
OPINION
published: 29 October 2021

doi: 10.3389/fevo.2021.740848

Frontiers in Ecology and Evolution | www.frontiersin.org 1 October 2021 | Volume 9 | Article 740848

Edited by:

Dennis Murray,

Trent University, Canada

Reviewed by:

Peter Abrams,

University of Toronto, Canada

Jenilee Gobin,

Trent University, Canada

*Correspondence:

Nikos E. Papanikolaou

nikosp@aua.gr

Specialty section:

This article was submitted to

Population, Community, and

Ecosystem Dynamics,

a section of the journal

Frontiers in Ecology and Evolution

Received: 13 July 2021

Accepted: 04 October 2021

Published: 29 October 2021

Citation:

Papanikolaou NE, Kypraios T,

Moffat H, Fantinou A, Perdikis DP and

Drovandi C (2021) Predators’

Functional Response: Statistical

Inference, Experimental Design, and

Biological Interpretation of the

Handling Time.

Front. Ecol. Evol. 9:740848.

doi: 10.3389/fevo.2021.740848

Predators’ Functional Response:
Statistical Inference, Experimental
Design, and Biological Interpretation
of the Handling Time

Nikos E. Papanikolaou 1,2*, Theodore Kypraios 3, Hayden Moffat 4,5, Argyro Fantinou 6,

Dionysios P. Perdikis 1 and Christopher Drovandi 4,5

1 Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, Athens,

Greece, 2Department of Plant Protection Products, Hellenic Ministry of Rural Development and Food, Athens, Greece,
3 School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom, 4 School of Mathematical

Sciences and Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia, 5 Australian Research

Council (ARC) Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology,

Brisbane, QLD, Australia, 6 Laboratory of Ecology and Environmental Science, Department of Crop Science, Agricultural

University of Athens, Athens, Greece

Keywords: Bayesian inference, optimal experimental design, handling time, disc equation, mechanistic

understanding

INTRODUCTION

Functional responses describe the predator feeding rate with increasing prey density (Solomon,
1949) and are central to ecology, quantifying the energy transfer across trophic levels. Holling’s
approach (Holling, 1959a,b) has been the base upon which many of the critical aspects of
predator-prey interactions can be detected (e.g., Abrams, 1980, 1989). The most frequently
observed and widely used functional responses in describing predator-prey relationships are that
of the type II and III (Jeschke et al., 2002, 2004), characterized by a curvilinear and a sigmoidal
increase in feeding rate with prey abundance, respectively.

Accurate and robust approaches for quantifying functional responses are critical to the
investigation of predator-prey coexistence (e.g., Aldebert and Stouffer, 2018; Uszko et al., 2020;
Barraquand and Gimenez, 2021; Coblentz and DeLong, 2021). Therefore, the estimation, as well
as a mechanistic understanding of the parameters that determine predator feeding behavior is
of importance. In this paper, we summarize advances related to experimental design, statistical
analysis, and the mechanistic interpretation of the predation process that are central to the robust
quantification of functional responses and hence should be adopted broadly.

STATISTICAL INFERENCE

In many cases, several functional response models are fitted to experimental data using methods
such as non-linear least squares optimization (e.g., Juliano andWilliams, 1987; Pervez and Omkar,
2005). However, such an approach provides no information about the uncertainty around the
estimates and it may well be the case that there are other plausible parameter values that offer
an equally good fit. Furthermore, a frequentist approach to uncertainty quantification (most often
using maximum likelihood estimation–MLE) assesses the performance of a statistical estimation
procedure on the basis of the expected long-run performance given a hypothetical series of
datasets collected under identical conditions. Furthermore, themethods by which the uncertainty is
quantified are typically constructed under parametric assumptions of theMLEs and with increasing
accuracy observed as the size of a dataset increases. However, in many cases an experimentalist

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2021.740848
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2021.740848&domain=pdf&date_stamp=2021-10-29
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nikosp@aua.gr
https://doi.org/10.3389/fevo.2021.740848
https://www.frontiersin.org/articles/10.3389/fevo.2021.740848/full


Papanikolaou et al. On the Predators’ Functional Response

will have a dataset of a fixed size and may not always be
sufficiently large for these asymptotic results to hold. Novak and
Stouffer (2021) have recently highlighted and demonstrated using
a large compilation of public datasets that there is systematic
bias in the statistical comparison of functional response models
and the estimation of their parameters which are rooted in a
lack of sufficient replication, or in other words, small sample
sizes. Furthermore, although it is important to account and
quantify the uncertainty around the model parameters, one
should not ignore or forget that this is done under the assumption
of a particular functional response model (e.g., Holling’s Type
II). However, there is also uncertainty around the structure
of functional response model (e.g., Type II vs. Type III and
beyond). We discuss below how one can jointly perform
parameter inference and model selection within a coherent
probabilistic framework.

