/hmax ,∞] and β ∈ [1/(amaxhmax ),∞], which are not finite and

hence cannot solve our problem. Naively, we might therefore instead consider imposing both minima and maxima, a ∈ [amin, amax ] and h ∈ [hmin, hmax ], so that

α ∈ [1/hmax , 1/hmin ] and β ∈ [1/(amaxhmax ), 1/(aminhmin)]. This, however, does not solve a further problem in that the limits for β depend on the value of α (i.e., 1/h).

That is, we must also impose the additional constraint that β > α/amax (Figure 2), for only then will the computed GM of the two models be equal.

Problems such as these only compound for models entailing a greater number of parameters. As alluded to in Box 1, our approach to circumventing these model-

specific issues is to impose constraints on the expected number of eaten prey (Figure 2), rather than on the model parameters directly (see Methods: Parameter

constraints). That is, we require that the minimum expected number of eaten prey is no less than one prey individual in the maximum prey abundance treatment(s) (i.e.,

1 ≤ E[F (Nmax ,P, θ )PT ] for all P in the experimental design) and that the maximum expected number of eaten prey is no greater than Nmax in any of the treatments (i.e.,

E[F (N,P, θ )PT ] ≤ Nmax for all N × P combinations in the experimental design). Because of the mapping between parameter space and predicted model outcomes,

these constraints impose natural limits for most (combinations of) parameters (e.g., the handling time or saturation parameters of all models). For other parameters, it

does not impose hard limits, but nonetheless results in their contribution to GM tending asymptotically to zero as their value increases (Figure 2). This is most notably

true for the “attack rate” parameter of all models.

Steady State Satiation (SSS) model of Jeschke et al. (2002) for
which GM could not be computed. Fortunately the SSS model
can also be derived using the citardauq formula (rather than
the quadratic formula) for which GM could be computed and
which further reveals its similarity to the adaptive behavior A2
model of Abrams (1990) and the predator-dependent model
of Ruxton et al. (1992). For simplicity and to further clarify
similarities among models, we present all model parameters
using the symbols a, b, c, and d for non-exponent parameters
and u and v for exponent parameters, noting that their biological
interpretations frequently differ among models.

2.4. Parameter Constraints
As mentioned above, we assumed a Poisson statistical model
in computing the geometric complexity of each deterministic
functional-response model. In a context of fitting models to
actual data, the consequent log-likelihood function,

lnL(θ |y) = −
n

∏

i=1

ln
(

yi!
)

+
n

∑

i=1

(

ln(λi)yi − λi
)

, (6)

expresses the log-likelihood of a model’s parameter values given
the observed data, with λi = F(Ni, Pi, θ)PiT; that is, the
feeding rate of a predator individual in treatment i (as per the
focal deterministic functional-response model) times the number
of predators and the time period of the experiment, which
we universally set to T = 1. In our context of quantifying
GM , observed data is not needed because the first term of

Equation (6) drops out when taking derivatives with respect to
model parameters and because IM(θ) involves the expected value
across the space of potential experimental outcomes y (Box 1).

Despite this independence from data, additional information
is nonetheless necessary for computing the geometric complexity
of models such as those we consider here (Box 1). This
information entails the range of potential outcomes that could
be obtained experimentally and hence the potential parameter
values that a model could exhibit (i.e., its domain DM of
integration). Encoding this information in an equitable manner
that does not bias the inferred geometric complexity of some
models over others has several potential issues associated with
it (Boxes 1, 2), particularly because the nature of our assumed
experimental design (i.e., eaten prey are immediately replaced)
means that the range of potential outcomes for a given model
(i.e., the number of prey eaten) is theoretically infinite.

To avoid these issues, we placed no direct constraints on
the parameters themselves. Rather, we specified infinite domains
on the parameters [i.e.,

{

a, b, c, u, v
}

∈ [0,∞) and d ∈
(−∞,∞)] and instead placed constraints on them in an indirect
manner by restricting the allowable outcomes predicted by the
models. Specifically, we imposed the requirement that, over time-
period T, the expected number of eaten prey in all maximum
prey abundance treatments was no less than 1 (i.e., 1 ≤
E[F(Nmax, P, θ)PT] across all P treatments) and that the expected
number of prey eaten in any treatment was no greater than the
number of prey made available in the maximum prey treatment
level (i.e., E[F(N, P, θ)PT] ≤ Nmax for all N × P treatment
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FIGURE 2 | Alternative parameterizations of the same functional form should have the same geometric complexity for any given experimental design, but this will only

be true in practice when their parameter domains D are equivalently constrained (see Box 2 for details). Top row: Illustration of the functional equivalence and

