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Humans categorize unwanted sounds in the environment as noise. Consequently,
noise is associated with negative human and ecological values, especially when it
is derived from an anthropogenic source. Although evidence confirms that many
machine-generated anthropogenic sounds have negative impacts on animal behavior
and communication, natural sources of non-biological sound, such as wind, rain,
running water, and sea waves (geophonies) have also been categorized as noise
and are frequently dismissed or mischaracterized in acoustic studies as an outside
factor of acoustic habitats rather than an integrated sonic component of ecological
processes and species adaptations. While the proliferation of machine-generated sound
in the Biosphere has become an intrusive phenomenon in recent history, geophony
has shaped the Earth’s sonic landscapes for billions of years. Therefore, geophonies
have very important sonic implications to the evolution and adaptation of soniferous
species, forming essential ecological and semiotical relationships. This creates a need
to distinguish geophonies from machine-generated sounds and how species respond to
each accordingly, especially given their acoustic similarities in the frequency spectrum.
Here, we introduce concepts and terminology that address these differences in the
context of ecoacoustics. We also discuss how Acoustic Complexity Indices (ACIs) can
offer new possibilities to quantifiably evaluate geophony in relation to their sonic contest.

Keywords: ecoacoustics, geophonies, noise, natural quiet, sonic signature

INTRODUCTION

Environmental sounds represent an important phenomenon that is integral to the functioning
of ecological systems (Gage and Farina, 2017). Natural and human-generated sounds are deeply
interwoven with the ecological processes and patterns driven by biotic and abiotic relationships
(Sueur and Farina, 2015; Gage and Farina, 2017). As such, these sounds are integrated elements
within semiotic interactions, as well as measurable indicators of ecological relationships and
environmental degradation (Krause et al., 2011; Pijanowski et al., 2011; Farina, 2014; Fuller et al.,
2015; Krause and Farina, 2016; Mullet et al., 2016).

The global decline of biodiversity in the wake of expanding human development (United
Nations [UN], 2019b), resource depletion (United Nations [UN], 2019a), and climate change
(IPCC, 2021) has driven ecologists to examine these relationships in traditional and novel ways.
The emerging field of Ecoacoustics has revealed the important role sound plays in ecological
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relationships (Farina, 2014; Farina and Gage, 2017). These
discoveries have expanded the field of ecology to new frontiers
with an increasing degree of relevance in the scientific
community (Xie et al., 2020). Accordingly, ecoacoustics has
added to the growing literature on bioacoustics, environmental
impacts of machine-generated sounds on wildlife communities
(Shannon et al., 2016; Jerem and Mathews, 2021), and the
use of sounds as proxies for assessing environmental quality
(Botteldooren et al., 2006; Booi and van den Berg, 2012).

A great deal of work has focused on the impact machine-
generated sounds (technophony) have on soniferous species
(Jerem and Mathews, 2021). As a result, it is a common
practice in acoustic studies to separate the different sound
sources of biophony (e.g., bird songs and calls) from the
technophonic sounds of machines where biophonies are the
singular soundscape component evaluated against the presence
of “noise.” Noise, in this context, is generally considered the
technophony of every machine-generated signal that interferes
with animal communication and/or causes a change in animal
behavior and/or physiology (Tafalla and Evans, 1997; Barber et al.,
2010). Technophony is an emergent component of many sonic
environments and has a significant influence on the occupancy
and habitat selection of many species (Mullet et al., 2017a).

The study of noise impacts on animals follows a long-standing
“human-vs.-nature” paradigm that emphasizes the separation
of human actions from non-human, natural processes (Barr,
1972). However, it is not unusual for the natural phenomenon
of geophony (e.g., geophysical sounds generated by wind,
rain, running water, sea waves) to be lumped together with
technophony as “noise” (Klump, 1996; Brumm, 2010; Koper and
Plön, 2012; Luther and Gentry, 2013; Bunkley et al., 2015) despite
the differential semiotic interpretations wild animals likely have
of these two sonic components. In these cases, animal sounds
(biophony) are evaluated against a more generic “background
noise” (Luther and Gentry, 2013), “ambient noise” (Ryan and
Brenowitz, 1985), or “environmental noise” (Kight and Swaddle,
2011), often associated with geophysical sounds. Currently, the
sonic-ecological relevance of geophonies remain ambiguous in
acoustic studies even though they are present in every terrestrial
and aquatic environment in some form. Furthermore, there
exists a confusing characterization of geophony as having both
negative acoustic qualities in the form of “environmental noise”
and positive acoustic qualities in the form of “natural quiet”
(Mace et al., 2004; Manning et al., 2007, 2018; Lynch et al.,
2011). The indistinction between geophony and noise, along with
the lack of reporting the role geophony plays in bioacoustics
and ecoacoustics studies, are leaving an unavoidable gap in our
understanding of sonic-ecological relationships.