We advocate the use of a Bayesian framework. Such an
approach treats all the unknown model parameters as random
variables and first assigns them a prior distribution that
represents our beliefs about the unknown parameters before
any experimental data are collected. This prior information is
subsequently updated in light of experimental data using Bayes
theorem, leading to the posterior distribution that contains all
information regarding the model parameters given both the
experimental data and prior knowledge.

Bayesian statistical inference is not limited to parameter
estimation. We are often interested in assessing a particular
scientific hypothesis related to the functional response. For
example, discriminating between type II and III functional
responses is a very common question, as type II functional
responses are known to destabilize predator-prey dynamics, in
contrast to type III (Oaten and Murdoch, 1975). A Bayesian
approach to model selection treats the model itself (as well as its
parameters) as unknown and hence in addition to quantifying
uncertainty about the model parameters, uncertainty about
the model too is also taken into account. Given a series of
plausible models, representing for instance, different forms of
functional response, we specify a prior distribution for each
model and prior distributions for the model parameters for
each model and in light of experimental data, we can then
obtain posterior model probabilities which represent our beliefs.
That is, having obtained experimental data, what is the chance
that a particular model out of the pool of models we are
considering is the true one. This can be formalized using the
notion of Bayes Factors, which is a summary of the evidence
provided by the data in favor of one hypothesis represented
by a statistical model as opposed to another. When there are
more than two different model/hypotheses considered, e.g.,
different types of functional response such as type I, type II
or type III, then it is best to consider the posterior model
probabilities to identify to what extent each model is supported
by the data.

A detailed description of the proposed methodology above
and its application to several functional response data can be
found in Bolker (2008) and Papanikolaou et al. (2016a,b, 2020,
2021).

EXPERIMENTAL DESIGN

The previous section provides an overview of inferring model
parameters and performing model selection after a dataset has
been collected. However, it is often of interest to determine how
best to conduct an experiment so that the resulting dataset that is
collected will be most informative about the goals we are trying
to achieve in an experiment, for example selecting the most
appropriate model and estimating its parameters as precisely as
possible. Such methods are referred to as optimal experimental
design (OED, see for example Pukelsheim, 2006; Ryan et al.,
2016). Formally, we define a utility function that encodes the
goal of the study, and we plan an experiment that maximizes the
expected utility function, i.e., the utility function averaged over
all datasets that we might see for the planned experiment. By
planning to collect the data in this statistically principled manner,
we can reduce the amount of experimentation needed to achieve
a particular statistical analysis goal, and hence reduce costs and
required resources.

In OED there must be some variables that we can control in an
experiment. In the context of functional response experiments,
we are able to specify, for example, the initial prey density and
time interval to use for an experiment. Therefore, OED tries to
solve the problem of what initial prey densities and time intervals
should be used such that the data collected will be as informative
as possible. Once the initial prey densities and time intervals are
determined, data can be collected, and the statistical inference
methods in section 2 can be applied.

There are two main types of OED; static design and
sequential design. In a static design, optimal input variables
for all planned experiments are determined at the outset. In
a sequential design, the optimal input variables for subsequent
experiments are determined from the data obtained in previous
experiments, by updating model structure and parameters.
The sequential approach is generally more statistically efficient,
since we use information from data collected sequentially
to update our decisions, whereas the static design can only
use information available prior to all experiments being
conducted. One drawback of the sequential approach is
that the overall data collection process may take longer
since the experiments only take place one at a time or in
small batches.

The first OED approach for functional response experiments
is given in Zhang et al. (2018). The authors develop an approach
to determine an optimal static design for estimating parameters
of a functional response model. Here the utility function is
based on the Fisher information matrix, which is one way
to quantify how much information about model parameters
we expect to gain from an experiment. This type of utility
function assumes that maximum likelihood estimation will be
performed on the data once the experiments at the optimal design
are completed.

