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The idea of “smart is sexy,” meaning superior cognition provides competitive benefits in
mate choice and, therefore, evolutionary advantages in terms of reproductive fitness, is
both exciting and captivating. Cognitively flexible individuals perceive and adapt more
dynamically to (unpredictable) environmental changes. The sex roles that females and
males adopt within their populations can vary greatly in response to the prevalent mating
system. Based on how cognition determines these grossly divergent sex roles, different
selection pressures could possibly shape the (progressive) evolution of cognitive abilities,
suggesting the potential to induce sexual dimorphisms in superior cognitive abilities.
Associations between an individual’s mating success, sexual traits and its cognitive
abilities have been found consistently across vertebrate species and taxa, providing
evidence that sexual selection may well shape the supporting cognitive prerequisites.
Yet, while superior cognitive abilities provide benefits such as higher feeding success,
improved antipredator behavior, or more favorable mate choice, they also claim costs
such as higher energy levels and metabolic rates, which in turn may reduce fecundity,
growth, or immune response. There is compelling evidence in a variety of vertebrate taxa
that females appear to prefer skilled problem-solver males, i.e., they prefer those that
appear to have better cognitive abilities. Consequently, cognition is also likely to have
substantial effects on sexual selection processes. How the choosing sex assesses the
cognitive abilities of potential mates has not been explored conclusively yet. Do cognitive
skills guide an individual’s mate choice and does learning change an individual’s mate
choice decisions? How and to which extent do individuals use their own cognitive skills
to assess those of their conspecifics when choosing a mate? How does an individual’s
role within a mating system influence the choice of the choosing sex in this context?
Drawing on several examples from the vertebrate world, this review aims to elucidate
various aspects associated with cognitive sex differences, the different roles of males
and females in social and sexual interactions, and the potential influence of cognition on
mate choice decisions. Finally, future perspectives aim to identify ways to answer the
central question of how the triad of sex, cognition, and mate choice interacts.

Keywords: fitness, behavioral flexibility, personality, sexual selection, social cognition, cognitive mate choice,
cognitive flexibility, sexual dimophism
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SEXUAL DIMORPHISMS IN COGNITIVE
PERFORMANCE – DO SEXES DIFFER?

‘Cognition’ is frequently defined as the neuronal processes
principally involved in the acquisition, processing, retention, and
use of information (Shettleworth, 2001; Dukas, 2004). Another
important criterion for cognitive ability is the aptitude to learn
and to establish associations between different stimuli (Giurfa
et al., 2001). In the context of this review, I would like to
describe cognition as cognitive processes that comprise thinking,
reasoning, perceiving, imagining, and remembering to the extent
that they involve the use of concepts (Bayne et al., 2019).
Furthermore, cognition is inherent to the ability of adaptive
behavioral plasticity, and is thought to shape and modulate
evolutionary dynamics and, possibly, the limits of adaptation
profoundly (e.g., Sznajder et al., 2012; Snell-Rood, 2013). For
instance, depending on how complex a species’ habitat, social
environment, or life history is, the more cognitively demanding
it is to survive and cope with its challenges. Cognitively flexible
individuals perceive and respond more rapidly to (unpredictable)
environmental changes. To give a prominent example, a well-
developed ability to learn spatially seems to play a prominent
role in mate search and mate choice in both vertebrates (e.g.,
Sherry et al., 1992; Geary, 1995; Kotrschal et al., 2015; Corral-
López et al., 2017) and invertebrates (e.g., Papaj and Prokopy,
1989; Dukas, 2005).

Sex roles that females and males play within their population
(influenced e.g., by age or social status) can vary tremendously
in response to the prevailing mating system. Depending on how
cognition determines these highly distinct sex roles, different
selection pressures could possibly influence the (progressive)
development of cognitive abilities, thereby perhaps inducing
sexual dimorphisms in superior cognitive capabilities (Galea
et al., 1996; Jacobs, 1996; Johnstone et al., 1996; Lindenfors et al.,
2007; Edward and Chapman, 2011). Thus, a species’ mating
system appears to be a major driver of cognition, with sexual
selection being a key determinant of cognitive evolution. It may
act directly by promoting superior cognitive abilities during
mating competition, for instance, with one sex opting for the
other based on a behavioral trait that is strongly influenced
by cognition (e.g., solving foraging tasks). For instance, males
possibly prefer females with better cognitive abilities in mutual
mate choice or sex-reversed species (although this question has
only been investigated with females being the choosing sex).
Social and sexual interactions as well as the mating system,
which attributes distinct responsibilities to each sex ranging
from courtship and mate choice to nurturing the offspring,
are particularly important for ample cognitive differences
(Boogert et al., 2011b; Baur et al., 2019).

Interestingly, sexual dimorphisms in cognitive performance
have been observed in a number of different species representing
a variety of taxa. Although a number of studies examined
cognitive sex differences in various different tasks and primarily
independent of a mate choice or reproductive context, their
findings have been attributed frequently to result from divergent
sex roles. To mention a few examples, females frequently showed
greater cognitive flexibility and lower persistence than males in

response to new situations in a number of mammal, bird, and
fish species (e.g., Ha et al., 2011; Lucon-Xiccato and Bisazza, 2014;
Roelofs et al., 2017), while generally better spatial orientation
skills were often attributed to males. For instance in humans,
males performed better than females in spatial navigation tasks
(e.g., Sherry and Hampson, 1997; Moffat et al., 1998), which
appears to be the most consistent sex difference in cognition
in humans and other mammals (Moffat et al., 1998; Jones
et al., 2003; Jones and Healy, 2006). Male guppies (Poecilia
reticulata) quickly learned to swim through a complex maze,
in which guppies had to choose between alternative routes to
reach the target, while their conspecific females failed to do so
(Lucon-Xiccato and Bisazza, 2017a,b).