(Continued)
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FIGURE 2 | parameter interpretations of the Holling (left column) and Michaelis–Menten (right column) models. Middle row: Direct constraints on DH2 and DMM

necessitate more than potentially arbitrary minimum and/or maximum limits, but must also account for the confounded relationships among parameters. Bottom

row: We circumvent this challenge by imposing parameter constraints indirectly via the expected number of eaten prey, E[F (N,P, θ )PT ]. Stars in the top row indicate

these limits imposed on the assumed experimental design. Color-scale in bottom row reflects
√

det IM (θ ) from dark blue (low values) to orange (high values), but is

re-scaled within each graph to visualize their contours and thus cannot be compared quantitatively.

combinations). Under the assumed Poisson model, the lower
bound corresponds to an expectation of observing zero prey
being eaten in no greater than 37% of an experiment’s maximum
prey abundance replicates (since P(E[F(Nmax, P, θ)PT] = 1) =
0.37). The upper bound is similarly arbitrary in a mathematical
sense but seems logistically feasible since researchers are unlikely
to choose a prey abundance beyond which they could not
continually replace consumed individuals. For the SN1 and SN2
models, we imposed the respective additional requirement that
bd ≤ 1/max[F(N, P, θ)PT] and b ≤ 1/max[F(N, P, θ)PT] for all
treatments to maintain biologically-appropriate (non-negative)
predator interference rates (Stouffer and Novak, 2021). We note
that our placement of constraints on the expected number of
eaten prey is similar to the use of Bayesian prior predictive checks
with a joint prior distribution in that we restrict the domain
of permissible parameter values based on how their conditional
inter-dependencies lead to predicted model outcomes.

It is worth noting that some authors defined their models
with parameters to be greater than 1, rather than 0 as we did.
For example, theoreticians often assume u ≥ 1 for the Hill
exponent of the Holling–Real Type III (H3R) model, though
Real (1977) did not do so. We consider non-negative values less
than one to also be biologically and statistically possible (see
discussion in Stouffer and Novak, 2021). Indeed, relaxing this
constraint and redefining the statistically-redundant parameters
of the original A3 model (Abrams, 1990) clarifies, for example,
that it is mathematically equivalent to H3R with u = 0.5 (even if
its assumed biological mechanism differs).

2.5. Model Comparisons
Comparisons of geometric complexity can only be made across
models of the same parametric complexity; it is in conjunction
with its second term that FIA enables comparisons across models
in general. Therefore, for each set of models (i.e., for models
with k = 1, 2, 3 or 4 parameters), we first assessed how
an experiment’s design determined the geometric complexity
of a selected “baseline” model. Because their relationships to
each other and most other models are readily apparent, we
chose the Holling Type I (H1) model as the baseline for the
k = 1 models, the Holling Type II (H2) model for the
k = 2 models, the Holling–Real Type III (H3R) and the
Beddington–DeAngelis (BD) models for the k = 3 models
(H3R for the prey-dependent models and BD for the ratio- and
predator-dependent models), and the Beddington–DeAngelis–
Okuyama–Ruyle (BDOR) model for the k = 4 models. We
then compared the geometric complexity of the other models
within a given set to the set’s baseline model(s) by calculating,
for each experimental design, the difference between the two
model’s geometric complexity values (e.g., GLR − GH1). This

difference enables a direct evaluation of the degree to which a
model’s flexibility influences its information-theoretic ranking
because it has the same units of information as the likelihood and
parametric complexity terms of the FIA criterion.

2.6. Sensitivity to Assumptions
We evaluated the sensitivity of our inferences to three aspects of
experimental design, repeating our analyses for designs that

1. varied in the number of prey and predator levels (LN and
LP) but kept the maximum prey and predator abundances
constant at Nmax = 233 and Pmax = 5 (based on results from
the main analysis);

2. used arithmetically-uniform (rather than logarithmic) series
of prey and predator abundances; and that

3. relaxed the constraint on either the minimum or the
maximum expected number of eaten prey by an order
of magnitude (i.e., E[F(Nmax, P, θ)PT] ≥ 1/10 or
E[F(N, P, θ)PT] ≤ 10Nmax).

All analyses were performed in Mathematica (Wolfram Research
Inc., 2020) using the Local Adaptive integration method and with
precision and accuracy goals set to 3 digits.

3. RESULTS

3.1. Baseline Models and Equivalent
Models
The geometric complexity GM of all baseline models (H1, H2,
H3R, BD, and BDOR) increased with increasing Nmax and
decreasing Pmax (Figures 3–6). For thesemodels, GM variedmore
greatly across the considered variation in Nmax than across the
considered variation in Pmax, with at most a very weak interactive
effect occurring between these. The difference in GM between
the smallest and largest Nmax for a given Pmax varied from
about 2 information units for the parametrically simplest H1
model to about 5 units for the parametrically most complex
BDOR model, with the difference for the other baseline models
being intermediate and roughly proportional to their number of
free parameters.