In this paper, we clarify the distinction between noise,
geophony, and natural quiet in order to establish a common
language that serves to mitigate continued confusion in
the ecoacoustics literature. We also discuss the active role
geophony plays in ecological processes and the relevance
of geophony in species evolution, communication, and
habitat selection. We emphasize the need to establish clear
reasoning for combining or separating geophonies from
technophonies in acoustic studies and provide an example of

how acoustic indices can be useful tools to address geophony in
acoustic analysis.

ETYMOLOGY OF NOISE, GEOPHONY,
AND NATURAL QUIET IN
ECOACOUSTICS

As with any new field of science, there is a need to establish
an etymology to properly describe its subjects and theoretical
philosophies while building upon and/or clarifying language
commonly used and accepted in the literature. Ecoacoustics has
put a great deal of effort into creating a cohesive vocabulary of
terms that explicitly describes its subjects and theories (Sueur and
Farina, 2015; Mullet et al., 2017a; Farina et al., 2021a; Farina and
Li, 2021). This endeavor has been an evolving process as new
ideas, hypotheses, and philosophies emerge. Our intent here is to
clarify, introduce, and define terminology associated with noise
and geophony for future ecoacoustic investigations.

Noise and Technophony
The origins of the word noise are largely uncertain, but at
least date back to the Greek period. Linguistically, noise is a
derivative of the Greek word “nautes” (sailor) and the Latin
word “nausea,” meaning disgust, annoyance, discomfort, or
seasickness. Other origins have come from the Latin “noxia,”
which means hurting, injury, or damage. Contemporarily, noise
is broadly defined as unwanted sound. Yet, more specifically,
the Oxford English Dictionary describes noise as a sound
that is especially loud or unpleasant, causing disturbance or
confusion among other sounds, and contains no meaningful
information. Noise is inherently negative and subjectively defined
by human perception.

Notably, the linguistic roots of noise from the pre-industrial
age clearly indicate that unwanted sounds were not originally
associated with the sounds of machines. However, over the past
two centuries, the proliferation of steam and combustion engines
and electronics have introduced new anthropogenic sounds into
the environment (Pivato, 2011). As machine-generated sounds
made their way through human society, from the workplace to
the home and across the globe from agriculture to air and sea
travel, machine-generated sounds have become a novel intrusive
and detrimental affliction to human and environmental health
(Goines and Hagler, 2007; Jerem and Mathews, 2021).

Consequently, the impact of machine-generated sounds on
the environment has become an increasingly popular subject
of investigation (Jerem and Mathews, 2021) with considerable
evidence of its negative influence on animal behavior (Brumm
and Slabbekoorn, 2005; Habib et al., 2007), community ecology
(Francis et al., 2009), and species habitats (Nowacek et al.,
2007; Barber et al., 2010; Chan et al., 2010; Slabbekoorn et al.,
2010; Mullet et al., 2017a). Because of their human origin,
machine-generated sounds fit within the ecoacoustics category
of anthropophony, but more exclusively under the subcategory
of technophony (Mullet et al., 2016). This separation is based
on the difference between the biological and cultural sounds
that humans have been making for millennia (e.g., music, song,
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language) with the more recent sounds generated by machine
technology. Anthropophony of the former has evolved complex
semiotic relationships in human societies and nature, while the
latter generates sounds with generally no semiotic intent or
relevance. This distinction is important because noise is an
anthropocentric term often used to define machine sounds as
unwanted sounds. This likely stems from how humans perceive
the sonic relationship with the environment by distinguishing
what is natural from what is unnatural in both human culture and
ecologically (Booi and van den Berg, 2012; Gomes et al., 2021).

Because of this, it is vital to be aware that by using the term
noise, without explicit definition, the researcher is inherently
assuming the sonic element is also unwanted by their non-
human animal subjects without providing evidence to support
their assumptions. This results in implicit bias of a study’s design
and confounds ecological interpretation. Therefore, there must
be a clear definition in the ecoacoustics literature for the word
noise. We suggest that noise be generally defined as machine-
generated sound (technophony) that is unwanted or undesirable
to humans. In this way, studies of “noise” impacts to wildlife must
also clarify why or provide evidence that the variable of noise is
“unwanted” to their study subjects (see Barber et al., 2010; Luo
et al., 2015; Jerem and Mathews, 2021).