However, there are also examples to the contrary. Female
guppies were observed to outperform males (a) in a spatial
orientation task requiring them to learn to select the correct
arm of a T-maze to rejoin a group of conspecifics and (b)
in a numerical task requiring them to discriminate between
5 and 10 dots to obtain a food reward (Petrazzini et al.,
2017). Although male ravens (Corvus corax) were better than
females in a color discrimination test, they were inferior in
a spatial discrimination task (Range et al., 2006). Female
cowbirds (Molothrus ater) possess superior spatial learning
abilities compared to their male counterparts (Astié et al., 1998;
Guigueno et al., 2014) as they need to find and recruit host
nests, in which to place their eggs. Furthermore, accumulating
evidence point to selection acting on spatial memory in food-
caching bird species (Krebs et al., 1989; Roth et al., 2011;
Cauchoix and Chaine, 2016; Sonnenberg et al., 2019). Female
great tits clearly excelled males in an observational memory
task, in which caged great tits were allowed to observe food-
caching marsh tits in an indoor aviary before they were allowed
to search themselves. Female great tits were as successful at
retrieving the cached food as the hoarding marsh tits themselves
(Brodin and Urhan, 2015). In summary, the extent of the
observed sex differences reported on many species of different
taxa appears to depend tightly on the task to be solved and,
hence, the cognitive competence involved. While female guppies
appeared to be behaviorally more flexible (Laland and Reader,
1999; Lucon-Xiccato and Bisazza, 2014; Lucon-Xiccato and
Bisazza, 2017a,b), male Atlantic mollies (Poecilia mexicana)
clearly outperformed their female conspecifics both in social
and asocial trial and error learning of a simple visual color
discrimination task followed by a series of reversal learning (Fuss
and Witte, 2019; Fuss et al., 2020). Despite the convergence
of their learning performance in numerical discrimination
experiments, male and female western mosquitofish (Gambusia
affinis) differed in their cognitive-behavioral responses that could
possibly be attributed to different sexual selection pressures
(Etheredge et al., 2018).

Additional key determinants comprise cognitive style (i.e.,
“the way individuals acquire, process, store, or respond to
information regardless of their cognitive ability”, Sih and Del
Giudice, 2012) and cognitive performance (i.e., accuracy of
behavioral output on a learning task, Shettleworth, 2010).
Sex-specific associations between the cognitive style, which is
essentially determined by an individual’s personality, the training
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context (i.e., using automated devices such as a Skinner box
vs. ecologically more natural training procedures), and the
cognitive performance have been observed frequently as well
(e.g., Gatto et al., 2020; Griebling et al., 2020; Wallace et al.,
2020; Wallace and Hofmann, 2021). In summary, we find
strong evidence to support context-dependent differences in
cognitive abilities between both sexes. In particular, context-
dependency addressing different ‘cognitive domains’ appears to
reflect the respective innate social and/or sexual role, for instance
in reproduction.

SOCIAL COGNITION IN A MATE CHOICE
CONTEXT

Numerous studies indicate that females select mates based on
male cognitive traits. Associations between an individual’s mating
success and its cognitive abilities (Shohet and Watt, 2009; Keagy
et al., 2009, 2011; Cauchard et al., 2013; Preiszner et al., 2017)
as well as between its cognitive abilities and sexual traits (Karino
et al., 2007; Boogert et al., 2008, 2011b; Mateos-Gonzalez et al.,
2011; Keagy et al., 2012; Fabre et al., 2014; Minter et al., 2017)
have been reported across species and taxa, suggesting that sexual
selection may well shape the supporting cognitive prerequisites
(Andersson and Simmons, 2006; Boogert et al., 2011b; Sewall
et al., 2013; Isden et al., 2013). Yet, there is, of course, contrary
evidence where cognitive ability was not the decisive criterion
(e.g., Sewall et al., 2013; Templeton et al., 2014; Anderson
et al., 2017). For instance, another study on spotted bowerbirds
found no association between mating preference and general
cognitive ability or improved performance in obstacle clearance
or shape discrimination (Isden et al., 2013). Starlings reared
under developmental stress showed a comparable cognitive
performance to naturally reared conspecifics in a foraging task,
but lower sexual signaling (song performance; Farrell et al., 2012;
Peters et al., 2014).

However, superior cognitive abilities do not only provide
benefits such as a higher feeding success, a better antipredator
behavior, or a superior mate choice, but also demand higher
energy levels and metabolic rates (due to well-developed neuronal
prerequisites), which possibly decrease fecundity, growth, and
immune response. Alongside possible cognitive sex differences,
aspects of social cognition have been examined carefully as well.
Social cognition implies both social recognition (i.e., acquisition
of direct or indirect social information about others) as well as
social learning (i.e., retrieving social information from others)
from individuals sharing the same sex and, thus, the same social
role. Using social information for mate choice to ultimately
choose the best possible, maybe ‘perfect’ mate is particularly
important when determining where to look for prospective
mates, whom to avoid or pair with, how to distinguish
and classify different individuals, and involves integrating and
processing multimodal sensory inputs (compare Edward, 2015
for review; Cummings and Ramsey, 2015; Kavaliers and Choleris,
2017). This complex process is complemented by arousal and
sexually incentive motivation, and accompanied by preference,
responsiveness, and effort of a prospective choice, which includes

the conversion of arousal into sexually determined behaviors
(Jennions and Petrie, 1997; Kirkpatrick et al., 2006; Ågmo,
2011; Edward, 2015). Choosing females appear to base their
mating decisions on multiple male traits (Andersson, 1994;
Rosenthal, 2017).

The key features of cognition, i.e., learning and decision-
making processes may dynamically change to adapt to new
conditions in order to increase their prospects for a high-
quality partner. Social information, for instance, can be drawn
upon when making decisions about potential partners, which
may possibly allow performing ‘learned mate choices’. In this
context, mate choice may include personal experience with others
(i.e., private or personal information) or the observation of
conspecifics (i.e., public information) and may have an impact
throughout an individual’s entire life (reviewed in Hebets and
Sullivan-Beckers, 2019). Thereby, social cognition provides a
conceptual framework for mate choice or mate choice copying
across taxa, including Arachnida, Insecta, Malacostraca, Aves,
and Actinoperygii (compare Witte et al., 2015 and Jones
and DuVal, 2019 for review). Hence, mate choice copying
is another example of the supporting cognitive capability to
observe, evaluate, and, if appropriate, imitate other individuals
in the same way as individuals do whilst foraging for food or
seeking novel habitats (Jones and DuVal, 2019). Interestingly, the
prominently hypothesized fitness benefit of superior cognition
suggests that smart individuals would be preferred as mates
(hypothesis of sexual selection; Darwin, 1871; Jacobs, 1996; Miller
and Todd, 1998; Miller, 2000; Boogert et al., 2011a,b; Peters
et al., 2014), though it has rarely been examined in non-human
individuals (Striedter and Burley, 2019). Moreover, it has not
been explored conclusively yet, how the choosing sex judges
the cognitive abilities of potential mates, which would be a
necessary first step if smarter mates were preferred over their
‘not-as-smart’ counterparts. Consequently, cognition may also
have considerable implications for sexual selection processes
(Boogert et al., 2011b; Ryan et al., 2009).

