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Animal movement along repeatedly used, “habitual” routes could emerge from a variety
of cognitive mechanisms, as well as in response to a diverse set of environmental
features. Because of the high conservation value of identifying wildlife movement
corridors, there has been extensive work focusing on environmental factors that
contribute to the emergence of habitual routes between protected habitats. In parallel,
significant work has focused on disentangling the cognitive mechanisms underlying
animal route use, as such movement patterns are of fundamental interest to the study of
decision making and navigation. We reviewed the types of processes that can generate
routine patterns of animal movement, suggested a new methodological workflow for
classifying one of these patterns—high fidelity path reuse—in animal tracking data, and
compared the prevalence of this pattern across four sympatric species of frugivorous
mammals in Panama. We found the highest prevalence of route-use in kinkajous, the
only nocturnal species in our study, and propose that further development of this method
could help to distinguish the processes underlying the presence of specific routes in
animal movement data.

Keywords: travel routes, spatial cognition, animal movement, navigation, corridors, unsupervised clustering,
routine movement, animal cognition

INTRODUCTION

Technological and analytical innovations in animal tracking and remote sensing have led to
increased opportunities in animal movement research (Nathan et al., 2008; Kays et al., 2015).
Tracking data are now available at high sampling rates and researchers are using them to
understand animal movement decisions (Nathan et al., 2008; Fagan et al., 2013; Kays et al., 2015;
Gurarie et al., 2016). One striking feature that emerges in many of these high-resolution datasets
is highly consistent, route-like patterns of movement. While the frequency and fidelity of such
movement patterns varies, route-use, nonetheless, appears to be taxonomically widespread. Routine
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movement is of substantial interest due to its relevance to
conservation action and because of the insight it provides
into animals’ cognition (Riotte-Lambert et al., 2016).
However, few quantitative methods exist for identifying
such patterns of movement.

Routineness, namely, the habitual reuse of the same series
of locations over time, can occur as the result of commuting
(see Glossary) between a set of target destinations. The more
deterministic the ordering of visits to said locations, the
more route-like patterns of movement will be (e.g., trap-lining
honeybees; Lihoreau et al., 2012; Reynolds et al., 2013). The
paths an individual takes during a commute can range from
highly variable to highly congruent (see Glossary). In practice,
researchers working with animal movement tracks are faced
with identifying patterns of spatial behavior, from fully diffusive
and exploratory to highly routine, and attempting to infer the
processes creating this pattern. Areas where animals exhibit
highly routine movement, particularly high path reuse fidelity,
are of particular interest, as the habitual use of these areas likely
indicate their elevated importance to the animals.

Patterns of high-fidelity path reuse can emerge from a
number of environmental and behavioral processes. Routine
movements with low directional variability can be observed
at specific locations in the landscape simply because an
individual was constrained by the geometry of that area.
This could be due to completely unsuitable habitat (e.g., a
narrow strip of forest through a city) or due to more nuanced
relationships between a species and the surrounding habitat.
For example, individuals might move through areas based
on how their motion capacity (i.e., locomotory biomechanics;
Nathan et al., 2008) interfaces with constraints imposed by
substrate characteristics following, for example, paths that
minimize energy expenditure or predation risk (Adriaensen
et al., 2003; McRae et al., 2008; Pullinger and Johnson, 2010;
LaPoint et al., 2013; Bastille-Rousseau et al., 2020). Areas
where routine movements are generated by external factors
are typically referred to as corridors within the conservation
literature (Forman, 1995; Rosenberg et al., 1997; LaPoint et al.,
2013; Bastille-Rousseau and Wittemyer, 2021).

Routine movement can emerge from the cognitive processes
underlying animal search and navigation strategies (Mueller and
Fagan, 2008; Bracis, 2014; Bracis et al., 2015; Polansky et al.,
2015; Riotte-Lambert and Matthiopoulos, 2019). Highly routine
modes of movement behavior can result from an individual’s
decision to navigate toward a known or perceived target location,
and are not necessarily predicted by the physical properties of
the environment, but instead by the individual’s understanding
of the spatial relationships between itself and its targets. When
movement processes rely strictly on perceptual information (i.e.,
oriented mechanisms; Mueller and Fagan, 2008), animals detect
some sensory stimulus within their perceptual range and use
various forms of taxis (Fraenkel and Gunn, 1961; Braitenberg,
1965) to bias their movement toward that target location (Mueller
and Fagan, 2008). Ants and rodents, for example, have been
shown to navigate by following chemical trails left by conspecifics
as well as by reacting to other olfactory stimuli in their
environment (chemotaxis; Kozakiewicz and Kozakiewicz, 2004;

Collett, 2010; Svensson et al., 2014; Buehlmann et al., 2015).
In dynamic landscapes, where the distribution of resources is
variable in time and space, animals that rely purely on taxis will
exhibit directed movements with low path reuse fidelity as a
consequence of navigating directly toward the stimulus. In static
landscapes, however, animals that rely purely on taxis will always
respond the same way to a particular point in space and thus will
move predictably between resources. The resulting movement
will exhibit a high degree of path reuse fidelity and commute
determinism, and produce a similar pattern of routine behavior
as seen in corridors.

