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In digital evolution, populations of computational organisms evolve via the same

principles that govern natural selection in nature. These platforms have been used to

great effect as a controlled system in which to conduct evolutionary experiments and

develop novel evolutionary theory. In addition to their complex evolutionary dynamics,

many digital evolution systems also produce rich ecological communities. As a result,

digital evolution is also a powerful tool for research on eco-evolutionary dynamics.

Here, we review the research to date in which digital evolution platforms have been

used to address eco-evolutionary (and in some cases purely ecological) questions. This

work has spanned a wide range of topics, including competition, facilitation, parasitism,

predation, and macroecological scaling laws. We argue for the value of further ecological

research in digital evolution systems and present some particularly promising directions

for further research.

Keywords: digital evolution, eco-evolutionary dynamics, competition, predation, multi-trophic communities,

crossfeeding

1. INTRODUCTION

Over the past decade, researchers have become increasingly aware of the profound impact
that ecological and evolutionary dynamics have on each other (Schoener, 2011; Hendry, 2016).
Ecological interactions shape the underlying fitness landscape that is traversed by evolving
populations. At the same time, evolutionary forces continually adjust the composition of organisms
that make up that ecosystem. As such, ever-shifting fitness landscapes and fluctuating ecosystems
continually fuel each other’s change.

At the heart of these dynamics is diversity. Evolution requires diversity within a group
for selection to act upon; low-diversity populations typically have low evolutionary potential
(McDonald and Linde, 2002; Lavergne and Molofsky, 2007; Walker and Ofria, 2012). Ecosystems,
by definition, are made up of diverse species and one of the fundamental questions in ecology
is how a multitude of species can stably coexist. Ecosystems that are more diverse are generally
more stable, productive, and resilient (Hooper et al., 2005; Tilman et al., 2014). In both ecology
and evolution, there are some processes that should clearly reduce diversity and some that
should promote—or at least preserve—it. A better understanding of these processes is critical
to creating predictive theory for how evolving systems will respond to perturbations. Such
theory will improve our ability to anticipate changes in the natural world, restore faltering
ecosystems, or engineer novel microbiomes to improve human health. A current lack of strong
theoretical foundations has imperiled our remediation efforts, and sometimes led them to backfire
(Suding, 2011; Catalano et al., 2019).
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However, untangling these dynamics has proven challenging.
They are governed by a web of feedback loops, stochastic events,
and emergent properties. Often simply adding a property, such
as spatial structure, to a system will completely change the
outcome (Doebeli and Knowlton, 1998; Vostinar and Ofria,
2019). To add further complications, these processes often
play out over vast spatiotemporal scales, making them difficult
to manipulate in a controlled experiment. As such, digital
organisms are a valuable model system for understanding these
complex dynamics (Adami, 2002). They allow us to untangle
feedback loops by performing experiments in which we disable
focal processes. For example, sometimes it would be useful to
disentangle the effects of ecological and evolutionary dynamics so
that we can understand the exact factors that produced a result.
In a wet lab or field system, experiments that require such a fine
level of manipulation are intractable. However, in a digital system
mutations can be disabled with the flip of a switch (ecologymode)
as can interactions among organisms (evolution mode). Another
obstacle to understanding eco-evolutionary dynamics is that
evolution experiments often require thousands of generations.
Even for rapidly-reproducing organisms like bacteria, it takes
nearly a year just to reach 2000 generations (Wiser et al., 2013),
but most digital evolution systems can reach this milestone
in less than an hour. Similarly, collecting ecological data at
a high enough resolution to answer many questions is labor-
intensive in biological systems, but can be automated in their
digital counterparts. The speed and pellucidity of digital systems
enables us to test our intuition in near real-time, allowing us to
form precise questions before investing the time to conduct a
well-targeted laboratory experiment.