Conversely, technophony, as a distinct soundscape
component, is an important contribution to acoustic habitats
with significant ecological implications outside human
perceptions (Mullet et al., 2017a). Similar to the soundscape
component of biophony being ecologically distinguished
by the sounds of soniferous species, technophony in the
environment can also be distinguished by the presence of
human technological sounds. Yet, technophonies cannot be
reliably defined as unwanted sounds in non-human animals. The
term noise (as defined above) does not adequately apply to the
perspective of a non-human animal, but the term technophony
still remains relevant. This is because non-human animals
do not interpret the meanings of or differentiate between
technophonic sources with the same semiotic mechanisms as the
human originators. Nevertheless, the presence of technophony
within the soundscape still plays an important role in animal
behavioral ecology.

We recognize that technophony takes on a variety of
characteristics in nature depending on its source. We propose
three categorizes of technophony to generalize how it more
commonly occurs in the environment. These categories include
continuous technophony, ephemeral technophony, and abrupt
technophony. Continuous technophony is characterized as
constant machine-generated sound(s) in the environment,
occurring over long temporal periods with little or no
change. Some typical sources of continuous technophony
include oil compressors, highway traffic, and airport traffic.
Ephemeral technophony is not constant but occurs intermittently
over temporal periods where environments experience a
gap between machine-generated sound disturbance events.
Ephemeral technophony sources include helicopter and airplane
flybys, intermittent vehicle sounds on roads less-frequented
than highways, and motorboats. Finally, abrupt technophony is
derived from short temporal bursts of machine-generated sounds

that do not persist over time. Examples of abrupt technophony
sound sources are gunshots, explosions, and pile drivers. These
three categories of technophony can also be applied to noise when
presented from an anthropocentric perspective.

Geophony
Since the Earth and its atmosphere were formed 4 billion years
ago, geophysical sounds have shaped the sonic environment. It
was under these sonic conditions where the biological sounds
of organisms in marine, freshwater, and terrestrial environments
began their long and extensive process of evolution into
the diverse animal orchestra we hear today. Concurrently,
the Earth’s own geomorphological evolution influenced the
formation of sonic environments, acoustic habitats, and acoustic
communities. It is reasonable to suggest that geophony is
an inescapable, and integrated, semiotic component to the
sonic environment, species evolution, and ecological processes.
Because of this close relationship between biological organisms
and geophysical sounds, it is inappropriate to combine geophony
with noise without explicitly identifying the reasoning to do
so. By dismissing the relevance of geophony in ecoacoustics
studies or combining geophony with noise, one dismisses
and misinterprets the fundamental nature of soundscapes and
ecological relationships (Gomes et al., 2021).

Geophony has been clearly defined to be sounds generated
by the Earth and its geophysical events (Pijanowski et al., 2011;
Farina, 2014; Farina et al., 2021a). However, like technophony,
geophony can be placed into three general categories that
include continuous geophony, ephemeral geophony, and abrupt
geophony. Continuous geophony includes those geophysical
sounds that persist for long periods of time in the landscape.
Perfect examples of continuous geophony include continuous
free-flowing rivers and streams and sea waves. Ephemeral
geophony consists of the geophysical sounds that do not persist
in nature but occur intermittently over time, such as, the sounds
of wind, rain, and ephemeral streams. Abrupt geophony are
geophysical sound events that occur suddenly and in short time.
Earthquakes, landslides, avalanches, and volcanic explosions are
abrupt geophonic sound sources.

Sonic Signature
Sonotopes are distinct assortments of biophony, geophony,
and technophony embedded within every portion of a land
mosaic that vary in space, time, source, and intensity (Farina,
2014; Farina et al., 2021a). Such variability operates at different
temporal and spatial scales and is sensed differently among
species. In the presence of biophony, technophony, and certain
geophony, each sonotope possesses a unique sonic ambience we
call a sonic signature. We generally define sonic signature as the
ever-present ambient sounds that form the sonic foundation of
a sonotope. The sonic signature forms the primary occupied
acoustic niche that soniferous species must sonically compete
with in the most fundamental of ways (Figure 1). The Earth’s
primordial sonic signatures likely played significant roles in the
evolution of animal sounds. The late Professor Stuart H. Gage
(pers. comm. Michigan State University) described the sonic
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FIGURE 1 | Spectrogram comparison between two subarctic sonotopes located in Aialik Bay (coastal) (A) and Exit Glacier (interior) (B) of Kenai Fjords National Park
in south-central Alaska (60◦ N; 150◦ W) on 08 July 2019 at 00:00 and 03:00, illustrating the presence of geophonic ambiences, respectively, characterized by the
sounds of waves and a glacial creek, that occur in the absence of biophony, ephemeral/abrupt geophony, and anthropophony at 00:00 and in the presence of
biophony during the dawn chorus at 03:00. Note that the geophonic ambience of the coastal sonotope possesses a different sonic signature given the range of
low-frequency spectra than that at the interior sonotope, including differences in the intensity and composition of biophonies at higher frequencies between locations.