As expected (Box 2), alternative parameterizations of the
same functional form had the same GM for all designs, with
numerical estimation errors accounting for deviations from exact
equivalence. This was demonstrated by H2 and MM as well
as GI and GIA (Figure 4), which differ only in the biological
interpretation of their parameters. Likewise, all ratio-dependent
models had the same GM as their “corresponding” Holling-type
models when there was no variation in predator abundances (e.g.,
GLR ≈ GH1, GAG ≈ GH2 and GAGK ≈ GH3 when Pmax = 1;
Figures 3–5).

Frontiers in Ecology and Evolution | www.frontiersin.org 8 November 2021 | Volume 9 | Article 740362

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Novak and Stouffer Flexibility of Functional-Response Models

FIGURE 3 | First panel: The geometric complexity GH1 of the single-parameter (k = 1) baseline Holling Type I (H1) model as a function of an experiment’s maximum

prey and predator abundances (Nmax and Pmax ). Other panels: The difference in GM of the linear ratio-dependent (LR) model and the square-root model of Barbier

et al. (2021, BWL1) relative to the H1 model. Positive differences reflect experimental designs for which a focal model’s mathematical flexibility would result in it being

favored by information criteria like AIC and BIC that do not consider this form of model complexity.
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FIGURE 4 | As in Figure 3 but for two-parameter (k = 2) functional-response models. First panel: The geometric complexity GH2 of the baseline Holling Type II model

(H2) as a function of an experiment’s maximum prey and predator abundances (Nmax and Pmax ). Other panels: The difference in GM of all other two-parameter models

relative to the H2 model. As a visual aid, models with greater geometric complexity than H2 are colored in blue while those with less geometric complexity than H2 are

colored in orange.
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FIGURE 5 | As in Figure 3 but for three-parameter (k = 3) functional-response models. First and tenth panels: The geometric complexity GM of the baseline

Holling–Real Type III (H3R) and Beddington–DeAngelis (BD) models as a function of the experiment’s maximum prey and predator abundances (Nmax and Pmax ).

(Continued)
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FIGURE 5 | Other panels: The difference in GM of the other three-parameter prey-dependent (top two rows) and ratio- and predator-dependent (bottom two rows)

models relative to the baseline models. As a visual aid, models with greater geometric complexity than H2 are colored in blue while those with less geometric

complexity than H2 are colored in orange.

FIGURE 6 | As in Figure 3 but for four-parameter (k = 4) functional-response models. First panel: The geometric complexity GBDOR of the

Beddington–DeAngelis–Okuyama–Ruyle (BDOR) model as a function of the experiment’s maximum prey and predator abundances (Nmax and Pmax ). Other panels:

The difference in GM of all other four-parameter models relative to the BDOR model. As a visual aid, models with greater geometric complexity than H2 are colored in

blue while those with less geometric complexity than H2 are colored in orange.

3.2. One-Parameter Models
For the one-parameter models (Figure 3), both GLR and GBLW1

were always greater than GH1 (excepting when Pmax = 1 for
LR). The degree to which the linear ratio-dependent (LR) model
was more flexible than the Holling Type I (H1) model decreased
with increasing Nmax and decreasing Pmax. This was also true for
the ratio-dependent BLW1 model of Barbier et al. (2021) when
Pmax ≥ 3, but for Pmax < 3 its difference to H1 increased
with increasing Nmax. The most equitable designs capable of
differentiating among all three models therefore consisted of only
two predator levels (Pmax = 2), entailed a GM difference among
models of about 0.2 information units or more, and caused LR
to be slightly more flexible for small Nmax and BWL1 more so
for large Nmax relative to H1. The least equitable design entailed
large Pmax and small Nmax and caused the geometric complexity
of LR and BWL1 to exceed that of H1 by more than 1 and 0.8
information units, respectively.

3.3. Two-Parameter Models
There were four categories of two-parameter models qualitatively
distinguished by whether they exhibited equivalent, higher, lower
or a design-dependent GM relative to the H2 baseline model
(Figure 4):

(i) MM was equivalent to H2 for all designs (as already
mentioned above);

(ii) H3, HT, GI, GIA, SH, AG, AGK, GB, CDAO and Rweremore
flexible than H2 for all designs (had higher GM , excepting for
Pmax = 1 where GAG ≈ GCDAO ≈ GH2);

(iii) A0, A1, and A3 were less flexible than H2 for all designs (had
lower GM); and

(iv) HV was more flexible than H2 for small Nmax designs and
less flexible for large Nmax, with large and small Pmax designs
respectively increasing and decreasing its relative flexibility
more greatly.