1.1. The Spectrum of Study Systems
We can situate field research, laboratory experiments, and
digital evolution along a continuum (see Figure 1). The richest
ecological and evolutionary dynamics are found in nature, and
can be studied via field research. However, field research is
accompanied by the aforementioned challenges with replication,
sample size, and precisely measuring variables of interest.
Laboratory experiments trade some of the richness of the field
for increased experimental tractability. For most purposes, digital
evolution platforms are a step further along this continuum.
However, they hardly represent an extreme; other mathematical
and computational systems are even faster and more tractable,
with the necessary side effect of being more abstract.

The next step toward speed/transparency/abstraction are
simulations. Like digital evolution, simulations are computer
programs in which ecological and/or evolutionary dynamics
play out. However, simulations are simpler and more targeted
at a specific question or real-world system. Indeed, the goal
of a simulation is usually to predict which of a limited set of
outcomes will occur in a given real-world scenario, while digital
evolution systems strive for open-ended dynamics and outcomes.
Simulations may be individual-based like digital evolution, or
they may focus on a different level of abstraction. Because
simulations and digital evolution are both broad categories that
span a considerable range of the speed/transparency/abstraction
continuum, the boundary between them can sometimes be

fuzzy. In the context of computational evolution research,
the fundamental distinction between simulations and digital
evolution is that simulations study changes in the frequency of
predefined traits whereas digital evolution systems instantiate
evolution (Pennock, 2007).

Lastly, there are mathematical models. These are generally
written in pure math and are maximally fast, transparent, and
abstract. When they are able to capture the relevant dynamics
of a system, they are an incredibly powerful tool. However,
constructing amathematical model generally requires abstracting
away many of the intricacies found in systems with more natural
dynamics (Adami et al., 2016). Such simplification is necessary
and important, but there is an inherent risk of excluding
dynamics that turn out to be essential. Dynamics that are
known to be important, but are often excluded for the sake of
model tractability include spatial structure, low-level organism-
organism interactions, and the capacity for subtle variations
among individuals across a population. Mathematical models are
also a broad category (which overlaps with simulations), with
different types of models serving different purposes and falling
at different points along the speed/transparency/abstraction
continuum (Evans et al., 2013).

Ultimately, all of these types of systems complement each
other. Testing the predictions of a mathematical model in a
digital evolution system gives us added confidence that the model
is a useful abstraction. Similarly, exploring a concept in a digital
evolution system can help us gain useful intuition for crafting
experiments in a laboratory or field system before we put months
or years into data collection. Conversely, a hypothesis to explain
an unexpected outcome in a laboratory experiment might lead us
to build a simulation to test that hypothesis. Such synergies exist
between all steps along the continuum. Each is a useful tool in
our toolbox.

1.2. Why Use Digital Evolution to
Understand Eco-Evolutionary Dynamics in
Biology?
We argue that digital evolution systems have a number of
properties that make them well-suited to the task of studying
eco-evolutionary dynamics:

1.2.1. Digital Evolution Systems Are Individual-Based
Because digital evolution systems are instantiations of evolution
(as opposed to merely simulating evolutionary dynamics)
(Pennock, 2007), they are necessarily individual-based. Each
member of the population is an individual with some amount
of agency, allowing for a broad range of survival traits to
evolve. Experiments are conducted by modifying the rules
governing the behavior of individuals or their interactions with
each other and the environment. This approach is in contrast
to systems that represent the population at a more abstract
level, such as a Gaussian distribution of trait values or as a
set of categorical traits. In these non-individual-based systems,
experiments aremore often performed by changing the equations
that govern how the population changes over time. These
two approaches generally target different levels of abstraction.
Because digital evolution systems try to avoid introducing any
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FIGURE 1 | Continuum of study system richness vs. ease of interpretation. In choosing a system in which to study ecological or evolutionary questions, there are

inherent trade-offs to be made. As systems become more abstract, they can be made faster and easier to interpret. However, they may fail to capture important

aspects of the dynamics observed in nature. Conversely, systems with dynamics that better reflect nature are more challenging to study. Indeed, study systems at all

points along this continuum can provide useful insights into different aspects of ecology and evolution.

preconceptions about the range of potential outcomes that could
result from a given set of starting conditions, individual-based
models are more appropriate in cases where the cumulative
impact of individual behavior can lead to complex and nuanced
population-level effects.Most open questions in eco-evolutionary
dynamics fall squarely into this category, as they largely concern
the large-scale trends that result from simple rules governing
interactions between a large number of individuals.