Even if animals cannot sense their target, if they remember
where it is, repeated patterns of high-fidelity movement are
expected to arise. These “memory mechanisms” are defined
as movements where an individual has prior information
about the location of its resources (Mueller and Fagan, 2008).
Individuals can then use their prior experience to navigate to
resources beyond their perceptual range. Unfortunately, this
conceptualization does not explain the differences between
patterns generated by oriented mechanisms and memory
mechanisms, or the variation in patterns generated by different
memory systems such as response learning and place learning.
In response learning (see Glossary; reviewed in Goodman, 2021),
behavioral responses to specific cues (landmarks) are reinforced
if they lead to rewards such as food. Under this mechanism,
animals may develop habitual sequences of spatial behavior,
such as traplines, without needing to model or “map” their
environment. Alternatively, with place learning (see Glossary;
reviewed in Goodman, 2021), animals may learn the distances
and directions between important locations and plan routes
between them. Often referred to as a “cognitive map,” consistent
decision-making with the use of place learning may lead to route-
formation, but the use of the memory mechanism by animals
remains debated. Clarifying the differences between memory
systems greatly facilitates an understanding of how routine
movement behavior relates to spatial cognition, but the first step
in this process is accurately and reproducibly identifying patterns
of routine movement.

Within behavioral ecology, and primatology in particular,
areas featuring routine movement behavior are typically referred
to as “routes.” Influenced largely by early work by Tolman (1948)
and O’Keefe and Nadel (1978), these studies point to the repeated
use of routes as evidence for egocentric memory systems. Their
treatment of “routes,” however, presupposes spatial cognition as
the underlying process, and the classification of a path segment
as a route is typically done by eye or by grouping similar
looking path segments together via some arbitrary distance
threshold (Di Fiore and Suarez, 2007; Valero and Byrne, 2007;
Presotto and Izar, 2010; Garber and Porter, 2014; Bebko, 2018;
de Guinea et al., 2019). We define routes as areas exhibiting
sequential behavior with low directional variability and high-
fidelity path reuse. Spatial learning can lead to route-use, but
routes can also emerge from non-cognitive processes (Figure 1).
Furthermore, reliance on expert opinion can lead to challenges
fostering generalizable understandings about the process itself,
can lead to difficulty comparing across systems, and can hinder
reproducibility.
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FIGURE 1 | Multiple processes can lead to route use, dependent on the stability of the environment. When a resource gradient is persistent through time, animals
that perceive that gradient can form routes by consistently following it (Perceptual Capacity). Similarly, when other permanent perceptual cues indicate the direction
of a persistent resource, animals that have learned navigational responses to that cue will generate routes in the cue’s presence (Response Learning). In dynamic
environments, animals may also develop routes through response learning, albeit more slowly, so long as average resource acquisition is spatially heterogenous.
Whether or not resource distributions are stable in an environment, some animals may form routes due to heterogeneity in their ability to use specific substrates,
following paths of least resistance (Movement Capacity). Animals capable of place learning, though less likely to follow routes overall, may consistently infer direct
paths between known locations, generating route-like patterns even in dynamic environments or the absence of local landmarks.

Clearly, routine patterns of movement can arise from a mix of
external and cognitive processes. Determining what explains the
emergence of routine behavior in a given part of an animal’s range
will require developing carefully thought-out analyses. The ability
to design any analysis of routes, however, presupposes that the
routes established by an animal have been previously identified.
Before we can properly design studies that differentiate between
route generating processes, we must first develop approaches to
accurately and reliably identify patterns of routine movement.
Hereby, we introduce a method for quantifying the degree to
which movement is routine from animal tracking data, and
discuss how the results of this approach can be elaborated on to
infer cognition.

QUANTITATIVE APPROACHES

The majority of the quantitative tools for identifying areas
with highly routine movement have been developed to examine
revisits to target destinations (e.g., Riotte-Lambert et al., 2016;
Ayers et al., 2018; Bracis et al., 2018). Examining recursions to
target destinations provides valuable insights into the temporal
dynamics of resource use and can provide insights into
processes such as traplining, however, these methods aren’t
explicitly designed to examine the trajectories animals used
between recursive visits. Methods to detect the actual routes an
animal used have largely come from research on conservation

corridors. These methods may be suitable for recognizing routine
movement when it is generated by external factors, however,
they may not be ideal when the pattern is generated by spatial
cognition. Dynamic Brownian bridges have been used to reveal
shared bird migration corridors (e.g., Buechley et al., 2018).
Dynamic Brownian bridges, however, are kernel approaches
designed for interpolating missing location information in
animal tracks (Bullard, 1999; Calenge, 2006). In some cases,
the resulting density may reveal areas that visually resemble
routes, however, this approach may miss navigation decisions
at very local spatial scales, as well as fail to detect route-like
spatial patterns in non-migratory species with limited home
ranges. Objective comparison across individuals with non-
overlapping ranges, however, is not straight forward, and the
actual deterministic use of those areas are not accounted for.