H3 was the only model for which the difference from H2
was insensitive to experimental design, always being about 0.45
information units. For HT, GI, GIA, A0, A1, and A3, the
difference to H2 was insensitive to Pmax, but while it increased
with increasing Nmax for HT, GI, GIA, and A0 (making small
Nmax designs the most equitable), it decreased with increasing
Nmax for A1 and A3 (making large Nmax designs the most
equitable). The degree to which AG, AGK, GB, CDAO, and
R were more flexible than H2 decreased with increasing Nmax,
but while it increased with increasing Pmax for AG, AGK, GB,
and CDAO (making large Nmax, small Pmax designs the most
equitable), it decreased—albeit weakly—with increasing Pmax for
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R. For SH, the difference to H2 first increased from small to
intermediate Nmax then slowly decreased from intermediate to
large Nmax, but was always minimized by large Pmax. Small Nmax,
large Pmax designs were therefore the most equitable for SH.
Finally, for HV, which was either more or less flexible than
H2 depending on design, the most equitable designs spanned
Nmax ≈ 30 for Pmax = 2 toNmax ≈ 120 for Pmax = 8. Overall, A0
and AGK exhibited the greatest potential disparity in flexibility
relative to H2, respectively being less and more flexible by about
1.4 information units under their least equitable design. The
greatest potential disparity among all considered two-parameter
models was about 2 information units and occurred between HV
and A0 for small Nmax, large Pmax designs in favor of HV.

3.4. Three-Parameter Models
Noting that all predator-dependent models are non-identifiable
for Pmax = 1 designs (Supplementary Figure S1), there
were three categories of three-parameter models that were
qualitatively distinguished by whether they exhibited higher,
lower or a design-dependent GM relative to the two baseline
models—H3R for prey-dependent models and BD for ratio- and
predator-dependent models (Figure 5):

(i) FHM and BDwere more flexible than H3R, and CM,W, SBB,
and AA were less flexible than BD, for all designs (excepting
for Pmax = 2 where GAA ≈ GBD);

(ii) A2, HLB, MH, AS, SSS and T were less flexible than H3R, and
TTA and RGD were less flexible than BD, for all designs; and

(iii) BWL2 was more flexible than BD for small Nmax, large
Pmax designs and was less flexible for large Nmax, small Pmax

designs.

For the ratio- and predator-dependent models, differences to BD
were more sensitive to variation in Pmax than to variation in
Nmax. The degree to which CM, W, SBB, and AA were more
flexible than BD increased with increasing Pmax, reaching a
difference in geometric complexity of 0.8 information units at
Pmax = 8. For these models, the most equitable design therefore
entailed small Pmax regardless ofNmax, but for TTA and RGD, for
which the difference to BD decreased with increasing Pmax, it was
designs entailing large Pmax which reduced their lower geometric
complexity the least (by no less than 1.4 and up to 2.9 information
units). The degree to which the prey-dependent AS and Tmodels
were less flexible than H3R was also more sensitive to variation
in Pmax than in Nmax, but the degree to which A2, HLB, MH, and
SSS were less flexible and the degree to which FHM was more
flexible was relatively insensitive to variation in Pmax. As Nmax

increased, T became less flexible than H3R, A2, HLB, MH, AS,
and SSS became less inflexible relative to H3R, and FHM became
more flexible than H3R. For BWL2, which could either be more
or less flexible than BD depending on design, the most equitable
designs spanned those that had the largest considered Nmax

when Pmax was large to those that had the smallest considered
Nmax when Pmax was small. Overall, A2, SSS and TTA exhibited
the greatest potential disparity relative to their H3R and BD
baselines, respectively differing in their geometric complexity up
to almost 3.8 information units for the least equitable designs.

The greatest potential disparity among all other considered three-
parameter models was about 4.6 information units and occurred
between A2, SSS and CM for small Nmax designs in favor of CM.

3.5. Four-Parameter Models
Finally, among the four-parameter models, which exhibited the
greatest amounts of numerical estimation noise (Figure 6):

(i) AAOR was more flexible than BDRO for all designs (had
higher GM);

(ii) SN1 and SN2 were less flexible than BDRO for all designs
(had lower GM); and

(iii) CMOR tended to be more flexible for large Nmax, large Pmax

designs and less flexible for small Nmax, small Pmax designs.

For CMOR, AAOR and SN1, the difference to BDOR was less
sensitive to variation in Nmax than to variation in Pmax, but the
opposite was true for SN2. Further, while the degree to which
AAORwasmore flexible than BDROwasminimized by Pmax = 2
designs (to about 0.2 information units), the degree to which SN1
was less flexible than BDRO was minimized by Pmax = 8 designs
(to about 0.5 information units). SN2 was non-identifiable for
designs having Pmax ≤ 3 (Supplementary Figure S1), but for
Pmax > 3 designs it was less flexible by at least 1 information
unit. The most equitable designs for CMOR and BDOR entailed
intermediate predator abundances (Pmax = 3–5). Overall, the
greatest potential disparity to the BDOR baseline model occurred
for the SN2 model (about 2.5 information units) at the largest
Nmax. The greatest potential disparity among all considered four-
parameter models occurred for the SN2 and AAOR models
(about 3.5 information units) for the largest Nmax, largest Pmax

design in favor of AAOR.