signature as the primeval sound of the Earth, the geophonic
sounds that remain when all else is absent.

A sonic signature can be the result of a single or combination
of sound sources (e.g., wind, running water, sea waves). The
nature of a sonic signature determines its impact on the ecology
of animals, all of which are species-specific. Based on this
perspective, it is reasonable to hypothesize that the recurrent
sounds of a sonotope’s sonic signature have a role in the
characterization and selection of a species’ habitat (e.g., Tonolla
et al., 2010, 2011; Mullet et al., 2017b; Decker et al., 2020;
Linke et al., 2020) and therefore, provides a baseline of ambient
sounds for a species’ semiosis, as well as a quantifiable subject of
ecoacoustics investigations (Putland et al., 2017).

Subarctic environments can exhibit periods of time when
biophonies, technophony, and ephemeral/abrupt geophonies
are not present within the acoustic space (Figure 1). In
this case, there still exists an ambient background of low-
frequency, low-sound energy geophony that is continuous
and ever-present. This phenomenon of geophonic ambience
contrasts sharply with time periods when the acoustic space
becomes occupied by biophonies, ephemeral/abrupt geophonies,
and technophony but still remains a primary component of
individual sonotopes (Figure 1). Thus, geophonic ambience

creates a sonic signature that shapes the composition of
acoustic habitats.

We acknowledge that sonic signatures are not exclusively
geophysical sounds. In fact, the heavily developed metropolitan
regions of the world possess a sonic signature of technophonic
ambience often produced by vehicle traffic. Similarly, finer-
scaled urban sonotopes may have their own unique sonic
signature depending on sound sources of the underlying
ambience. Examples of these finer-scaled sonotopes are airports
and manufacturing plants. Both geophony- and technophony-
based sonic signatures are important ecological components to
understanding biophonies and animal behavior.

Distinguishing Noise From Geophony
In order to understand the ecological role geophony plays in the
environment, one must recognize the implications that research
presents when combining geophony with technophony under the
moniker of “noise.” We have provided pragmatic reasons why
geophony is not noise (i.e., unwanted sounds) in an ecological
sense. However, we recognize that intense geophonic sources
(e.g., waterfalls, torrents, sea waves) may be considered unwanted
sounds from a human perspective, especially when assessing the
acoustic qualities of an area for listening to biophonies.
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This highlights an important distinction to make when using
the term noise to describe geophonies and technophonies. We
first must acknowledge that the continuous and homogenous
sounds of sonic signatures from a human perspective appear as
uninformative “noise” but, in fact, the geophonic ambience of
a sonotope most likely serves as a critical form of information
in animal communication and habitat selection. Secondly,
intense geophonic and technophonic sounds possess true and
ecologically relevant attributes in the form of masking effects
on certain sound sources. Masking can simply be described
as one sound interfering with the detection of another sound.
The ecological implications of this phenomenon have been
demonstrated by the low-frequency sounds (1–4 kHz) of
roads and oil compressor fields effecting the ability of some
organisms to hear vocalizing cohorts that call within the same
frequency range (Ortega, 2012; Ortega and Francis, 2012).
Intense geophonic sounds (e.g., high wind events) have also
been problematic for detecting and discerning low-frequency
biophonies (Mullet et al., 2016).

We suggest that researchers identify the types of geophony
and technophony that may influence the results of their acoustic
investigations. By doing so, the results of acoustic studies can
be interpreted in the context of geophonies as a distinct sonic
variable independent of technophony and as an ecological driver
of species adaptations and evolution. We recommend that
researchers avoid characterizing natural geophonic ambience
as unwanted sound (i.e., environmental noise, ambient noise,
background noise) (Codarin et al., 2009) for the purpose of
avoiding confusion between an anthropocentric perception and
one determined by animal semiotics. However, we recognize that
animal avoidance behavior to technophony (Luo et al., 2015),
geophony (Hayes and Huntly, 2005), and even biophony (Stanley
et al., 2016) provides a rare opportunity to characterize some
sound sources as unwanted sounds from an animal’s perspective.