COGNITIVE MATE CHOICE

Mate Choice Based on Cognitive Traits?
Animal courtship displays can be remarkably complex. They may
comprise several contiguous steps, involve different modalities
(e.g., visual, acoustic, odorous, and/or tactile stimuli), integrate
morphological and behavioral aspects and may adapt to and/or
depend on different contexts. The ability to perform extensive
courtship displays, complex songs or acquire scarce resources
through superior foraging and/or spatial orientation skills may
be a major contributing factor for the success in outperforming
competing conspecifics. Impressive and well-studied examples
comprise peacock spiders that use synchronous motion displays
(Girard et al., 2011, 2015) or bowerbirds and sage grouse,
who adapt their courtship display intentionally in response to
female signals (Patricelli et al., 2002, 2006, 2011; Patricelli and
Krakauer, 2010). Similarly, in carotenoid-dependent signaling
systems such as siskins, brown boobies, house finches, or
sticklebacks and guppies, superior foragers produce exaggerated
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sexual signals to impress courted females (e.g., Endler, 1980,
1984; Kodric-Brown, 1985; Milinski and Bakker, 1990; Senar
and Escobar, 2002; Karino et al., 2007; Mateos-Gonzalez et al.,
2011; Michael et al., 2018). Therefore, in numerous taxa,
males indicate their suitability as potential mates by various
elaborate traits. The courted females respond with individual
preferences for one or another trait. However, the complexity
of the performed courtship behavior seems not to be the only
determinant for choosing a suitable mate. Recent findings point
to cognitive abilities underlying both ‘adaptive’ production and
evaluation of complex courtship displays (Boogert et al., 2008,
2011a,b; Ryan et al., 2009; Keagy et al., 2012). In this context,
cognitive style, i.e., the way an individual processes whatever
information about its same-sex or opposite-sex conspecifics,
is likely to have a substantial impact on its perception of
any sexual signals. Moreover, its cognitive style determines its
capability to evaluate these signals in a mate choice situation. For
instance, comparisons of individual problem solving capacities
within a species, especially while foraging, have shown positive
correlations with fecundity (Cole et al., 2012; Wetzel, 2017).
There is compelling evidence in a wide variety of taxa that females
appear to prefer males who are adroit problem solvers, i.e.,
they prefer those who presumably have better cognitive abilities
(mammals: Spritzer et al., 2005; Prokosch et al., 2009; Kavaliers
and Choleris, 2017; Silk and Kappeler, 2017; birds: Keagy et al.,
2009, 2011; Boogert et al., 2011b; Peters et al., 2014; Mateos-
Gonzalez et al., 2011; fish: Shohet and Watt, 2009; Minter et al.,
2017; Keagy et al., 2019). Hence, I anticipate that the females’
preference for males demonstrating superior cognitive abilities
will increase if females experience either direct and/or indirect
benefits through mating with them (Keagy et al., 2009; Boogert
et al., 2011b). If an individual shift in preference does indeed yield
the expected benefits and confers a reproductive advantage over
non-preferring females, this may hypothetically translate into an
evolutionary preference change across generations.

Mammals
In humans, superior cognitive abilities and innovativeness are
generally associated with affirmative (social, sexual) life outcomes
(e.g., Plomin and Deary, 2015). However, the association between
innovative problem-solving capabilities and their effects on
mate choice, reproduction and fitness in non-human mammals
is frequently neglected. Innovativeness facilitates survival in
complex or changing environments, and allows individuals to
explore and colonize novel habitats (Sol et al., 2005). Despite the
obvious ecological and evolutionary benefits of being innovative
(Laland and Reader, 1999; Nicolakakis et al., 2003; Reader and
Laland, 2003), variation within a species, between the sexes,
and across different species is only starting to be studied
in more detail. For instance, behavioral studies revealed that
primates and hyenas share similar socio-cognitive abilities.
Elevated levels of innovativeness compared to other carnivores
(Benson-Amram and Holekamp, 2012; Benson-Amram et al.,
2016) have been observed in wild vervet monkeys (Cercopithecus
aethiops) as well as in spotted hyenas (Crocuta crocuta). Aiming
to determine whether innovativeness might be an adaptive
trait in (female) spotted hyenas, Johnson-Ulrich et al. (2019)

analyzed innovativeness in problem-solving tests in 29 female
individuals and set these alongside long-term data on their
fitness, reproduction and survival. They found innovative females
to reproduce more cubs; however, their cubs showed a lower
probability of survival compared to the fewer cubs of non-
innovators. Hence, choosing a mate with superior cognitive
abilities seems to pay off initially, but does not translate into
an increased likelihood of passing on one’s genes to the next
generation in the long run. Huebner et al. (2018) examined
possible associations between body condition, survival rates,
individual cognitive performance on repetitive attempts to solve
a food extraction task (removing a sliding cover placed on
small boxes to access a food reward), and spatial learning
in a four-arm maze in wild gray mouse lemurs (Microcebus
murinus). The cognitive ability to adopt a newly discovered
technique to exploit novel food sources in times of scarcity
quickly could provide them with significant fitness advantages.
This pronounced ability should impress a female when observing
and, finally, choosing a mate, as she could derive better nurturing
of her offspring. However, neither the individuals’ cognitive
performance in both tasks correlated with each other, nor did the
performance correlate with the gray mouse lemurs’ survival rates
(Huebner et al., 2018).

Sociality within a cohabitant community or population is
also a relevant dimension in the context of cognition and
mate choice. Williams et al. (2020) examined the direct and
indirect effects of social position and individual behavioral
traits on solving a novel puzzle box in social yellow-bellied
marmots (Marmota flaviventer). Social relationships, the type of
interaction and the individual role (i.e., recipient or initiator)
significantly determined the way an individual interacted in
cognitive tests. Interestingly, living a very social lifestyle resulted
in lower reproductive success, increased hibernation mortality
and, consequently, lower survival rates in female but not in
male yellow-bellied marmots. Especially young females and their
offspring greatly benefited from larger social groups. Again, this
effect was not observed in males regardless of age (Montero
et al., 2020). Conversely, the strength of affiliation was negatively
associated with female annual reproductive success (Wey and
Blumstein, 2012). These findings clearly indicate that social
behavior, social and/or sex roles, and cognitive abilities not only
play an important role during mate choice and reproduction,
but also seem to translate in the probability of the own and/or
the offspring’s survival in a positive or negative way. Male
meadow voles defend large home territories against conspecific
rivals and their reproductive success is closely linked to finding
females to mate with. Indeed, the courting males’ spatial learning
ability is considerably more pronounced compared to their
conspecific females (Gaulin and FitzGerald, 1986, 1989; Galea
et al., 1996). As is the case with many rodents, they typically
leave their scent on prominent landmarks or along trails to
ensure that they are perceived by conspecifics of both sexes.
The scent marks provide various social information, such as sex,
reproductive state, health condition, or social rank. The odor
information targets different recipients (e.g., receptive females,
competitors or heterospecifics), who in turn classify its relevance
and value according to its phenotype, genotype, and intentions.
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Hence, depending on which animal encounters the scent mark,
it has to compare the social odor information with memorized
details and make various decisions relating to, for instance, mate
choice, same-sex competition, social olfactory communication,
or sperm distribution/competition. In addition to the availability
of mates and resources, the own fitness, age, sex, and social
position play a key role to ensure survival and to improve the
own fitness. As a result, a complex, associative social memory
develops to identify scent marks as being, e.g., from males
or females, as known or unknown, as sexually immature or
receptive. However, as scent marks of different animals may
overlap, complex supporting cognitive capabilities are required
to form appropriate associations and adapt behavior accordingly
(Ferkin, 2011, 2018).