In thinking about what individual-level properties should be
encoded in an eco-evolutionary system, it is helpful to consider
which rules are necessary and/or sufficient for which dynamics.
Variation, inheritance, and differential reproductive success are
necessary to instantiate evolution by natural selection, but are
not sufficient for the formation of stable ecological communities.
Even the capacity for ecological interaction is insufficient,
although it is necessary. Stable ecological communities require
that there bemultiple potential strategies for survival (i.e., niches)
and that it be possible for groups of organisms using different
strategies to coexist. There are a vast number of ways to add this
property to a system, many of which will be discussed later in
this review.

1.2.2. Digital Evolution Systems Can Be Generalized
The underlying genetic representation of organisms in most
digital evolution systems are computer programs, making them
fundamentally different from DNA-based organisms. While this
fact means that digital evolution is generally not a good fit
for modeling any specific system on earth, it also provides
a valuable framework for producing insights that generalize
across systems (Maynard Smith, 1992; Ofria and Wilke, 2004;
Kawecki et al., 2012; MacPherson and Gras, 2016). Traditionally,
general inferences about biology are drawn by observing the same
behavior across multiple model systems (e.g., Drosophila, E. coli,
and Arabadopsis). The more distinct these systems are from each
other the better, as any differences reduce the chance that the
observed results were caused by an idiosyncrasy of a specific
subset of the phylogeny of life on earth. However, all of life on
earth shares some common ancestry (Maynard Smith, 1992).

Thus, even results that can be replicated across many model
systems are not necessarily unavoidable outcomes of evolution.
If we observe a consistent pattern across digital and natural
systems, however, that is strong evidence that it will be true for
most evolving systems.

The problem of how to achieve generality has historically
been a greater source of concern in ecology than in evolutionary
biology (Fox, 2019). There are a variety of approaches that
ecologists use to obtain general results (Fox, 2019), a number
of which involve a potentially arduous process of comparison
between a large number of distinct ecosystems.We can accelerate
this process by starting with comparisons to digital systems.
This technique allows us to quickly determine whether results
are likely to generalize before putting in the substantial work
required to conduct a comparable field study. More importantly,
if we do not observe the same results in biology as we do in
digital evolution, that is an indication that there is an important
factor at play that we have not noticed. Such disparities help
us identify mistaken preconceptions and either direct us toward
building more realistic digital environments or identify critical
areas where ecological theory may need further development.

Being able to generalize eco-evolutionary findings is
important for predicting the future of ecosystems on earth.
This importance is heightened by climate change. As our planet
enters states that are increasingly dissimilar from any that we
have previously observed, relying purely on knowledge specific
to any given ecosystem is becoming less viable. Additionally,
understanding the general principles that organize all eco-
evolutionary systems is a critical tool for astrobiologists seeking
to identify signatures that would suggest the presence of life on
another planet.

1.2.3. Digital Evolution Systems Have Realistic yet

Tractable Fitness Landscapes
Since evolution is a key component of eco-evolutionary
dynamics, it is important to consider the adaptive landscape
in which that evolution is occurring. Fitness landscapes are a
common tool in evolutionary biology that map known genotypes
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or phenotypes to their associated fitness; similar traits are close
together on the map based on the ease of mutating between them
(Wright, 1932). When visualized in three dimensions, values of
two traits are generally arranged along the x- and y-axes, with
the fitness corresponding to each of these values shown as a
surface on the z-axis. This surface generally has peaks that we
expect the population to climb over time, and valleys that we
expect will be challenging to cross. In reality, fitness landscapes
exist in many more than three dimensions, which may impact
the validity of the intuitions they provide (Gavrilets and Vose,
2005), but they are generally believed to be a useful mental model
nonetheless. In many cases, fitness landscapes change over time,
in which case they are often referred to as “seascapes” (Mustonen
and Lässig, 2009). The fitness landscape on which a population
is evolving plays a large role in determining the population’s
adaptive trajectory, often in relatively complex ways. Having a
well-understood fitness landscape is critical, or at least helpful,
for most research on evolutionary theory. The fitness landscape
determines which mutations will be beneficial, how easy it is to
arrive at the most fit phenotype, and, to some extent, the strength
of selection—factors that are often critical to evolution research.