Natural Quiet
As noise expands to nearly every corner of the Earth, there has
become increased interest to locate the world’s quietest places
(Cox, 2014). Only recently has natural quiet become a term
used in bioacoustics and ecoacoustics literature (Mace et al.,
2004; Votsi et al., 2014; Mullet et al., 2017b). Natural quiet is
simply defined as a period of time when noise does not disturb
natural sounds (Manning et al., 2007). This vague definition
obviously suggests that natural quiet is composed of any form
of biophony and geophony but also implies that there is some
level of sound amplitude identified by some receiver as “quiet.”
More importantly, natural quiet, like noise, is a human construct.
Humans easily identify natural sounds as separate from human
sounds, but quiet lends itself to a more technical and often
subjective definition we will not elaborate on here. Natural quiet
within the human domain consists specifically of natural sounds
identified according to non-human categories and quiet can be
defined according to a relative measure of human perception (i.e.,
decibels) (e.g., Ambrose, 2006).

Natural quiet does not mean “silence,” the complete absence
of sound. Although uncommon in the literature, silence has
been misused to describe natural sounds (Pfeifer et al., 2020)

or used interchangeably with natural quiet (Hempton and
Grossmann, 2009). The distinction between natural quiet and
silence is important in order to avoid confusing audible-sensorial
phenomena with the absence thereof. In fact, sounds are ever-
present in nature because of the myriad of sound-producing
interactions that occur at micro- and macro-scales of ecosystem
processes (Smucker et al., 2006; Tornel et al., 2010; Fuller et al.,
2015; Wall et al., 2017).

The sensitivity of a receiver to these sounds depends
on their audible range of detection and the frequency and
sound energy emitted by these processes. This suggests that
sounds that occur outside a receiver’s audible range are of
less significance to its ecology than sounds they can hear.
Yet, the frequency spectrum is not continuously occupied by
sounds within a receiver’s range of hearing. As illustrated
in Figure 1, sounds are absent within a given frequency
spectrum (e.g., 5,000–11,000 Hz) over a 1-min period at
midnight (00:00). By definition, these vacant frequencies are
silent to the receiver (i.e., SM4 Song Meter standard microphone,
Wildlife Acoustics, Inc., Maynard Massachusetts) despite the
microphones capability to detect sound events within this
range. In this case, an argument can be made that silence
does exist, but only in the context of the receiver. Therefore,
the absence of sounds can be considered species-specific and
unique by an individual’s threshold of hearing. Unfortunately,
this example is not what is insinuated as silence in the
literature, nor is it considered to explain the sonic characteristics
of natural quiet.

There has been some effort to measure natural quiet as a
quantifiable variable (Lynch et al., 2011). This has stemmed
from an interest in empirically characterizing undeveloped, wild
landscapes in the context of human sonic experiences in nature.
This approach emphasizes the anthropocentric perspective of
what is considered natural (i.e., non-human sounds) and quiet
(e.g., some baseline decibel level). Although this approach
has benefited the preservation of natural soundscapes and
expanded our understanding of human-nature connections
through sound, natural quiet in this context provides very little
relevance to understand ecological processes. We propose that
the term natural quiet explicitly refer to the interpretation of
a soundscape’s acoustic qualities based on human perception
and cultural definitions of “natural” and should not be applied
to ecoacoustics studies intended to explain ecological processes
where human perception is not the focus.

In an ecological context, it is important to acknowledge the
absence of sounds within frequency spectra as an important
characteristic of sonic environments. Regrettably, most
bioacoustic and ecoacoustic studies have narrowly focused
on the occupancy of multiple frequency spectra by biophony
to describe the biodiversity of life in many parts of the world
(Bertucci et al., 2016; Raynor et al., 2017; del Castillo Domínguez
et al., 2021; Dröge et al., 2021; Farina et al., 2021b). Similarly,
many studies have concentrated on the occupancy of acoustic
partition to test the Acoustic Niche Hypothesis (Krause, 1993)
as a viable explanation of sonic-animal ecology and evolution
(Villanueva-Rivera, 2014; Bignotte-Giró and López-Iborra,
2019). However, the evidence of a “silent acoustic niche”
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(Figure 1) reverses the emphasis of interest to understand the
sonic environment where the absence of biophony, geophony,
and anthropophony are just as vital to understanding natural
ecological processes. The opposing perspective of silent acoustic
niches in the context of occupied acoustic niches is increasingly
important as many ecosystems face catastrophic declines in
biodiversity due to climate change, and human impacts (Krause
et al., 2011; Krause and Farina, 2016). We recommend that more
work be done on this subject.