Birds
Many studies on mate choice in birds focus on physical traits,
but aspects of individual personality and social alliances are also
receiving increasing attention. In particular, in long-lived avian
species, social alliances that form at pre-mature life stages (i.e.,
prosocial behavior) apparently lead to long-term social bonds
(parenthood, long-term cooperative pair and/or group behavior)
at a sexually mature age (Kaplan, 2020). Examples of prosocial
bird species, who are known for their exceptional cognitive
abilities, include jackdaws (Corvus monedula) (De Kort et al.,
2006; von Bayern et al., 2007; Schwab et al., 2012), Eurasian jays
(Garrulus glandarius) (Ostojić et al., 2013, 2014), rooks (Corvus
frugilegus) (Scheid et al., 2008), common ravens (C. corax) (Di
Lascio et al., 2013; Massen et al., 2015), or even African gray
parrots (Psittacus erithacus) (Péron et al., 2013). In this context,
sociality including its cognitive and affective dimensions, and
mate choice might play a key role in birds in terms of a ”pre-sexual
attachment to a potential mating partner” (Kaplan, 2020).

In a wide range of avian species, strong relationships were
discovered between the length of parental brood care and
brain size, raising suggestions of related enhanced cognitive
capabilities. These suggestions were supported by observations,
for instance, in several corvids, bowerbirds, albatrosses, and
cockatoos, which revealed prolonged parental guidance just
until the first own brood to be an essential component in the
acquisition of social and cognitive skills (Kaplan, 2020). To
give an example, the sexual display of male song is generally
considered a sex-specific social behavior that is learned prior to
sexual maturity and presumably requires elevated cognitive skills
in both sexes (Boogert et al., 2011b; Peters et al., 2014; Anderson
et al., 2017). Most bird song research has been performed
assuming that songbirds have evolved complex song repertoires
due to the pressure of sexual selection on males that arises from
both competition between males and female choice (Beecher
and Brenowitz, 2005; Byers and Kroodsma, 2009). Interestingly,
learned aspects of song have been found to alter female mating
preferences in various songbird species (DuBois et al., 2018),
although females usually do not sing themselves. It is important
to note, however, that females of more than two-thirds of all
songbird families also sing in contexts such as tropical dispersal,
territoriality, convergent sex roles, and sexual dichromatism.

In many species, however, females have lost song secondarily
(compare Odom et al., 2014 for review).

Several studies on the relationship between a male’s vocal
repertoire and various cognitive processes try to determine
whether the male’s song may provide conspecific females with
information on his cognitive abilities (Boogert et al., 2011b;
Sewall et al., 2013; Anderson et al., 2017). So, sex roles
appear to be clearly assigned in many songbird species: while
males sing as part of their courtship display, females listen
to and evaluate the quality of the males’ song. Although
the neuronal prerequisites that guide the complex process of
singing and song composition in male and female songbirds
are well understood (Nowicki et al., 2002; Gobes and Bolhuis,
2007; Mooney, 2009; Jin, 2013; Sewall et al., 2013; Geberzahn
and Aubin, 2014; Odom et al., 2014), there is still a lack of
understanding of the relationship between song learning and
other cognitive processes (Anderson et al., 2017) in the context
of mate choice. Female songbirds prefer males presenting a
larger vocal repertoire (Searcy, 1984; Lampe and Saetre, 1995)
and song is deemed an honest signal of male quality and
fitness measures. In male song sparrows (Melospiza melodia),
song repertoire size correlates positively with an array of
fitness traits comprising territory ownership, heterozygosity,
immune system quality, longevity, and lifetime reproductive
success (Reid et al., 2005; Boogert et al., 2011a). In a 20-
year-long-term study, Reid et al. (2005) analyzed data from
free-living male song sparrows (M. melodia) in terms of song
repertoire size and the number of independent and recruited
offspring and grandoffspring. The larger the song repertoire
was, the longer-lived the males were and the greater was their
reproductive success extending into the next and even the
succeeding generation. Wild female song sparrows (M. melodia)
prefer males with a rich vocal repertoire, which also correlates
with various fitness measures (e.g., song repertoire size and
different motor, color association, reversal learning or detour-
reaching tasks tested in captivity, Boogert et al., 2011a,b; DuBois
et al., 2018). Moreover, song complexity as a sexual signal
has been linked to male zebra finch performance in a novel
foraging task (Taeniopygia guttata castanotis, Boogert et al.,
2008). Conversely, Sewall et al. (2013) challenged song sparrow
males (M. melodia) in a spatial memory task and discovered an
inverse relationship between spatial memory performance and
male vocal repertoire.

Associations between song repertoire size and cognitive
performance were examined in wild song sparrows (M. melodia).
Initially, males’ song repertoires were recorded in the field.
Subsequently, these males were tested in motor, color association
and reversal learning, and detour-reaching tasks (Boogert et al.,
2011a,b). The individuals’ color association performance was
positively correlated with their performance in the subsequent
reversal task. Interestingly, their performance did not correlate
with the other learning tasks they were challenged with.
Nevertheless, males having a wider song repertoire were able to
solve difficult tasks in a shorter period of time, but performed
poorly in the reversal task compared to males having a
more limited song repertoire (Boogert et al., 2011a,b). Yet,
results remain inconclusive as no correlations were observed in
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laboratory-raised song sparrows following the same experimental
agenda (Anderson et al., 2017). In a recent study, a group of
49 swamp sparrows (Melospiza giorgiana) was examined for
their song quality (i.e., repertoire size, vocal performance, song
learning; DuBois et al., 2018). Subsequently, song quality was
compared to the performance in five different cognitive tests,
comprising a novel foraging task, a color association and a
reversal task, a spatial learning task, and a detour-reaching
task. Unexpectedly in the context of the previous study by
Boogert et al. (2011b), none of the song parameters were
considered indicative of any cognitive performance level. Hence,
these findings contradict the hypothesis on song properties
indicating overall cognitive abilities in swamp sparrows (DuBois
et al., 2018). Likewise, no associations between song repertoire
and cognitive performance (detour reaching, spatial memory)
were obtained when testing wild North Island robins (Petroica
longipes), which are a foraging species, admittedly with a quite
different ecology than sparrows (MacKinlay and Shaw, 2019). In
summary, there remains controversy about the phenomenon of
bird song and its implications for cognitive mate choice (compare
Searcy and Nowicki, 2019 for review).