When we study eco-evolutionary dynamics, we are often
effectively studying multiple fitness landscapes layered on top
of each other. At least one of these landscapes is, in reality,
a seascape reflecting the constant shifts in which traits are
ecologically advantageous. This seascape changes endogenously,
based on (1) the members of the population, and/or (2)
interactions between members of the population and the abiotic
environment. Every action that any organism takes changes the
fitness landscape in which all other organisms are evolving. These
changes last for an indefinite length of time.

For some research questions, this ecologically-generated
fitness seascape is sufficient to produce the needed evolutionary
dynamics. A number of digital evolution platforms use a fitness
landscape based purely on ecological interactions and so may be
appropriate in this context. Such systems include EcoSim (Gras
et al., 2009), Symbulation (Vostinar and Ofria, 2019), Chromaria
(Soros, 2018), and Geb (Channon et al., 1998). Other digital
evolution systems, such as Avida (Ofria and Wilke, 2004), can be
configured to function in this way but are not by default.

Other research questions require the presence of a more static
fitness landscape in addition to the ecological seascape. Generally
this landscape represents the traits that are necessary to survive
and reproduce at all. It is easy to create simple fitness landscapes
that we understand well due to their simplicity. However, fitness
landscapes in biology tend to be relatively complex, and some
evolutionary dynamics are driven by this complexity. Thus,
in order to investigate these dynamics, we need a somewhat
complex fitness landscape.

Even by themselves, complex ecological seascapes or static
fitness landscapes can be unintuitive and yield unexpected
results. When combined, these problems compound. Thus,
it is advantageous to use systems where we have a good
understanding of as many of the relevant fitness landscapes as
possible. For example, we may want to study which ecotypes are
best at invading a given niche. If we already know that a given
ecotype is a common stepping stone on the way to the adaptation

associated with the niche, we have a much better sense of what
results we should be expecting to see. Thus, if we observe different
results, we will be able to recognize that something unexpected is
occurring and explore it further.

Because digital evolution systems have been studied from
multiple perspectives, their fitness landscapes are often well
understood. Indeed, many allow the user to select among
multiple static and dynamic fitness landscapes of varying
complexity (e.g., Avida Ofria and Wilke, 2004 and MABE Bohm
et al., 2017). Thus, they allow for us to examine evolution
and ecology in the context of a complex fitness landscape
without sacrificing our ability to have intuition for and interpret
the results.

2. DIGITAL EVOLUTION SYSTEMS THAT
SUPPORT ECOLOGICAL RESEARCH

Most digital evolution platforms have the capacity to support
ecological research, but each has its own strengths and
weaknesses. Just as it is advantageous for a community of
researchers to use a range of model systems in the laboratory
and field, it is also advantageous to use a range of digital
platforms. The representation of individuals varies dramatically
from platform to platform, making each a distinct substrate
for evolution to act on. Every substrate—including biology
on earth—has its own quirks. Thus, truly understanding the
behavior of a specific system requires studying that system
specifically. However, observing the same behavior across
multiple distinct substrates provides strong evidence that a
result generalizes.

Taken to its extreme, this argument might suggest that
everyone should write their own digital evolution system.
However, pre-built digital evolution platforms have a number
of advantages (Bohm et al., 2017, 2019b; Lalejini et al., 2019),
including the improved usability, reliability, and collective
knowledge that comes from having a large base of users
and contributors. In particular, they have the potential to
be a good fit for biologists who may be uncomfortable
writing their own code. An important caveat is that running
experiments on many of these platforms often requires comfort
with compiling custom software, navigating high-performance
computing environments, or conducting programmatic data
analysis, meaning that computational skills can still be an obstacle
for biologists getting started with these systems. Nevertheless,
standalone programs provide an easier entry point for many.
Another benefit of standalone programs is that they provide
greater consistency between experiments, making it easier to
build upon the work of others and situate new data within the
context of what is already known. This benefit strengthens once
a critical mass of research has been done in a system and so the
basic behavior is well documented.