GEOPHONY AS A DRIVER OF
ADAPTATION AND HABITAT SELECTION
AND A COMPONENT OF ECOSYSTEMS

Despite evidence that supports the effect geophonies have on
the sonic behavior of marine (Brumm and Zollinger, 2011; Holt
and Johnston, 2014; Guazzo et al., 2020; Helble et al., 2020)
and terrestrial animal vocalizations (Brumm and Slater, 2006;
Preininger et al., 2007; Brumm and Naguib, 2009; Samarra et al.,
2009; Vargas-Salinas et al., 2014) and species evolution (Ryan
and Brenowitz, 1985; Brumm and Slabbekoorn, 2005), there
still exists a gap in our understanding the natural selection
process of geophony in animal evolution, more specifically in
terrestrial systems. Boeckle et al. (2009), for instance, found rock-
kipper frogs (Staurois latopalmatus) in habitats with continuous
geophony from waterfalls emitted higher frequency calls and
had smaller body sizes than cohorts where geophony was not as
sonically pronounced. Zhao et al. (2017) demonstrated the role of
geophony in mate selection among little torrent frogs (Amolops
torrentis). They observed that females selected males that emitted
higher frequency calls in areas where the geophony from streams
had high sound amplitude. Males that emitted lower frequency
calls in quieter environments were less likely to acquire a mate.

The literature that exists strongly suggests that geophony in
marine and terrestrial systems has a significant role in the habitats
animals select to inhabit in a landscape. It has been established
that the composition and patterns of soundscapes are directly
linked to the temporal and spatial arrangements of landscapes
(Fuller et al., 2015; Mullet et al., 2016). Thus, sonotopes and
their unique sonic signatures are essential components to the
homogenous ecotopes that occur across the landscape. In this
context, the temporal and spatial configuration of geophony is
a fundamental sonic element of a species’ habitat that exists
within an ecotope. Mullet et al. (2017a) describe the ecological
relationships between animal behavior and habitat selection in
their seminal Acoustic Habitat Hypothesis.

Since geophony is generated by the vibrations of the physical
environment (e.g., sound of wind from rustling leaves, sound
of waves from the crashing of ocean water, sound of rain
impacting vegetation); the sources, acoustic characteristics, and
semiotics of geophony vary temporally and spatially depending
on climatic conditions, geomorphology, and vegetation. As an
example, the continuous geophony of a river will have differential
sonic and semiotic significance based on the distance a sound-
dependent species is from the source. However, the manner in
which geophony attenuates from the river is also dependent

on the geomorphology and vegetation communities of the land
surrounding it. In this case, geophony becomes subject to
the composition and structure of the physical and biological
environment creating unique sonotopes and acoustic habitats
across a heterogenous, riparian landscape.

The many forms geophony can take in both its source
and intensity are the consequences of complex geophysical
phenomena. The characteristics of geophony across spatial scales
can be influenced by elevation gradients, topography, global and
microclimate dynamics, and successional stages of vegetation
communities. Similarly, geophonies express temporal variation
too, depending on its source (e.g., river sounds compared to
rain showers), geographic region, time of day, and season.
Some good examples of spatial and temporal differences in
geophony are evident in the seasonal patterns of rainfall
constituting the Amazon’s wet and dry season (Sombroek,
2001) compared to the more extreme seasonal differences in
geophony of south-central Alaska’s boreal forests with rainy
summers and actively flowing streams (Mullet, 2020) to winters
with prolonged periods of ambient geophony interspersed with
intense wind events over frozen lakes, rivers, and tundra
(Mullet et al., 2016). The Amazon’s wet season comes with
increased geophony from rain but also marks the height of
the breeding period for many songbirds that coincides with
food availability (Stouffer et al., 2013). Similarly, the biophony
of south-central Alaska increases considerably in summer
months as the geophony of rushing water and rain dominate
the soundscape (Mullet, 2020) while most soniferous species
migrate or become dormant over winter (Mullet et al., 2016).
These geophonically-related ecological processes are not only a
product of geography, geomorphology, and vegetation, but their
seasonality is also a result of the Earth’s planetary tilt toward the
Sun.