3.6. Sensitivity Analyses
Fixing Nmax = 233 and Pmax = 5 and varying the
number of prey and predator treatment levels (LN and LP)
to below the numbers used in our primary analysis showed
that GM was relatively insensitive to variation in LN for most
models (Supplementary Figures S2–S5). In contrast, the degree
to which models were more or less flexible relative to their
baseline model was far more sensitive to variation in LP. For
most of the LP-sensitive models, decreasing LP increased their
difference to the baseline model, but for an almost equal number
the difference decreased. The largest effects of LP most often
occurred when reducing from two predator levels (P ∈ {1, 2})
to only a single-predator level (or the corresponding reduction of
three to two levels for the four-parameter models). Setting aside
these last-mentioned and in some ways trivial changes to LP, the
greatest effect of changing LN and LP was to change the relative
geometric complexity of models and their baseline models by up
to about 0.6 information units (excepting T and SSS for which
changes of up to 2.5 units occurred).

The use of designs with arithmetic rather than logarithmic
spacings of prey and predator abundances also had little to
no effect on the geometric complexity of models relative to
their baselines (Supplementary Figures S6–S9). The notable
exceptions included the manner in which (i) HV was more
flexible thanH2 (arithmetic spacingsmakingHV invariablymore
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flexible rather than more or less flexible depending on Nmax and
Pmax), (ii) BD was more flexible than H3R (arithmetic spacings
making it more flexible for large rather than small Nmax), and
(iii) CMOR was more flexible than BDOR (arithmetic spacings
making CMOR invariably less flexible rather than more or less
flexible depending on Nmax and Pmax).

Finally, relaxing the indirect constraints we imposed on
the range of potential experimental outcomes (i.e., model
parameters) by changing the minimum or the maximum
expected number of eaten prey by an order of magnitude
had similarly little effect (Supplementary Figures S10–S17).
The notable consequences were that increasing the maximum
expected number of eaten prey across all treatments from Nmax

to 10 Nmax caused (i) CDAO to become less rather than more
flexible than H2, (ii) T andW to bemore or less flexible than H3R
and BD in a design-dependent rather than design-independent
manner; (iii) CMOR to become more flexible than BDOR for a
greater range of designs, and (iv) GSN1 and GSN2 to no longer
be estimable, even after a month of computation on a high-
performance computing cluster.

4. DISCUSSION

The functional-response literature is replete with models, even
among those that only consider variation in the abundances of a
single predator-prey pair (Table 1, Jeschke et al., 2002). Each of
these many deterministic models was proposed to encapsulate a
different aspect of predator-prey biology, though frequently even
very different biological processes lead to very similar or even
the same model form (Table 1). Information-theoretic criteria,
which balance model fit and complexity, represent the principal,
most general, and most accessible means for comparing the
statistical performance of these models when they are given a
statistical shell and confronted with data (Okuyama, 2013). The
primary contribution of our analyses is to show that existing
models, independent of the biology they are meant to reflect,
frequently also differ in their flexibility to fit data, even among
models having the same parametric complexity. Differences in
model flexibility as assessed by the geometric complexity term G

of the FIA criterion were frequently greater than 0.5 information
units, spanned values up to 13 information units, and for several
models were never below 1 information unit even for the most
equitable of considered experimental designs. Secondarily, our
analyses demonstrate just how dependent a model’s flexibility
can be on the experimental design of the data (i.e., what the
range and combinations of prey and predator abundances are).
In some instances this design dependency was great enough to
cause models that were less flexible than other models for some
experimental designs to become more flexible than the same
models for different designs.

Our use of the FIA criterion allows us to contextualize the
importance of this variation in flexibility in two rigorous and
quantitative ways: First, we can compare G among models of
the same parametric complexity for a given experimental design
assuming their goodness-of-fit to a hypothetical dataset to be
the same. In this scenario, the potential significance of model

TABLE 2 | The value of FIA’s parametric complexity term (the second term of

Equation (3) depicted in Figure 1) for models of k = 1, 2, 3, and 4 parameters

evaluated at the sample sizes of the smallest (n = 10), median (n = 80), and

largest (n = 528) sized datasets in the set of 77 functional-response datasets

having variation in both prey and predator abundances compiled by Novak and

Stouffer (2021).