Moffat et al. (2020) develop a Bayesian sequential design
method for functional response experiments. This approach
allows for multiple competing functional response models,
not just a single model as in Zhang et al. (2018). Here,
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the utility function is based on a quantity called the total
entropy, which computes the expected change in posterior
distributions for both model probabilities and parameters. We
prefer initial prey densities that lead to larger changes in
posterior distributions, as this allows us to learn more about the
preferred model and its parameters with less experimentation.
Through extensive simulation studies, Moffat et al. (2020)

show that the Bayesian sequential design approach leads to
substantially more informative data compared to a Bayesian
static design and a random design where initial prey densities
are generated randomly. The improvement of the sequential
over the static design results from updating information about
the predator-prey system to make better decisions about
future experiments.

FIGURE 1 | Functional response of the ladybird beetle Propylea quatuordecimpunctata (Coleoptera: Coccinellidae) male adults on Aphis fabae (Hemiptera:

Aphididae). The fitted curves of the SSS equation with and without fixed handling time are indistinguishable. Also, the SSS equation reduces to the disc equation when

there is no satiation (c = 0). Therefore, when a fixed handling time that is determined through separate short-term experiments thus excluding digestion effects is used,

the disc equation no longer performs well for modeling consumption rates observed over a longer time period because the model does not take satiation into account.
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BIOLOGICAL INTERPRETATION OF THE
HANDLING TIME

Holling defined the handling time as the time a predator
spends in pursuing, subduing and eating a prey item. This
definition has been extended in many studies to include
digestion time. However, the time a predator spends on
pursuing a prey is followed by the time of subduing and,
subsequently, consuming it. Digestion is a process that is likely
to occur in parallel with these activities, in the sense that
a predator can digest its prey while handling it. While the
processes of searching for and handling prey are mutually
exclusive, digestion is not (Jeschke et al., 2002). It should
be noted that some predators can search for prey while
handling others. In addition, pursuing a prey often does not
result in capture, as digestion prevents successful hunting in
many species. This variation in components does not produce
Holling’s disk equation formula (Abrams, 1982; Anholt et al.,
1987).

Literature suggests that the majority of functional response
experiments are conducted using a time interval that digestion
effects are likely to be included in the estimated handling
times, i.e., the predator daily foraging cycle (e.g., Cabral et al.,
2009; Jalali et al., 2010; Fathipour et al., 2018; Islam et al.,
2021). Figure 1 depicts the functional response curve of a
predatory ladybird beetle on its aphid prey over a 24-h time
interval (data from Papanikolaou et al., 2014). We fitted the
data to the disc equation, as well as the steady-state satiation
(SSS) equation model presented by Jeschke et al. (2002) that
incorporates Holling’s original definition of handling time while
explicitly accounting for satiation and digestion time through
a separate parameter. Both models showed almost identical
fit to the data, realistically explaining the functional response
of the predator. We also fitted the two models assuming
handling was known, i.e., the handling time obtained from
short-term functional response experiments, so that digestion
effects are largely excluded. In this case, the disc equation does
not appear to explain the functional response of the predator
well. Therefore, in experimental procedures where digestion
acts in parallel with prey handling (long term experiments),
the interpretation of the “handling time” (Th) estimated by the
disc equation must be limited to the calculation of maximum
attack rate (T/Th), i.e., the maximum number of prey that
can be consumed by a predator during the time interval
(T) considered.

CONCLUSIONS

Over half a century after its conceptualization, predator
functional responses remain a core feature in ecology. Recently,
Novak and Stouffer (2021) revealed that bias in model
comparison, as well as in parameter estimation are common in
functional response studies, mainly attributed to the relatively
small sample sizes used. OED has great potential for conducting
more efficient functional response experiments. In addition,
Bayesian inference enables the quantification of model and
parameter uncertainty in a coherent, probabilistic manner,
through the use of probability distributions.

Our understanding of predation could be further improved by
elucidating the components of handling time. For example, Sentis
et al. (2013) revealed that the processes of handling and digesting
prey have different thermal responses. However, most functional
response models incorporate handling time in a way that does
not permit a biological interpretation, combining handling and
digestion time (Jeschke et al., 2002). Although several modeling
approaches has been presented (e.g., Mills, 1982; Abrams, 1990),
using the SSS equation model would permit a mechanistic
interpretation of these components of the predation process
(Papanikolaou et al., 2020).

In conclusion, we advocate for the adoption of OED, a
Bayesian framework, and the use of the SSS equation to efficiently
and robustly infer predator functional responses moving
forward. We anticipate that OED in conjunction with Bayesian
inference will improve the predictive power of functional
response experiments and reduce the logistical burden.
Furthermore, as the comprehension of predator feeding behavior
can be improved discriminating different predation processes
such as handling and digestive prey, we call for the application of
the SSS equation in functional response studies, which can lead
to a better understanding of predator-prey interactions.
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