It is reasonable to hypothesize that the scale of ecological
factors contributing to geophony are naturally integrated into
the evolution and adaptation of animals and the dynamic
complexities of Earth system processes. Subsequently, these
relationships impact the manner in which sound-dependent
species instinctually and cognitively select and occupy habitats.
Even more so, the effects of anthropogenic climate change are
having profound impacts on physical and biological systems
(Rosenzweig et al., 2008). As a result, the attributes of geophonies
at fine and coarse scales are likely changing temporally and
spatially in a way that can alter the natural selection process
they have on animal communities and species distributions. This
underlines the importance of including geophony as a key subject
in ecoacoustics studies.

GUIDANCE FOR THE STUDY AND
ANALYSIS OF GEOPHONY

It is important for us to extend our competency of ecoacoustics
in order to better understand the ecological resiliency of the
sonic environment and its relationships to natural processes
and human activity. As we have expressed earlier, the inclusion
of geophony in ecoacoustics investigations is paramount to
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embodying a holistic knowledge of ecology. In fact, the full
characterization of soundscapes can contribute to a greater
breadth of knowledge than the narrow perspective of simply
describing biophony or noise impacts to soniferous species
and communities.

We are aware of the objective difficulties that exist to currently
discern, measure, and evaluate geophony in ecoacoustic studies
(see methods by Mullet et al., 2016). Nevertheless, including
information concerning the characteristics and dynamics of
geophonies in ecoacoustics greatly enhances the description of
the sonic environment in which species operate and disclose their
ecological relationships. To do this, it is necessary to create new,
and improve on current, ecoacoustic tools that can be applied in
ecoacoustics methodologies.

Geophonies, like many environmental sounds, can be
efficiently detected and recorded using autonomous recording
stations (ARS). This method enables a researcher to standardize
their sample rate and recording intervals while allowing the
recording device to run unattended for long-periods of time,
generating a broad temporal sample of geophonic events. The
temporal sampling period is dependent on the research question
(see Buxton et al., 2016; Krause and Farina, 2016; Mullet et al.,
2016, 2017b; Mullet, 2020 for examples), but we recommend 1-
min as a sufficient recording interval. Sonic data collected by ARS
are often generated as a digital waveform (wav) file which can
be processed into a metric or index using the computation of an
algorithm suitable to answer the focused research question.

Geophonies are often characterized by more continuous
patterns when compared to the ephemeral nature of biophonies,

like bird calls. In fact, wind and rain events last longer than
a few seconds or minutes compared with the short duration
of bird calls. Only insects exhibit continuous biophonies but
are typically discernable within a specific frequency spectra.
Contrarily, geophonies often span a wide range of frequencies
depending on the source and over longer time intervals (30 s
to hours). Their sonic patterns are typically more homogenous
than most technophonies and biophonies. In order to adequately
describe such processes, the frequential and temporal resolution
with which data are analyzed should be fixed accordingly.

Few studies have approached the investigation of geophonies
in terrestrial environments especially focusing on the capacity of
ecoacoustic metrics to filter out geophonic events. Mullet et al.
(2016) for instance, resolved to listening to thousands of sound
recordings to parse out and quantify geophonies from biophonies
and technophonies. This challenge has not been lost on other
investigators (Bedoya et al., 2017; Sánchez-Giraldo et al., 2020).
While terrestrial ecoacoustic studies have struggled with this
issue in recent years, a more abundant literature testifies to the
interest in and analysis of geophonies in marine systems that
have measured the effect of rainfall (Medwin et al., 1992; Ma
and Nystuen, 2005; Amitai and Nystuen, 2008; Ferroudj et al.,
2014) and wind (Pensieri et al., 2015; Cauchy et al., 2018) on
underwater sounds. While our expertise lies within terrestrial
soundscapes and acoustic analyses applicable to these systems,
we recognize that marine bioacoustics and ecoacoustics methods
could prove useful.

Unlike studies that apply multiple acoustic indices to quantify
and explain biophonies, we propose the Acoustic Complexity

FIGURE 2 | Graphical representation of four Acoustic Complexity Indices (ACIft, ACIftevenness, ACItf and ACItfevenness) that are used to generate sonic codes in the
analysis of ecoacoustic events in a sound recording. ACIft measures the sound energy across the frequency spectra within selected segments of time (ACIftn), while
ACIftevenness calculates the distribution of sound energy within the frequency spectra across all time segments. ACItf measures the sound energy within specified
frequency intervals (ACItfj) across the recording period (time), while ACItfevenness calculates the distribution of sound energy across all frequency intervals over the
recording period.
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Indices (ACIs) (Pieretti et al., 2011; Farina et al., 2016) as a
convenient set of metrics, powered by the recent SonoScape
software (Li and Farina, 2021) that operates at multiple
scales, offering the possibility to sample sound recordings at
different temporal resolutions to extract the ecoacoustic events
of geophony and to filter sonic signals according to an energetic
threshold.