However, several studies on different bird species attempted
to investigate associations between cognition and mate choice
from different perspectives. In food caching New Zealand robins
(P. longipes), males’ memory performance in a spatial task
during winter severely influenced their subsequent breeding
success. Individuals with higher performance levels produced
more fledglings and, subsequently, more independent offspring
per nesting attempt. Males with superior memory performance
spent more time in flight while foraging and provisioning,
and, additionally, provided their chicks with an increased
share of large prey items. These effects were absent in
female robins (Shaw et al., 2019). Male bowerbirds spend
a considerable amount of time building their bowers to
attract females and convince them to mate. Several studies
revealed that the male satin bowerbirds’ mating success was
positively associated with their problem−solving performance
and aggregate measures of their cognitive ability (Keagy
et al., 2009, 2011). The males were challenged with six
different cognitively challenging tasks, including two problem-
solving tasks, one mimetic repertoire task and three bower-
rebuilding tasks. Although no correlations between the males’
performances in different tasks were observed, females chose the
overall well-performing males, thereby apparently considering
information about several behavioral display traits (Keagy
et al., 2012). However, Isden et al. (2013) reported conflicting
observations by finding no relationship between performance on
cognitive and problem-solving tasks and mating success in male
spotted bowerbirds.

Two studies, one using zebra finches (T. guttata castanotis;
Chantal et al., 2016) and the other using budgerigars
(Melopsittacus undulatus; Chen et al., 2019) explored
whether females would modify their mating preference
after having observed the cognitive performance of males in a
problem-solving task:

Initially, zebra finch females were challenged with a set of two
males to assess their spontaneous preference for one or another

(Chantal et al., 2016). Then, both zebra finch males (i.e., the
preferred and the unpreferred one) were trained to open a tube
by removing the lid to access a food reward (Chantal et al., 2016).
In order to manipulate their success, one male (the previously
unpreferred male, now assigned to be the ‘solver’) was challenged
with a tube the lid of which was pressed only halfway and which
could be easily opened. The other male (the previously preferred
male, now assigned to be the ‘non-solver’) was challenged with a
tube the lid of which was fully pressed and, thus, was impossible
to open. Subsequently, females were allowed to observe both
males being challenged with the tube-opening task. In contrast
to the first preference test, females preferred the solvers, i.e.,
the previously unpreferred males in the final second preference
test. To determine (a) whether females were able to discriminate
between both males and (b) whether the males’ problem-solving
abilities had in fact triggered the shift in female preference, all
birds took part in a color association task. Females were well able
to discriminate visually between the presented males, and their
preference was found to be independent of the males’ learning
rate in this task. Considering the results of both tasks in a shared
context, zebra finch females were found to significantly prefer the
most skillful (i.e., the initially unpreferred) male in both tasks. As
males differed in their feeding rates in both treatments, females
appeared to use the males’ foraging efficiency as an important
criterion when choosing a mate (Chantal et al., 2016).

The other study (Chen et al., 2019) followed a similar
experimental design, in which budgerigar females were
challenged initially with a set of two males to assess their
spontaneous preference for one or another as well. Then, non-
preferred male budgerigars were trained to open transparent
boxes containing seeds. Meanwhile, the preferred males and
females were exposed to already-opened containers, so they could
not attempt to solve the following foraging task. Subsequently,
each female was allowed to observe the trained (but initially
unpreferred) males repetitively opening the boxes, while the
untrained (but initially preferred) males failed. In consecutive
second preference test trials, females changed their social
preferences in favor of the successful, formerly unpreferred
males. Control tests suggested that the females’ preference shift
did not only reflect the observation of trained males feeding
on seeds, i.e., the males’ ability to provide food. Furthermore,
females showed no preference for other females trained to open
the seed boxes, indicating that the main finding related to an
intersexual context (Chen et al., 2019).

However, even with these two carefully designed studies,
which have yielded impressive results, we cannot be entirely
convinced that cognition was the main factor in the females’
choice. First, neither zebra finch nor budgerigar females were
allowed to attempt the problem-solving tasks (i.e., zebra finches
opening tube lids or budgerigars opening boxes) themselves.
Yet, in order to be able to evaluate and, subsequently, rank
the males’ individual abilities in solving a particular task, the
judge herself needs to be aware of the complexity of the task
she is now meant to assess. It is therefore difficult to predict
the extent to which the zebra finch or budgerigar females were
able to assess the cognitive aptitudes of the males performing
the test. Second, neither zebra finch nor budgerigar females were
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allowed to observe the males while learning and, thus, examine
differences in the males’ learning processes. Hence, females
exclusively witnessed the output of the preceding training, which
was attended only by a selection of the males. Third, the zebra
finch and the budgerigar males’ success in problem solving was
manipulated in both studies, either by closing the tubes at varying
degrees of tightness (Chantal et al., 2016) or by training only
the unpreferred males (Chen et al., 2019). Instead of assessing
cognitive problem-solving abilities, the observing females may
have interpreted the differences in males’ ability to access the
containers as differences in the males’ physical strength (Striedter
and Burley, 2019). Indeed, the training itself could have had
an impact on the males’ behavior. Different degrees of training
might have also been a reflection of different levels of male self-
confidence or audacity in approaching the task in the female’s
presence, which, potentially, could have influenced her choice.
For instance, the trained (initially unpreferred) males may have
acted more keenly when handling the tubes or containers since
they were already acquainted with the experimental setting,
while the inexperienced (but initially preferred) males were not.
Hence, this raises the question of the extent to which personality
traits such as boldness, shyness, retentiveness, or self-confidence,
i.e., an individual’s cognitive style play an important role in
(a) approaching cognitive tasks, and in (b) assessing cognitive
abilities by potential mates. Camacho-Alpízar et al. (2020) added
another perspective by questioning whether successful problem-
solving can be linked to cognitive abilities at all, as “non-cognitive
factors (e.g., persistence) are often correlated with problem-solving
success”.