Sample size (n)

k 10 80 528

1 0.2 1.3 2.2

2 0.5 2.5 4.4

3 0.7 3.8 6.6

4 0.9 5.1 8.9

These values serve as reference for gauging the magnitude differences in geometric

complexity between models reported here and, thereby, for judging the likely influence

of model flexibility on prior inferences of relative model performance using AIC and BIC.

flexibility to the information-theoretic comparison of functional-
response models is evidenced in a general manner by the
fact that a 2-unit difference in AIC or BIC among competing
models—equivalent to a 1-unit difference in FIA—represents
“substantial” support (a weight-of-evidence of 2.7 to 1) for one
model over another (Burnham and Anderson, 2002). (Such a
difference reflects a probability of 0.73 that the first of only two
competing models is “better” than the other.) Second, we can
compare G to a model’s parametric complexity for hypothetical
datasets of differing sample size assuming its goodness-of-fit
to these data remains the same. In this scenario, the potential
significance of model flexibility to the inferences of functional-
response studies performed in the past is evidenced by the fact
that our estimated differences in G are comparable to the values
of parametric complexity that are associated with the median
and even maximum sample sizes seen in the large collection
of datasets recently compiled by Novak and Stouffer (2021)
(Table 2). That is, as feared by Novak and Stouffer (2021), sample
sizes among existing empirical datasets are often sufficiently
small that the likelihood and parametric complexity differences
of many models is unlikely to have sufficiently out-weighed
the influence of their functional flexibility in determining their
information-theoretic rankings.

4.1. What Makes Models (In)Flexible?
Given that the influence of model flexibility on information-
theoretic model comparisons of the past is likely substantial, that
its influence will likely not change dramatically in the future given
the logistical challenges of standard experimental approaches,
and because there is no experimental design that can make the
comparison of functional-response models universally equitable
with respect to their flexibility, an important question is: What
aspects of their mathematical formulation make models more or
less flexible for certain experimental designs?

For the one-parameter models the answer is relatively
accessible given the specifics of our analyses. The linear ratio-
dependent (LR) model is more flexible than the Holling Type
I (H1) model because the division of prey abundances by
a range of predator abundances allows a greater range of
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parameter a (“attack rate”) values to satisfy the condition that
the resulting expected numbers of eaten prey will lie within our
specified minimum and maximum bounds (i.e., satisfying both
E[F(Nmax, P, θ)PT] ≥ 1/10 and E[F(N, P, θ)PT] ≤ 10Nmax).
Relative to H1 for which high Nmax and low Pmax maximize the
potential range of attack rates that an individual predator could
express in an experiment, having many predators “interfering”
in a ratio-dependent manner enables each individual predator
to express an even greater attack rate without all predators in
total consuming too many prey. The effects on the maximum
vs. the minimum prey eaten are asymmetric in magnitude (i.e.,
the maximum potential value of a increases more than the
minimum potential value of a) because division by P in LR has
an asymmetric effect on the per predator number of prey eaten
(relative to the multiplication by P that is common to all models);
it is symmetric only on a logarithmic scale. The magnitude of this
effect is dampened in the BWL1 model of Barbier et al. (2021)
because it entails a ratio of the square roots of (is sublinear with
respect to) prey and predator abundances, making BWL1 more
flexible than H1 but less flexible than LR.

The same rationale applies to all other models and explains
the varied (in)sensitivities that their model flexibility has with
respect to experimental design. That said, the situation is often
more complicated for models with multiple parameters because
of (i) the interdependent influences that parameters have on the
number of prey that are eaten, and (ii) the fact that, for some
models, the minimum and the maximum boundaries on the
expected number of eaten prey come into play at different points
in parameter- and species-abundance space.

For example, for the Holling Type II (H2) model, requiring
that at least one prey on average be eaten in the highest prey
abundance treatments causes high handling times to impose a
lower limit on each individual’s attack rates only if and when prey
abundances are sufficiently high to affect saturation. The Holling
Type III (H3) model experiences this same effect as well, hence
its relative flexibility is insensitive to variation in maximum prey
abundances. H3 is nonetheless more flexible than H2 because it
is superlinear with respect to prey abundance (when handling
times or prey abundances are low) and can therefore satisfy the
minimum of one-prey-eaten-per-predator constraint for smaller
attack rate values than can H2. Similarly, the exponential form
of the Gause–Ivlev models (GI and GIA) makes them more
flexible than H2 because they are superlinear with respect to prey
abundance, while the A1 andA3models of Abrams (1990) are less
flexible than H2 because they are sublinear with respect to prey
abundance. The insensitivity of the relative flexiblity of all these
models to variation in predator abundances occurs because the
total prey eaten they effect is determined by predator abundance
in the same proportional manner as for H2. That is, just like
most other two-parameter prey-dependent models, the relative
flexibility of H2 and these models is similarly uninfluenced by
the ratio of prey and predator abundances, in contrast to the way
that all ratio- and predator-dependent models are affected (as per
the contrast of H1, LR and BWL1 discussed above).

The prey-dependent Type IV model of Sokol and Howell
(1981) (SH) represents an informative exception to all other two-
parameter prey-dependent models in that its relative flexibility

is sensitive to predator abundance. Whereas all monotonically
increasing prey-dependent models only ever come up against the
maximum prey abundance constraint as predator abundances
increase, increasing predator abundances additionally alleviate
the constraint that SH experiences uniquely due to the eventual
decline of its feeding rate at high prey abundance; high predator
abundances permit the total number of prey eaten to stay above
the minimum-of-one-prey constraint for greater maximum prey
abundances than is possible for low predator abundances given
the parameter values.