Promising approaches are available that involve (a) sweeping
through a track with a circular buffer to identify areas of low
directional variability and high speed (LaPoint et al., 2013),
or (b) binning movement data into grid cells and performing
unsupervised clustering on network centrality metrics calculated
for each cell (Bastille-Rousseau et al., 2018; Bastille-Rousseau
et al., 2020). There are potential drawbacks to both approaches.
First, both approaches implicitly assume independence in the
data at the scale at which they segment the movement data.
The circular buffer approach allows for variable step lengths
and sets the buffer radius size to the step length, while the
network approach sets the grid size to the median step length.
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Ideally, an alternative approach would ensure that the scale at
which movement is autocorrelated would be estimated and the
cell/step sizes would be large enough to capture independent
displacements (Fleming et al., 2014; Gurarie et al., 2017, Noonan
et al., 2019). Second, these approaches both define corridor
behavior as fast, repeated movements with very constrained
directional variability (LaPoint et al., 2013; Bastille-Rousseau
et al., 2018; Bastille-Rousseau et al., 2020). The speed assumptions
about corridor behavior are based on the assumption that animals
don’t forage in corridors (Forman, 1995; Rosenberg et al., 1997),
while studies of spatial navigation posit that (a) certain forms
of taxis can result in movement that is necessarily slow (e.g.,
Svensson et al., 2014) and (b) animals will establish routes that
increase their likelihood of encountering food and will forage
along routes (Di Fiore and Suarez, 2007; de Guinea et al., 2019).
We do not dispute this conceptualization of corridor behavior;
rather we acknowledge that corridor use may be a particular
class of route. We define a corridor as a route that emerges
due to external constraints and independent of spatial learning
(see Glossary). Studies of spatial cognition may require methods
designed to detect routes more generally, in order to facilitate
the detection of routine behavior emerging as a function of
spatial cognition. In this case, a method that does not assume
a relationship between route-use and velocity may be more
generally useful. Finally, the approach presented by Bastille-
Rousseau et al. (2018) characterizes locations utilized by an
animal in terms of their graph theoretic properties, some of which
may well capture the persistent and deterministic features of
routine route use. They do not, however, attempt to explicitly
identify or characterize any locations as routes or areas of highly
routine behavior.

Here, we present a workflow using unsupervised-learning to
estimate the degree to which locations exhibit routine behavior
and differentiate habitual routes from other used locations.

MATERIALS AND METHODS

Frugivore Movement Data
Study Site
Data were collected for a larger study on resource selection and
cognition, and were not collected with this paper in mind. Data
were collected at the Smithsonian Tropical Research Institute
field station on Barro Colorado Island (BCI), a 1,560-ha island of
semi-deciduous tropical lowland forest in Lake Gatun, Panama
(9◦ 09′N/79◦ 51′W). For a full description see Leigh (1999).
The island exhibits a distinct dry season from mid-December
to mid-April. Fruit availability during the dry season is largely
restricted to Dipteryx oleifera, resulting in nearly identical
resource distribution for the entire community of frugivorous
mammals on the island.

GPS Collaring and Study Species
We fit GPS/3-D accelerometer collars (e-Obs Digital Telemetry,
Gruenwald, Germany)1 to individuals from four species, two

1http://www.e-obs.de

primates, capuchins (Cebus capucinus), spider monkeys (Ateles
geoffroyi), and two procyonid carnivores, kinkajou (Potos flavus)
and coati (Nasua narica).

Collars were programmed to collect a burst of six consecutive
(1 hz) GPS locations every 4 min during the animal’s active
periods: 06:00–18:00 for capuchins and spider monkeys, 06:00–
18:30 for coatis, and 23:00–6:30 for the nocturnal kinkajous.
3D acceleration was recorded at 1-min intervals to determine
activity profiles. Collaring occurred in 2015 and in 2017, with 20
individuals tagged the first field season and 26 individuals tagged
the second field season. 8 spider monkeys, 7 capuchin monkeys,
16 coatis, and 14 kinkajous were tagged in total. From December
2015 to March 2016, the GPS sampling regime of collars on
kinkajous and coatis was ACC-informed, with collars collecting
data as described above when accelerometer readings were above
a specified threshold (1,000 mV). ACC-informed sampling was
not used in the second field season, from December 2017 to
March 2018. All collars were programmed to timeout if they did
not acquire a fix after 90 s.

One additional kinkajou was collared during a separate field
season in 2019, with GPS programmed to sample every 6 min
from 18:00 to 23:00 and every second from 23:00 to 5:00.

GPS Data Processing
The last fix of each burst consistently had the best horizontal
accuracy measurement, therefore only the last fix of each burst
was used for all analyses. All data were uploaded to Movebank,
an online repository for animal movement data2. Duplicate and
outlier fixes were removed using Movebank’s data filters, filtering
fixes by the height above ellipsoid. All fixes with height above
ellipsoid values less than or equal to 21 or greater than 244 were
marked as outliers. This corresponds to the first quartile minus
twice the interquartile range and the third quartile plus twice
the inter quartile range, respectively. Subsequent outlier detection
was done using the ctmm package in R (Calabrese et al., 2016),
using error information, straight line speeds, and distances from
the median latitude and longitude to manually identify outliers
via the outlie() function. Further, obviously impossible locations,
such as location estimates in the water and clearly outside the
boundaries of the island, were marked as outliers.