Fish
Beyond mammals and birds, an increasing number of studies
addresses the role of cognition in mate choice of various
fish species. Relative to all vertebrate taxa, fish do not only
represent the greatest species diversity, but also inhabit the most
diverse physical and social environments. They are characterized
by the greatest variation in brain anatomy of all vertebrates.
This gives them the neuronal basis for different levels of
behavioral plasticity in response to their environment. In turn,
this suggests, hypothetically, an equivalently wide variety of
cognitive traits relating to social interactivity and mate choice.
Many fish species can flexibly adapt their physiology and behavior
to cope better with challenging environmental conditions. In
fact, a major component of this flexibility is supported and
influenced by both cognition and neuronal plasticity (Ebbesson
and Braithwaite, 2012; Herczeg et al., 2019). Novel foraging
information propagates considerably faster between female
guppies than between males, possibly because the reproductive
success of female guppies is inherently more strongly linked to
resource availability than it is the case for male guppies (Reader
and Laland, 2000). Male guppies (P. reticulata) were trained
to solve two different mazes to obtain a food reward (Shohet
and Watt, 2009). Subsequently, female guppies were allowed
to repeatedly observe several different trained males orienting
within the maze. Consecutive mating preference tests as well
as the time it took a male to learn both mazes were used to
determine a possible association between the females’ preferences

and the males’ learning ability. Indeed, the observing females
preferred the faster-learning males, who they judged to be more
attractive than the slow learners in subsequent mating preference
tests. Furthermore, the females’ preference was not related to
the males’ body size or coloring, although males of a stronger
orange color solved the tasks faster than their less colorful peers.
Similar to the bird studies (Chantal et al., 2016; Chen et al., 2019),
guppy females were unfortunately not allowed to observe the
males while learning to pass through the mazes, nor were the
females themselves challenged with any maze in order to be able
to judge the level of difficulty and/or the males’ performance.
Consequently, we cannot fully reject the objection that females
may have taken into account any other, unmeasured traits such as
the males’ display rates (Matthews et al., 1997; Kodric-Brown and
Nicoletto, 2001) or the males’ general mobility (Van Oosterhout
et al., 2003) to base their preference on. Results were supported by
findings in sailfin tetras (Crenuchus spilurus) using a comparable
test paradigm. At the same time, the highly ornamented males
were considerably more neophobic than their less ornamented
rivals, presumably because they experience greater predation
pressure while also having a higher predicted fitness payoff (da
Silva Pinto et al., 2021). Accordingly, sexual selection by means
of female preference seems to result in greater cognitive abilities
of smart, beautiful males, whereby cognition is becoming a vital
part of their attractiveness to females.

A study on male threespine sticklebacks (Gasterosteus
aculeatus) examined a very different aspect of cognition, namely
inhibitory control, which may possibly be related to male sexual
signals (Minter et al., 2017). Inhibitory control describes a
cognitive process, which enables an individual to inhibit its
natural, habitual, or dominant behavioral response to certain
stimuli for adopting a more appropriate behavior to meet its
intended goals (Hauser, 1999; Boogert et al., 2011b; Bray et al.,
2014; Rystrom et al., 2019). In threespine sticklebacks, males
provide all parental brood care, but at the same time, they need to
avoid eating their own fry that closely resemble their prey. Hence,
males with better inhibitory control would be more successful in
rearing their offspring, resulting in higher fitness levels. Initially,
male sticklebacks were challenged with a detour-reaching task.
Subsequently, the males were assessed for their sexual signals
(coloration, nest area and courtship vigor) to determine whether
this visual information would reveal the males’ cognitive abilities,
which proved not to be the case. Females preferred to mate with
males that showed better initial inhibitory control, suggesting
that females possibly consider this male trait as a crucial trait for
mate choice (Minter et al., 2017). Keagy et al. (2019) reported
similar results, revealing that neophobia differences between
both sexes allowed male threespine sticklebacks to consistently
outperform females in a detour task. However, unlike female
sticklebacks, who preferred cognitively superior males (Minter
et al., 2017), male sticklebacks did not express this preference
when choosing females (Keagy et al., 2019). Hence, we may
derive two possible lessons: either males merely disregarded
the females’ cognitive performance in the present task when
courting a female to mate with or the chosen detour task did
not adequately reflect their preference for aspirational female
cognitive skills.
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In answering the first key question ‘Do cognitive skills
guide an individual’s mate choice and, ultimately, does learning
change an individual’s decisions?’, we can conclude that (a)
sexes differ in their cognitive abilities depending on the given
challenge, presumably because of the different roles they play
within their social community. This suggests that the cognitive
processes governing their mate choice decisions will also differ.
Moreover, we can deduce that (b) cognitive abilities indeed have
a considerable influence on individual mate choice decisions in
species across different taxa, and (c) the males’ displays of learned
behavioral patterns alter the females’ mate choice decisions. We
can draw these conclusions for three large vertebrate taxa – i.e.,
mammals, birds and fish. Further research should aim to expand
our knowledge to amphibians and reptiles, which have been less
extensively examined in this field so far.

Preference for Mates Demonstrating
Superior Cognitive Skills
Given the current state of research as discussed above using
numerous mammal, bird and fish examples, we still struggle to
answer the second key question: ‘How and to which extent do
individuals use their own cognitive skills to assess those of their
conspecifics when choosing a partner?’. Compared to their inferior
conspecifics, cognitively superior individuals are frequently
preferred as mates in various species across different taxa (e.g.,
crossbills, guppies, or humans; Keagy et al., 2009; Shohet and
Watt, 2009; Snowberg and Benkman, 2009; Miller, 2011). Yet,
it has rarely been investigated whether the cognitive ability
per se increases the potential mate’s attractiveness or whether
the candidate appears to be in a better (physical) condition
on account of his or her cognitive abilities, e.g., to be able to
access better food sources (Riebel, 2011; Boogert et al., 2011b).
Moreover, we cannot safely predict whether cognitive abilities
are reflected in observable (e.g., visible) physical attributes, as
seems to be the case, for instance, with nutritional status, parasite
prevalence, immune competence, or social rank. Mate choice
plays a key role in sexual selection, with significant fitness
consequences and, presumably, profound cognitive challenges.
Remarkably, however, only a limited number of studies has
determined the importance of the cognitive abilities of the
choosing individual to date. For instance, in food-caching wild
mountain chickadees, males with superior spatial learning and
memory abilities had larger clutches and greater numbers of
fledged young. At the same time, superior female spatial learning
and memory capabilities resulted in fledglings with greater
body mass. These effects were not observed reciprocally. The
disparity in reproductive investment among females appeared
to reflect individual variation in spatial memory abilities on
the one hand, and to integrate both their own and their
mate’s superior cognitive abilities on the other (Branch et al.,
2019). When challenging female threespine sticklebacks with a
spatial learning task and its reversal, cognitively more flexible
females were observed to devote more time to assess prospective
male partners in a dichotomous mate choice task. However, it
were these highly motivated females, who made more mistakes
at the beginning of a reversal phase, which may be due to