The dependence of model flexibility on predator abundance
emerges among the prey-dependent three-parameter models for
similar reasons. For example, although the feeding rates of
neither the HLB model of Hassell et al. (1977) nor the A2
model of Abrams (1990) decline with respect to prey abundance,
increasing their c parameter does make their denominators more
sensitive to maximum prey abundances where the minimum
of one-prey-eaten-per-predator constraint comes in to play.
Therefore, just as for SH, increasing predator abundances
increase the number of prey eaten to allow for larger values of c
to satisfy the minimum-of-one-prey constraint. That is, although
increasing predator abundance would limit the range of c due to
the minimum-of-one-prey constraint if all else were to be held
constant, all else is not constant. Rather, high predator abundance
enables a greater range of a values for a given value of c before
the maximum-prey-eaten constraint is violated. This is also the
reason why all predator-dependent models exhibit increasing
relative flexibility as predator abundance increases even as the
absolute flexibility of their respective baseline models decreases.

4.2. Additional Aspects of Experimental
Design
Our sensitivity analyses on the role of experimental design
reinforce the inferences of our main analysis. They also speak
to the likely generality of our results to additional aspects
of experimental design which we did not specifically address.
For the two-parameter models whose relative flexibility was
insensitive to the ratio of prey and predator abundances,
using arithmetic rather than logarithmic designs had little or
no qualitative influence because arithmetic spacings did not
alter maximum prey abundances where the constraints on the
number of prey eaten are incurred. By contrast, models for
which changes to spacings or the prey-eaten constraints did
alter their relative flexibility were either ratio- or predator-
dependent models, or were prey-dependent models whose
additional (third) parameter made their flexibility sensitive to
predator abundance. We conclude from this that the precise
spacings of prey and predator abundances are less important
from a model flexibility perspective than are their maxima and
combinatorial range, but that these aspects of design become
more important as the parametric complexity of the considered
models increases.

Nonetheless, searching for equitable experimental designs
as we did is different from searching for optimal designs for
model-specific parameter uncertainty, bias, or identifiability (e.g.,
Sarnelle and Wilson, 2008; Zhang et al., 2018; Moffat et al.,

Frontiers in Ecology and Evolution | www.frontiersin.org 15 November 2021 | Volume 9 | Article 740362

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Novak and Stouffer Flexibility of Functional-Response Models

2020; Uszko et al., 2020). A precedence of other motivations for
an experiment, such as maximizing the precision of parameter
estimates, may therefore lead to different and likely model-
specific conclusions about which design aspects are important.
Fortunately, given our results, some aspects of experimental
design may be of little consequence. For example, independent
of the maximum prey abundance used, the general utility of
a logarithmic spacing of prey makes intuitive sense given that,
for many models, most of the action that differentiates model
form occurs at low prey abundances (i.e., their derivatives with
respect to N are greatest at low values of N). Intuition likewise
suggests that designs should preclude total prey consumption
being overwhelmed by the overall effect of interference among
predators and hence that predator abundances shouldn’t be high.
In this regard our results indicate that just a little variation
across a range of low predator abundances is often—though
far from universally—best from a relative model flexibility
standpoint, just as it would be expected to be best for
parameter estimation.

Our analyses did not consider questions regarding the
treatment-specific distribution of experimental replicates,
important though these often are given logistical constraints.
All of our analyses assumed uniformly-balanced designs, the
effect of which future analyses could easily assess by changing
the probability of each experimental treatment when computing
the Expected unit Fisher Information matrix underlying G (see
Box 1). We anticipate, however, that shifting replicates from
lower prey and predator abundances to higher abundances will
have a similar effect to that seen in the comparison of logarithmic
to arithmetic spacings. Therefore, from a model flexibility
standpoint alone, we expect such a shift to have a greater effect
for models of high parametric complexity.

A final important aspect of experimental design that our
analyses did not address was the assumed likelihood function
connecting each deterministic functional-response model to
an experiment’s design (i.e., the structure of the data). We
assumed a Poisson likelihood and therefore that eaten prey
are continually replaced, that the mean and variance of prey
eaten are equal for a given combination of predator and
prey abundances, and that all feeding events are independent.
Model flexibility as assessed by geometric complexity may be
different under alternative likelihoods such as the binomial
likelihood (which would be appropriate for non-replacement
designs) or the negative binomial likelihood (which allows
for under- or over-dispersion). Indeed, for the binomial
likelihood even the linear Holling Type I deterministic function
response results in a non-linear statistical model (Novak and
Stouffer, 2021), hence relative geometric complexity may be
quite different for models that account for prey depletion
(see Supplementary Materials for a comparison of Rogers’
random Type II and Type III predator models). That said,
the maximum likelihood parameter estimators under Gaussian
and log-Normal likelihoods are the same as under a Poisson
likelihood for many—and possibly all—of the models we
considered (Novak and Stouffer, 2021), so it is likely that
our inferences would be little changed under these commonly
assumed alternatives.