In brief, the main performance of ACI enables the measures
of sonic information based on the difference that occurs between
successive intensity pitches and operates at every temporal scale
of a sampling regime. Sonic energy can be measured across time
for any frequency interval given the study’s sample rate. Four
ACI metrics (ACItf, ACItfevenness, ACIft, and ACIftevenness) can be
employed to measure sonic information across frequencies at any
predetermined temporal interval (Li and Farina, 2021; Figure 2).
In this way, ACItf measures the sonic information within a single
frequency interval while ACItfevenness calculates the distribution
of ACIft across multiple frequency intervals. The amount of sonic
information included across frequencies is measured by ACIft
with ACIftevenness used to calculate the distribution of ACIft values
along a specified temporal interval (Figure 2).

Geophonic events (e.g., an isolated gust of wind or period of
rain) can be classified within the SonoScape software using the
combination of ACIft, ACIftevenness and ACItfevenness that returns
a sonic code that ranges from “000” to “999” (Farina et al., 2018).
A sonic code of “000” is equivalent to “no sonic signal,” whereas
a sonic code of “999” represents a sonic signal that completely
saturates the entire frequency spectra and time sequence. Heavy
rain and strong wind events are often characterized by a sonic
code of 999. Sonic codes are obtained for every time interval a
wav file is sub-divided into.

For instance, if we process a wav file of 300 s at a resolution of 1
s, we obtain 300 codes, one for each second interval. If we reduce
the temporal resolution to calculating indices at intervals of 6 s,
we obtain 50 codes, and so on. Sonic code values are strongly
affected by the temporal resolution (i.e., time interval) chosen by
the analyst because the temporal dimensions potentially delimit
the field of existence of an ecoacoustic event. This is true if
one desires to capture abrupt geophonic events like thunder. In
this case, the sonic matrix must be appropriately segmented into
intervals of 2–3 s for the event to be detected within the sonic
code calculation. Similarly, the ephemeral geophony of wind or
sea waves may require 10–30 s, while the continuous geophony
of sonic signatures spread across long temporal scales. For rain,
the time interval depends on whether the sonic events are short-
or long-duration rain showers.

The usefulness of ACI for identifying, quantifying, and parsing
out geophonies from biophonies and technophonies lends itself
to the manner in which the indices of sonic events are calculated
based on their occurrence within frequency spectra and over
time intervals. The diverse, but unique, nature of geophonies can
be relatively easy to distinguish from biophonies. However, we
recognize that the similarities in sonic characteristics between
sonic signatures of continuous geophony (e.g., rivers) and
continuous technophony (e.g., highways) or the ephemeral
occurrence of intermittent passing cars at less-traveled roadways
and wind events may confuse ACI results. More investigation is

underway to address these issues. Although we recognize that
other scientists are addressing the issues of geophony in acoustic
analysis (Bedoya et al., 2017; Sánchez-Giraldo et al., 2020),
there appears to be open opportunities to explore ACI beyond
biophonies to measure and quantitatively interpret geophonies
within sonic environments.

CONCLUSION

The geophonies of Earth have been an evolutionary driver
of animal physiology and communication across a diverse
array of extant and extinct species. Given their ever-present
influence on the sonic environment, animal behavior, and human
experience, we suggest that geophonies must occupy a more
central position in the study and understanding of ecological
processes. This is even more important now that the expansive
impacts of anthropogenic climate change to the Biosphere
present exceptional risks to displacing and reconfiguring sonic
events, if not driving many soundscapes to extinction (Sueur
et al., 2019). Among these are certainly the geophonies that are
directly associated with Earth’s processes. Unfortunately, these
changes have already begun, and we must strive to obtain a higher
standard of ecoacoustics research (Krause and Farina, 2016).

As we currently explore the surface of Mars (Leighton, 2021),
we have acquired the first recordings of Martian geophony.
This scientific achievement may give us insights to the role
geophony has played in Earth’s primordial history, or perhaps,
a peak into Earth’s distant future. Our pursuit of knowledge
to understand the ecology of our own world must not negate
the fundamental elements and phenomena that have shaped its
existence. The quest to understand geophony among the myriad
of biological and anthropogenic sounds can only open new
doors to discovery here on Earth. We invite further research on
this subject to generate a more holistic understanding of their
semiotic relationships.
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