them developing faster or more robust problem-solving routines
and, subsequently, adapting more slowly to new conditions.
Nevertheless, they were ultimately faster in relearning the task
(Rystrom et al., 2019). Another study examined the learning
accuracy of male and female rose bitterlings (Rhodeus ocellatus)
in a spatial learning task in terms of the males’ reproductive
success (Smith et al., 2015). Following the spatial orientation task,
males participated in competitive mating trials, in which they
either played the role of a guardian or of a sneaker male. When
evaluating the males’ reproductive success via paternity analysis
in association with their learning rates, high-performing sneaker
males produced the most offspring. Subsequently, this learning
ability was revealed hereditary to the offspring, which suggests
that cognitive acuity may be subject to intra-sexual selection
(Smith et al., 2015). Interestingly, superior cognitive abilities in
spatial memory of male lekking long-billed hermits (Phaethornis
longirostris) were favored by female choice and, consequently,
played a crucial role in male mating success. Superior males
were more likely territorial and the structure of their mating
vocal signals was more consistent compared to their inferior
male conspecifics. In summary, enhanced spatial memory as a
measure of male superior cognitive ability is as important to
female lekking hummingbirds as weapon (i.e., beak tip length)
and body size and strength (i.e., weight lifting during vertical
flight) are to territory ownership when choosing a mate to pair
with (Araya-Salas et al., 2018).

The level of an individual’s cognitive ability is frequently
associated with its brain size (e.g., larger brains provide enhanced
cognitive abilities). Aiming to examine the cognitive capabilities
of guppies (P. reticulata) involved in mate assessment, Corral-
López et al. (2017) hypothesized that guppy females with
smaller brains would have lower cognitive capabilities than their
larger-brained conspecifics, causing their mate choice to differ.
Therefore, both small- and large-brained females were subjected
to cognitive tests for color discrimination, condition, swimming
ability and optomotor response, in which no differences were
observed. However, the two groups differed significantly in their
mate choice decisions regarding mate quality assessment. The
authors concluded that limited cognitive abilities could be among
the reasons why an individual may be either able or limited in
its ability to assess the quality of a prospective mate. Although
no direct association between male brain size and their overall
sexual behavior was observed (Corral-López et al., 2015), males
with comparatively larger brains were considerably better at
discriminating differently sized females in the context of mate
choice (Corral-López et al., 2018).

MATE CHOICE, COGNITION AND
PERSONALITY

Adding to the complexity of the picture, an individual’s cognitive
abilities and mate choice decisions decisively determine its
personality and vice versa. However, this review does not
aim to recount studies and arguments on this broad topic
in detail. Therefore, I will address this exciting topic only
briefly by describing a few fish examples. Shortly, the concept
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of ’personality’ covers at least three domains, comprising
(1) ”contextual generality” at a particular age or moment of
time, (2) ”temporal consistency” in and between the assessed
personality traits, and (3) the impact of ”genes and experience”
on personality development throughout an individual’s life-
history (Stamps and Groothuis, 2010; Kaiser and Müller, 2021).
Concisely, ‘personality’ is generally considered a ”consistent
between-individual variation in clusters of behavioral traits
independent of factors such as age or sex” (Mather and Carere,
2019). The growing body of evidence suggests that an animal’s
personality contours both its cognitive style and performance
as a function of the relevant ‘cognitive domain’. For instance,
an animal can approach a given task quickly and boldly, or,
alternatively, slowly and cautiously, while possibly acting more
precisely. These behavioral patterns have been and are still used
to anticipate an individual’s performance. The nature of the
task, i.e., which cognitive domain should be addressed (e.g.,
spatial learning or memory, color discrimination, counting)
also plays a pivotal role. An increasing number of studies
attempted to establish a link between these facets (e.g., Carere
and Locurto, 2011; Sih and Del Giudice, 2012; Guillette et al.,
2017; Dougherty and Guillette, 2018; Wallace et al., 2020).
Yet, animal personality traits have been reported in a variety
of both vertebrates (mammals: Malmkvist and Hansen, 2002;
Sih and Bell, 2008; Réale et al., 2009; birds: Groothuis and
Carere, 2005; Portugal et al., 2017; reptiles and amphibians:
Cote et al., 2008; Kelleher et al., 2018; Sih et al., 2018; fish:
Toms et al., 2010 for review; Kareklas et al., 2016; Jolles et al.,

2019) and invertebrates (ground beetles: Labaude et al., 2018;
cuttlefish: Zoratto et al., 2018, bees: Walton and Toth, 2016;
cockroaches: Stanley et al., 2017; compare also Mather and
Logue, 2013 for review). In addition to influencing an individual’s
cognitive style and performance, the courting and the choosing
individuals’ personalities frequently affect mate choice decisions.
Thereby, different personality types and, possibly, different
social and/or sex roles may persist within populations (e.g.,
paternal, maternal or joint brood care and feeding of the young,
paternal defense of the nest and/or the caring partner, territory
marking, averting of predators). Darwin (1871) already noted
that “when we behold two males fighting for the possession
of the female, or several male birds displaying their gorgeous
plumage, and performing strange antics before an assembled
body of females, we cannot doubt that, though led by instinct,
they know what they are about, and consciously exert their
mental and bodily powers. [. . .] Our difficulty in regard to
sexual selection lies in understanding how it is that the males
which conquer other males, or those which prove the most
attractive to the females, leave a greater number of offspring
to inherit their superiority than their beaten and less attractive
rivals”.