For ACC informed collars, GPS locations were interpolated for
times when the animals were below their ACC thresholds. The
error on the interpolated positions was modeled to replicate the
observed GPS error of a stationary collar in a tree, and was drawn
from a negative binomial distribution with a mean of 5. 46 m and
a dispersion parameter of 2.4 m.

Simulations
We simulated animal movement tracks to illustrate our
predictions regarding the spatial patterns we expect to emerge
from each learning mechanism outlined in Figure 1. The
simulated tracks associated with each prediction are presented
in Figure 2. The movement of individuals in this model vary
along three axes related to our movement pattern predictions:
the consistency of the patch selection (choice determinism),

2www.movebank.org
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FIGURE 2 | Examples of animal movement patterns. Variation in three movement parameters can produce movement patterns in simulated foraging agents that
resemble different degrees and types of route use. All agents foraged by (1) selecting from a set of spatially persistent, renewing resource patches about which the
agent had complete information, (2) moving in accordance with the indicated parameter levels until the selected patch was reached, (3) moving at random within the
patch while depleting it, and (4) selecting a new patch. Where directedness is low, movement is random regardless of the other parameter levels (A,D). Where
commute determinism and persistence are both high, agents produce variable commutes (C), blue path. Where commute determinism is high, but persistence is
low, agents produce route-based commutes (C), orange path. Given response learning, animals’ movement patterns ought to resemble paths simulated with high
determinism and decreasing persistence over time [top panels (A–C), orange paths, left to right]. The paths of place learning animals may develop in a number of
ways over time depending on the structure of the environment, including the formation of route-based commutes in highly stable environments (top panels, orange
paths), the formation of routes with low commute determinism in environments where patch values are temporally asynchronous [bottom panels (D–F), orange
paths], or the formation of variable commutes where secondary resources are dynamically distributed (blue paths, left to right, top, and bottom).

the persistence of their movement direction through time
(persistence, a proxy for variable commutes), and the directness
of their movement toward a goal (directedness). Details regarding
the simulation framework, the parameterization of each agent
and the associated environmental constants (including resource
density, patch regeneration functions, extraction rate, giving up
density, etc.) are provided in Supplementary Material 1, along
with R code from which our simulations can be reproduced.

Route Detection Framework
Here, we propose a procedure for differentiating route-based
movement patterns from other patterns of movement within
an animal’s range. Our approach is to identify segments
of movement tracks that exhibit route-like behavior by
calculating a grid cell resolution based on the autocorrelation
structure in the data, binning the sampled locations into
the grid cells, calculating a series of metrics describing the
orientation and determinism of GPS fixes within each cell,

and clustering cells with similar modes of movement using
unsupervised clustering.

Code for this analyses are available on github: https://git.io/
JP1vF.

Path Reconstruction
The first step in the workflow is to reconstruct the original
continuous movement path from the sampled four-min GPS
track. This serves two functions: to more easily reveal segments
with similar modes of behavior, and to maximize the effective
sample size of orientations in each cell. To accomplish this,
we fit the sampled tracks to continuous time stationary
movement models, using the continuous time movement
modeling framework (Fleming et al., 2014; Calabrese et al.,
2016). The semivariance of the movement tracks are used to
estimate the best fit stationary movement process, and model
parameters are estimated via maximum likelihood. The best fit
model is selected using information criterion (AICc and BIC).
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We then used the best fit model to interpolate between real
sampled locations by simulating realistic movement from the
movement model, conditional on the data. Possible trajectories
between each set of locations are simulated several times, and
the average across the simulated trajectories are used as the
interpolated segment of tracks. We simulated 10, 20, 30, 40,
and 50 tracks between observed locations in order to determine
how sensitive the accuracy of the reconstructed tracks are to the
number of iterations used to generate them. All model fitting
and simulations were implemented using the ctmm package in
r (Calabrese et al., 2016).

The limitations of this path reconstruction approach were
assessed by subsampling a 1 hz GPS track to increasingly
coarse sampling rates, reconstructing the resampled tracks to
continuous time using the ctmm package as described above,
and calculating the distance between the location estimates
from reconstructed track and observed locations from the
original 1 hz GPS track.