4.3. Model Flexibility as Problem and
Desirable Property
There are many perspectives on the purpose of models and why
we fit models to data. Shmueli (2010) articulates two primary
axes of motivation that align well to the functional-response
literature: explanation (where the primary motivation is to infer
biologically- and statistically-significant causal associations the
nature of which models are meant to characterize) and prediction
(where the primary motivation is to best describe as yet unseen
out-of-sample data)1. The ability to satisfy both motivations
converges as the amount of data and the range of conditions
the data reflect increase, thereby mirroring the inferential
convergence of information criteria as sample sizes increase and
cause differences in goodness-of-fit to dominate measures of
model complexity. Model flexibility, and with it our analyses,
would thus be irrelevant if the sample sizes of functional-
response experiments were sufficiently large. Instead, sample
sizes for many studies are such that model flexibility—as well
as other forms of statistical and non-statistical bias (Novak and
Stouffer, 2021)—preclude the conclusion that models deemed to
perform best on the basis of their information-theoretic ranking
are also closest to biological truth.

Empiricists fitting functional-response models to data must
thereforemake the explicit choice between explanation, for which
criteria such as BIC and FIA are intended, and prediction,
for which AIC(c), cross-validation, model-averaging, and most
forms of machine learning are intended (Shmueli, 2010; Aho
et al., 2014; Höge et al., 2018). If data is limited and explanation is
the goal, then design-dependent differences in model flexibility
represent a critical problem for commonly-used criteria like
BIC because more flexible models will be conflated for the
truth. In such contexts, it would be wise to identify the most
equitable design for a specifically chosen subset of hypothesis-
drivenmodels (see also Burnham and Anderson, 2002), or, in lieu
of a better reasoned solution, to use a design or multiple designs
that stack the deck against leading hypotheses associated with the
most flexible models. On the other hand, if data is limited and
out-of-sample prediction is the goal, then model flexibility could
be considered an advantage if it causes more-complex-than-true
models to be selected because they are deemed to perform better,
especially when the true model may not even be among those
being compared (Höge et al., 2018). More generally, there are
clearly contexts in which ecologists wish to have generic, flexible
functional-response models that merely approximate aspects of
the truth in a coarse manner, be it in more descriptive statistical
contexts or in theoretical contexts where the potential role of
these aspects in determining qualitatively different regimes of
population dynamics is of interest (e.g., Arditi and Ginzburg,
2012; AlAdwani and Saavedra, 2020; Barbier et al., 2021). In
these contexts, and since all models are phenomenological and
hence agnostic with respect to precise mechanistic detail (as
Table 1 underscores; see also Connolly et al., 2017; Hart et al.,
2018), we consider the results of our analyses to be useful for

1A third axis, description, remains common in the functional-response literature

and typically takes the form of fitting “non-mechanistic” polynomial models to

evaluate the statistical significance of various non-linearities.
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making a priori choices among models given that more flexible
models likely capture and exhibit a greater amount of biologically
insightful variation in a more analytically tractable manner.

4.4. Conclusions
Several syntheses evidence that there is no single model that
can characterize predator functional responses in general (Skalski
and Gilliam, 2001; Novak and Stouffer, 2021; Stouffer and
Novak, 2021). This is consistent with the fact that, to a large
degree, the statistical models of the functional-response literature
characterize aspects of predator-prey biology for which there
is evidence in data, not whether specific mechanisms do or
do not occur in nature (see also Connolly et al., 2017). In
light of the fact that functional-response data are hard to come
by, our study demonstrates that a model’s functional flexibility
should be considered when interpreting its performance. That
said, we are not advocating for FIA as an alternative to more
commonly-used information criteria; its technical nature and
model-specific idiosyncrasies do not lend itself to widespread
adoption or straightforward implementation (e.g., in software
packages). Moreover, more fundamental issues exist that pertain
to the explicit consideration of study motivation. Indeed, we
submit that questions of motivation are ones that the functional-
response literature as a whole needs to grapple with more
directly. Even in the specific context of prediction, for example,
functional-response studies rarely address explicitly what their
study and their data are intending to help better predict
(e.g., feeding rates or population dynamics). Valuable effort
would therefore be expended in future work to consider the
relationship of model flexibility to the parametric- and structural
sensitivities of models when it comes to drawing inferences for
population dynamics (e.g., Aldebert and Stouffer, 2018; Adamson
and Morozov, 2020). Likewise, it would also be useful to clarify
the relevance of model flexibility to the rapidly developing
methods of scientific machine learning, including the use of
symbolic regression, neural ordinary differential equations, and
universal differential equations for model discovery (e.g., Martin
et al., 2018; Guimerà et al., 2020; Rackauckas et al., 2020; Bonnaffé
et al., 2021).
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