There is still very little information on how the triad of
mate choice, cognition and personality interacts in the light
of the sexes’ roles yet. Considering the key questions of
this review, suffice it to say that the personality phenotypes
of the interacting individuals and, by implication, assortative
or disassortative mate choice strategies appear to play an

FIGURE 1 | Mate choice, cognition, and social roles converge on social cognition, cognitive mate choice, and sex roles, which are mutually dependent on one
another as well as on various powerful determinants, and represent important determinants of sexual selection.
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intriguing role in many taxa. Depending on a species’ respective
environmental conditions, assortative mate choice of similarly
behaving individuals or disassortative mate choice of apparently
antagonistic, but complementary behaving individuals may be
favored (mammals: e.g., Ihara and Feldman, 2003; Massen and
Koski, 2014; Rangassamy et al., 2015; Martin-Wintle et al., 2017;
birds: e.g., Both et al., 2005; van Oers et al., 2008; Schuett et al.,
2011; Gabriel and Black, 2012; Horton et al., 2012; Fox and
Millam, 2014; Pogány et al., 2018; Clermont et al., 2019; Collins
et al., 2019; fish: e.g., Ariyomo and Watt, 2013; Laubu et al.,
2017; Scherer et al., 2017; Schweitzer et al., 2017; Chen et al.,
2018; invertebrates: e.g., Kralj-Fišer et al., 2013; Montiglio et al.,
2016; Baur et al., 2019). This could be a decisive competitive
advantage both genotypically and phenotypically in the context of
bi-parental brood care. From this brief glimpse into the complex
world of cognition, personality and mate choice, we can imagine
the extent to which these three dimensions (a) influence each
other, (b) influence sex roles within a mating system and, in turn,
(c) are influenced by sex roles depending on the (social/sexual)
context (but compare Munson et al., 2020 for an comprehensive
review on mate choice and behavioral types).

CONCLUSION AND FUTURE
PERSPECTIVES

This review sought to answer a number of key questions.
Aiming to answer the first question, ‘Do cognitive abilities
guide an individual’s mate choice and, ultimately, does learning
alter an individual’s mate choice decisions?’, evidence was
provided to support the strong influence of an individual’s
role, determined by its sex, social status, mating system, and
cognitive performance on mate choice decisions. Additionally,
the males’ displays of learned courtship seem to alter the
females’ mate choice decisions. Subsequently, findings gave rise
to further questions: ‘How and to which extent do individuals
use their own cognitive skills to assess those of their conspecifics
when choosing a partner?’, and ‘How does an individual’s role
within the mating system influence the choice of the choosing
sex in this context?’. Sexual selection and mate choice take
place within a complex framework of an animal’s social
interactions. Several determinants such as environmental
conditions, cognitive abilities, dominance hierarchies, family
bonds, age, or sex of the individuals involved markedly affect
these interactions. The determinants, in turn, depend on an
individual’s social role and, more precisely, the distinct role
of its sex in its social surroundings. Additionally, attentional,
motivational, sensory and perceptual mechanisms depend
on the corresponding neuronal prerequisites inherent to
every individual. These mechanisms are known to exhibit
substantial differences between sex and species, but are
vital (a) to survival, cooperation and reproduction, and
(b) to social interaction (Figure 1). The role of learning
in the acquisition of traits that are targets of mate choice
and the consequences of superior cognitive capabilities on
this central evolutionary process were carefully elucidated.
In this context, males and females may possibly resort to

divergent optima in their (domain-specific) cognitive traits,
which are shaped by different life history strategies and
different experiences at different life stages. However, any
individual regardless of sex and social role could potentially
be limited in achieving its best cognitive performance
due to social constraints and/or sexual conflicts within its
mating system.

Sex-role inversed species constitute another yet understudied
dimension to this review’s topic. In role-inversed species such as
pipefish or seahorses, males provide the higher investment in the
offspring by carrying eggs internally. Similar to the conventional
mating systems that have been discussed so far, males choose
depending on the female’s body size and the intensity of her
courtship display (Berglund et al., 1986a,b; Vincent et al., 1992;
Berglund and Rosenqvist, 2003; Barlow, 2005; Berglund et al.,
2005). In these species, females are likely to be the brighter, more
colorful sex. However, the social framework and the physiological
prerequisites underlying the development of these role reversals
have been and remain widely discussed (e.g., Beal et al., 2018;
Mobley et al., 2018; Anderson et al., 2020; Lipshutz and Rosvall,
2020). Possible interactions between their mate choice and the
impact of superior or inferior cognitive abilities of the choosing
or the chosen sex constitute fascinating future research topics.

Benefiting from many examples mostly from three major
vertebrate groups, this review summarizes a large number of
studies that attempt to elucidate many different aspects relating
to cognitive sex differences, the different roles of males and
females in social and sexual interactions, and the potential
influence of cognition on mate choice decisions. Nevertheless,
the central question of how this triad interacts remains partially
unanswered. Most studies commence with a first mate choice
test to discriminate preferred and unpreferred potential mates.
Subsequently, the unpreferred individuals of the sex to be chosen
are trained in any type of problem-solving task. Following
the presentation of their acquired skills, a second mate choice
test is performed to reveal a potential preference shift in the
choosing sex. There is virtually never an equal training of both
potential mates (i.e., preferred and non-preferred individuals)
or of the individuals of the choosing sex in the assigned task.
However, this approach does not take into account any possible
reflection of cognitive abilities in distinct physical, physiological,
or morphological characteristics or in specific behavioral patterns
that are not known to us yet but may well be perceived by the
selecting sex of the observed test species. Thus, if only a subset
of individuals performing a particular role receive training, this
may inadvertently but disturbingly bias test results caused by
an inadequate testing paradigm. Having said that, are animals
even capable of accurately judging the cognitive abilities of
potential mates in solving a particular task if they themselves
have never learned the task they now assess? How should they
judge the degree of difficulty and assess the problem-solving
skills of a potential mate they do not even know themselves?
Therefore, prior to the second mate choice test, all participants,
regardless of the role assigned to their sex (i.e., choosing or
courting sex in their respective mating system), should be trained
to test their performance and assess their cognitive abilities.
Accordingly, the choosing sex should be trained to solve the
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task (e.g., opening a feed box or navigating in a maze) to allow
them to determine the difficulty of the given task. Only then
should the choosing sex observe the learning progress of the
courting sex to assess the learning ability of the prospective
mates. Finally, a second mate choice test should determine
a possible shift in preference. Additionally, carefully designed
neurobiological experiments should help to unravel the neuronal
involvement, processes, mechanisms as well as the molecular
basis for cognitive mate choice, taking into account the different
roles males and females play in social and sexual contexts (e.g.,
male/ male-, female/ female-, female/ male-, parent/offspring-
interactions). Brain development, cognitive plasticity, and the
plasticity of social and (sexual) incentive cooperation could have
a crucial influence, as not all mate choice decisions are driven by
competition exclusively.
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