Binning
The second step in the workflow is to estimate a reasonable grid
cell resolution for each individual. Because animal movement
data is typically autocorrelated, we attempt to determine a
grid size that takes the autocorrelation in the behavior into
account. For individuals where the best fit movement model
exhibits autocorrelated positions and autocorrelated velocities,
the timescale of autocorrelation in the velocity (τv) give us
information about the timescale at which the fine scale behavior
of the animal is independent. In other words, τv is the timescale at
which the movement remains linear, beyond which the behavior
changes (Fleming et al., 2014; Gurarie et al., 2017, Noonan
et al., 2019). Animals exhibiting small τv tend to have highly
tortuous movement, while animals exhibiting large τv exhibit
highly directed movement (Fleming et al., 2014; Gurarie et al.,
2017, Noonan et al., 2019). Given that τv is a timescale, we can
derive a pseudo-step-length by multiplying τv by the average
speed and getting a distance. This distance represents the spatial
scale at which the movement behavior remains the same on
average, thus any changes in orientations happening in locations
at least this distance apart are assumed to be independent from
each other. Therefore, if the best fit movement model is a model
with correlated velocities, then the cell resolution is calculated
by multiplying τv by the root mean squared speed (a convenient
summary statistic obtainable from the movement model). If the
best fit movement model is a model with independent changes
in velocity, then the grid cell resolution is simply set to the
mean step-length. The raster package (Hijmans, 2021) and rgdal
package (Bivand et al., 2021) were used to generate the grid after
the cell resolution was determined.

Cell Level Metrics
We previously defined routes as locations exhibiting movement
with a high degree of path fidelity, specifically high intensity
of sequential use and low directional variability. In the context
of a spatial grid, this translates to a series of connected cells
whereby the overall number of visits to a cell are relatively high,
the distribution of orientations within the cell reflect limited

TABLE 1 | Variables calculated for each cell.

Statistics calculated for each grid cell

Intensity of
use

Directionality Neighboring cell
similarity

Determinism

Density of
points in cell

Hellinger distance MSD Point density Recursions

Number of modes in
distribution of
orientations

MSD Hellinger
distance

Distance between
modes

MSD Number of
modes

Range of orientations MSD distance
between modes

Repeats

Standard deviation of
orientations

MSD Range of
orientations

MSD STDV
orientations

Number of empty
neighbor cells

All variables intended for use in an unsupervised clustering algorithm. The Hellinger
distance is used to determine how different the distribution of cell orientations
is from a uniform distribution. Cell similarity is calculated as the mean squared
difference (MSD) between a focal cell and its surrounding neighbors. Recursions
are calculated as n(n− 1)/2, where is the number of visits to the cell. Repeats
are visits to a given cell that were part of an identical sequence of three or more
cell visits.

and consistent entry and exit points, and the sequence of cells
used preceding entry and following exit of a focal cell are
also consistent. After data are binned, the following metrics
(summarized in Table 1) are calculated for each grid-cell: Density
of points; Hellinger distance; the number of modes in the
distribution of orientations; the standard deviation of headings;
the value range of the orientations; the distance between the
modes of the orientations; the mean squared difference of all
the above metrics to all neighboring cells; the number of empty
neighboring cells; the total number of independent visits to each
cell, and the number of cell sequence repetitions (reoccurrences
within a single path of consecutive visits to three or more cells)
that include the given cell. These metrics were chosen because
of their simplicity, their concordance with our definition of
routes, and because we think they reflect what researchers are
perceiving when classification via expert opinion is attempted.
Relative intensity of use is captured by the density of points
in the cell. The consistency and constraints on entry and exit
points are captured by how significantly different the distribution
of orientations is from uniform (Hellinger distance), number of
modes in the distribution (e.g., bimodal distribution indicating
a bidirectional route and unimodal inticating a unidirectional
route), the distance between the modes (closer to 0 indicating
highly unidirectional, closer to π indicating highly bidirectional),
and the standard deviation and value range of the orientations in
the cell. The similarity to neighbor cells (mean squared difference
of a focal cell to its neighbors for each metric) and the number
of empty neighbors reflect the contrast in relative intensity of
use of a route compared to other locations. Finally, calculating
how deterministic the sequential visits to a cell are was achieved
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FIGURE 3 | Examples of cell level data showing (A) high use, highly deterministic and bi-directional behavior; (B) low use, not deterministic and directionally variable
behavior; and (C) high use, not deterministic and directionally variable behavior.

by adapting methods from Ayers et al. (2018) for identifying
traplining behavior, with the assumption that animals utilize
routes the same way every time. We quantified the degree to
which an animal passed through a given cell while traveling
along particular routes by calculating (1) the number of possible
comparisons between any two times an individual visited the
given cell (recursions, n(n− 1)/2, where n is the number of
visits to the cell) and (2) the number of recursions in which
the compared visits to the given cell were part of an identical
sequence of three or more cell visits (repeats). Examples of cells
with track segments exhibiting different value ranges from the
metrics in Table 1 are visualized in Figure 3.

Unsupervised Clustering
We use a Gaussian mixture model to cluster cells with similar
movement behavior as estimated from the cell level variables

TABLE 2 | Error estimates of the path reconstructions.

Path reconstruction error estimates

Iterations

10 20 30 40 50

Mean (STDV) (m)

4.40
(3.92)

4.30
(3.90)

4.27
(3.91)

4.26
(3.90)

4.25
(3.90)

Sampling rate (min)

4 8 16 32 60 120

Mean (STDV) (m)

4.40
(3.92)

6.72
(5.87)

11.31
(11.16)

19.13
(17.36)

35.25
(35.27)

62.52
(57.24)

Comparison in the mean and standard deviation in the difference from the original
track. Iterations refer to the number of simulations included in the averaged track.
Sampling rate refers to the sampling rate after down sampling the original track.

above in order to identify cells with similar degrees of path fidelity
and sequential behavior. Model based clustering was preferred
over hierarchical and k-means clustering because instead of using
a heuristic approach, the clusters are modeled as mixtures of
distributions and cluster assignment is handled probabilistically.
This enables us to use model selection via information criterion
to determine how many clusters best fit the data, as well as
accounting for variance rather than assume spherical clusters.
Gaussian mixture models were fit using the GMM() function
in the ClusterR package (Mouselimis, 2021). In an attempt to
compare across individuals, all individuals across all species were
included in the same model, and BIC was used to determine the
optimal number of clusters [Optimal_Clusters_GMM() function
in the ClusterR package], resulting in 10 clusters for each
animal. The distribution of values of each covariate were
compared across clusters to determine which covariates were
most distinguishable across cluster categories. The covariates
with the clearest separation (density of points per cell, recursions,
and repeats) were used to construct a “routineness score” for each
cluster. Quartiles for point density, recursions, and repeats were
calculated based on the mean values for each cluster category,
and cluster categories were associated with their corresponding

TABLE 3 | Mean and standard deviation of grid cell size across species.

Summary of grid cell resolutions

Species Mean (m) STDV (m)

Ateles geoffroyi 31.03 9.2

Cebus capucinus 25.01 7.73

Nasua narica 32.29 8.82

Potos flavus 30.18 8.25
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quartile for each covariate (0.25, 0.5, 0.75, and 1). The routineness
score was calculated as

Qdi × Qreci × Qrepi∑
i Qdi × Qreci × Qrepi

Where Q represents the quartile assignment of each cluster
based on point density, recursions, and repeats, respectively.
This provides a continuous score for each cluster category
representing how intensely used a cell is, weighted by how
deterministic visits to that cell are and how predictably sequential
movements in and out of that cell are. Larger values represent
more routine behavior.

We compare the prevalence of routine behavior across our
four study species using hierarchical Bayesian regression. Priors
were improper flat following Student − T(3, 0, 2.5), and the
model was implemented using the brms package (Bürkner, 2017;
Carpenter et al., 2017; Bürkner, 2018).

RESULTS

Continuous time movement models were able to facilitate high
fidelity and high-resolution path reconstructions. Increasing
the number of simulations did not change the observed
error between the reconstructed tracks and the original 1 hz
track. Coarsening the sampling rate resulted in substantial
increases in error between the reconstructed tracks and original

track (Table 2). Movement models fit to lower resolution
data were not able to recover fine scale movement behavior,
and sampling rates of 30 min or more resulted in error
estimates well beyond that of standard GPS error from animal
tracking collars and handheld GPS units. Sampling intervals
under 30 min had error estimates within or below typical
stationary error exhibited in the real animal movement data,
and at sampling rates under 10 min reconstructed tracks
were nearly indistinguishable from the original 1 hz track.
Supplementary Figure 1 shows the increasing distortion
in the path reconstructions when models are fit to data
resampled to coarse sampling rates, while Supplementary
Figure 2 shows a high-fidelity reconstruction overlaid on
the original track.

The unsupervised clustering was able to reveal varying degrees
of routine behavior across the four focal species. A summary
of grid cell resolutions for each species is provided in Table 3.
The density of points in a cell, total recursions and total
repeats were the variables with the clearest and most consistent
separation between clusters (Figure 4). Figure 5 provides
example trajectories from a spider monkey, capuchin, coati,
and kinkajou plotted against the boundaries of the study area.
Figure 6 shows the outcome of the route detection procedure on
those same individuals, with the tracks colored by the estimated
“routineness score.”

All species show a mix of locations with routine and non-
routine behavior as indicated by their routineness scores. The

FIGURE 4 | Boxplots of the variables with the clearest separation across clusters. (A) The number of fixes in a focal cell; (B) The total number of recursions to that
cell (see “Methods and Materials” section); (C) the total number of repeats (sequential recursions, see “Methods and Materials” section) to that cell.
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FIGURE 5 | Example trajectories from a spider monkey, a capuchin monkey, a coati, and a kinkajou. All tracks plotted relative to the outline of the island to illustrate
any routine behavior due to potential geographical barriers such as the shoreline.

spider monkey and coati both exhibit the highest routineness
scores along the shoreline. In the case of the coati, most of the
locations with high routineness values might be explained by
the fact that the majority of its range falls within a peninsula,
strongly suggesting environmental constraints on movement.
The spider monkey in comparison does demonstrate some
route-like behavior along the shoreline, but also exhibits high
routineness scores at locations unconstrained by the geometry of
the island. The capuchin and the kinkajou both exhibit evidence
of route-use independent of the geometry of the island, with the
capuchin range being far from the shoreline, and the kinkajou
seeming to predominantly rely on routine behavior to navigate
its range. Kinkajous exhibited the highest overall routineness
relative to the any other species (hierarchical Bayesian regression,
Figure 7).

DISCUSSION

The utility of our approach lies in explicitly quantifying the
degree to which behavior in a given location is routine,
providing researchers a means of differentiating potential
habitual travel routes from other locations within an animals’
range. Our routineness score provides a simple and interpretable
means of characterizing a location as route-like, with higher
values indicating habitually high-use, sequential, and directional
behavior. Further analyses can be designed to diagnose whether
the presence of routine behavior at a given location is explainable
by environmental constraints or if there is evidence for a
learned navigation route. This could be achieved by testing the
relationship between the presence of the physical features in
Figure 1 and the routineness score of a region. For example, the
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FIGURE 6 | Example results of the route detection procedure. All individuals are the same individuals presented in Figure 5, however, the axis scales are unique for
each individual to facilitate easier visual comparison. All track segments have been annotated with the “routineness score” of the cells they occupy.

coast of the island in which our data were collected creates a
type of physical corridor; areas closer to the coast tend to have
higher routineness scores for the coati in Figure 5. Researchers
interested an animal’s perceptual capacity might estimate the
distance from important resources at which routineness scores
increase, while those interested in response learning might
estimate the effect of notable landmarks on nearby routineness
scores. Simulations such as those presented in Figure 2 can be
used to create useful references for the routineness scores that
might be expected under different conditions.

Interestingly, our results indicate that among our four study-
species, kinkajous, which are both nocturnal and arboreal,
exhibited the most consistent and pervasive routine behavior
throughout their ranges. One factor that may lead to a greater
degree of routine behavior in kinkajous is the perceptual

limitations of nocturnal activity. Greater reliance on local
landmarks, such as the pattern of foliage against the night sky
(Chaib et al., 2021), may require kinkajous to remain within
narrower regions of space in order to stay oriented. At the same
time, kinkajous may have a greater number of locations that
they visit frequently and consistently than other species in this
study. First, kinkajous typically limit their sleep to a repertoire
of 1–3 secure sleep sites (Kays and Gittleman, 2001), while other
species in this study are more flexible, perhaps due to the added
security of group-living. Second, recent research in another
asocial carnivore, the cheetah, has highlighted the importance of
communication nodes for the transfer of information between
neighboring conspecifics (Melzheimer et al., 2020). Dependence
on a limited number of sleep sites and the routine visitation
of communication hubs could limit the ability for kinkajous
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FIGURE 7 | Results of the hierarchical Bayesian regression model. (A) The conditional effects of species on routineness scores. (B) Posterior intervals of Bayesian
beta regression. The dots are posterior means and intervals are 95% uncertainty intervals.

to flexibly adjust their movement strategies with changing
distributions of food resources. Understanding downstream
effects of nocturnality and asociality on navigation and space-use
strategies will be an important goal for future research.

Elaborations on our method for quantifying routine behavior
may be useful in further distinguishing the cognitive mechanism
that mediate the relationship between an animal’s ecology
and its space-use. Neuropsychologists describe an animal’s
mental representation of space as stemming from two parallel
memory systems, a relative system where space is experienced in
relation to the observer (egocentric), and a geometrically explicit
system where the vectorial relationships between locations are
independent of the observer (allocentric) (O’Keefe and Nadel,
1978; Nadel, 1992; Nadel and Hardt, 2004). Egocentric systems
emerge from the integration of perceptual processing and
response learning, such that individuals learn and remember
the sequence of responses to some reference cues that lead
to successfully acquiring some sought after target (reviewed
in Goodman, 2021). Through response learning, for example,
animals can use unique cues (landmarks) to behaviorally and
neurologically (Knierim and Hamilton, 2011) connect valuable
resources separated by spaces greater than the animal’s perceptual
range. Such learning on its own typically produces highly
routine movements in which both the order of resources visited
and the paths taken between them remain consistent over
time, as in bumblebees (Lihoreau et al., 2012; Reynolds et al.,
2013) and hummingbirds (Garrison and Gass, 1999) foraging
on spatially persistent, renewing sources of nectar. The high
degree of routine behavior in kinkajous may suggest that they
rely more heavily on response learning strategies, relying on

stimulus response behavior to encounter important resources.
This is in contrast to place learning, whereby the animal learns
and remembers the position of some object relative to an
absolute frame of reference, independent from the animal’s
own position (reviewed in Goodman, 2021). In this case, and
with relevant information about its own position relative to
this frame of reference, an animal can navigate toward the
resource on future occasions regardless of the individual’s starting
location, and is not restricted to repeating the exact sequence
of movement behaviors it exhibited previously. In Figure 8,
we identify additional metrics of routine movement paths
that could be used to interrogate the cognitive mechanisms
underlying specific routes. Supplementing applications of this
route-detection workflow with data on perceptual ranges and
resource distributions will aid in determining whether areas of
high routineness are best explained by taxis, response learning,
or place learning (Figure 8).

While the method presented here is a promising step toward
diagnosing these particular patterns of behavior, it is important
to note its limitations. Our approach does not attempt to explain
the paths an animal took as a function of the environment, as
methods like step and path selection facilitate (e.g., Fortin et al.,
2005; Cushman and Lewis, 2010; Zeller et al., 2015). Similarly,
this method is not a tool for estimating unobserved locations
that an animal may have used (e.g., via the Brownian bridge
movement model). Rather, our approach incorporates an already
available continuous time modeling framework as an integral
step in our data processing procedure. Because our approach
is built around reconstructing the data to continuous time, the
accuracy of the reconstructed movement paths are sensitive to the
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FIGURE 8 | Process dependent route characteristics. Not all routes are the same, and they may have different properties depending on the process from which they
arose. (1) When an animal selects a path based on its ability to move, it is less likely to forage in that space and may be able to move faster in that terrain, resulting in
in a route characterized by high speed relative to other locations in which the animal moves. (2) When routes emerge from an animal’s capacity to perceive or move
along local features, those same features should be identifiable via human observation or remote sensing. (3) Animals following a perceptual gradient or developing
learned responses to landmarks should be consistent in the direction of their responses to those cues. (4) Routes emerging from memory processes should show
higher path fidelity over time, as an animal’s movement responses are reinforced or their mental map becomes more accurate. (5) Routes that emerge from place
learning should be linear and direct, as they represent the animal’s ability to consistently select the shortest path between two locations. Additionally, place learning
animals may mix and match route segments as they track temporal changes in resource availability. (6) Routes generated by non-place learning processes should
exhibit minimal branching, with animals moving from location to location in the same order along each path through the region. (7) All routes, as defined by our
framework, should exhibit frequent use with high spatial fidelity and directionality. (8) Routes emerging for their efficiency, either in movement capacity or distance
traveled, may contain paths in either direction through the region.

resolution of the data. Our results show that the reconstructions
stay reasonably accurate at sampling intervals less than 30 min. At
coarser resolutions, the error increases substantially. With high
resolution data, this approach does a remarkable job recovering
the fine scale tactical decisions made by the animals and has the
ability to detect fine scale route use. As sampling rates get more
and more coarse, the autocorrelation in the velocity becomes
difficult or impossible to estimate, and diffusive models that
assume independent velocities must be used (Fleming et al.,
2014, Gurarie et al., 2017). Under these circumstances, the grid
cell size will equal the mean step length, making this approach
analogous to other available approaches. For low resolution
datasets, there may not be an advantage to using this approach
over the approaches presented by LaPoint et al. (2013) and
Bastille-Rousseau et al. (2018).

Areas where animals exhibit routine behavior, particularly
route use, indicate the importance of that area to the animals
either because they have learned that moving through those
locations will lead them to high valued target destinations, or
because external factors have constrained their set of usable
locations to those areas. We have reviewed the cognitive and
non-cognitive mechanisms that can lead to the emergence of
routine behavior, particularly route-use, and have suggested one
potential way of identifying this pattern of behavior in animal

movement data. This conceptual framework and method of
classifying routine behavior should provide a helpful step toward
the study of these cognitive and non-cognitive mechanisms.
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Supplementary Figure 1 | The results of path reconstruction across different
sampling rates. Plot A. is the original 1 hz GPS data and the basis for comparison
against all reconstructions. The 1 hz track was down sampled to emulate data
collected at coarser sampling rates. Each down sampled track was fit to its own
model and that model was used to reconstruct each down sampled track back to
1 hz. Plots B-G are the resulting reconstructions for each sampling rate. The
transparency of the track decreases with time to facilitate readability.

Supplementary Figure 2 | Reconstructed 1 hz path against the original 1 hz
track. The original unaltered track is plotted in black, and the reconstructed track
is plotted in red. The 1 hz track was down sampled to a four min resolution in
order to reflect the sampling rate of our GPS data. The mean error is reported in
Table 2. Majority of the track was within two meters of the original data.
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GLOSSARY

BOX 1 | Glossary of terms used in the paper.

Exploration: A process of movement determined solely by the internal state of an animal. Results in “random” movement, analogous to the use of “local”
information or internal states.
Taxis: The combined cognitive processes that allow an animal to perceive and categorize perceptual cues and direct its movement relative to specific cue types.
Analogous to the “taxon” system.
Response Learning: The process of mentally associating perceptual cues to physiological outcomes through specific behaviors.
Place Learning: The process of mentally associating one location (or other mental representation) to another by a distance and a direction.
Path: The actual locations an animal occupied over some contiguous period of time.
Track: An animal path that has been subsampled to a time-series of discrete points in space (e.g., by a GPS collar).
Route: A region of space with high path reuse fidelity: relatively high use by one or more animals in which the animals’ movement bearings exhibit low variability
across paths.
Corridor: An environmental feature that causes route-use in the absence of response learning.
Targeted Destination: A region of space with relatively frequent re-use by one or more animals in which movement vectors have low average velocity and relatively
low correlation in bearings.
Commute: A habitual transition between two targeted areas.
Variable Commutes: A set of commutes between two targeted destinations that do not occur along a route.
Route-Based Commutes: A set of commutes between two targeted destinations that occur along one or a few routes.
Commute Determinism: The predictability of an animals next commute given its presence at a specific targeted location.
Trapline: A sequence of targeted locations that frequently occur in the same order due to a series of highly route-based commutes.
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