Here, we survey the set of prominent digital evolution
platforms currently in use (in addition to some historical
ones) that have the potential to support ecology research. For
consistency with (Vostinar et al., 2021), we limit our scope to
systems that meet the following criteria:
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1. Instantiates the evolution of populations of individuals
in silico,

2. Supports implicit fitness,
3. Has a complex genotype-to-phenotype mapping due (at least

in part) to the effects of ecological interactions between
individuals, and

4. Has an effectively unlimited number of possible genotypes.

2.1. Avida
Perhaps the most popular of digital evolution system is the Avida
Digital Evolution Platform (Ofria and Wilke, 2004). Avida has
all of the properties that we argue are critical for the study
of open-ended eco-evolutionary dynamics. Each organism in
Avida is a self-replicating computer program, with a genome
made up of computer instructions (see Figure 2). Experiments
generally begin by seeding the population with a single program
containing a sequence of code that copies each instruction in its
genome into its offspring. Every time an instruction is copied,
there is a small probability that it will mutate to be a different
instruction. Organisms in Avida inhabit a lattice of cells, with
each cell containing at most one organism. When an organism
is done copying its program, the resulting offspring is placed in
an adjacent cell, overwriting any previous occupant of that cell.
This dynamic creates competition for space, which incentivizes
organisms to copy themselves as fast as possible to reduce the
chance of being overwritten before they reproduce. Organisms
can increase their reproductive rate either by evolving to be
more efficient or by evolving to perform computational tasks
that the experimenter has associated with a bonus to CPU speed.
Evolving these tasks is akin to DNA-based organisms evolving the
ability tometabolize new resources.When organisms successfully
complete these tasks, they receive bonus CPU cycles each update,
meaning that they are able to execute more code per unit time.
Since the Avida system has variation, inheritance, and differential
reproductive success, these populations of digital organisms
evolve by natural selection.

The fitness landscape of the default environment in Avida
is well-studied (Pakanati, 2015) and has been used in a large
number of experiments. Moreover, it has some important
structural similarities to fitness landscapes in which biological
organisms are evolving. The tasks it rewards are computationally
related to each other and span a range of complexities. While
evolving the ability to do the simpler tasks is useful in its own
right, they can also serve as building blocks for the more complex
tasks (Lenski et al., 2003).

Avida also makes it easy to incorporate ecology by layering on
a fitness landscape based on biotic interactions. By default, the
resources associated with tasks in Avida are unlimited. However,
we can introduce competitive interactions between organisms
by limiting the quantity of these resources. This scarcity creates
negative frequency-dependent selection as organisms compete
for the resources. Any time an organism uses a resource it
consumes a portion of it, making the ability to use that resource
less valuable for all organisms. Avida also includes a number of
other mechanisms by which organisms can influence each other’s
fitness landscapes, such as cross-feeding, parasitism, predation,
and cooperation.

FIGURE 2 | An organism in Avida. Genomes of organisms in Avida are

sequences of simple computer code. Each organism has a virtual CPU that is

capable of running the code in its genome. This virtual CPU contains some

memory, which can be used to store numbers that the organism is operating

on. The CPU executes the instructions in the genome in sequence. In this

example, the organism is currently executing the “add” instruction, which

takes the number in the first memory slot, adds it to the number in the second

memory slot, and stores the result in the third memory slot. In addition to

performing mathematical computations, the instructions in the genome can

allow the organism to make a copy of itself and place that copy elsewhere in

the environment. Thus, organisms in Avida are able to reproduce via

self-replication.

2.2. EcoSim
Ecosim is a well-established system designed for studying ecology
in a predator-prey context (Gras et al., 2009; Mashayekhi
et al., 2014a; Scott et al., 2019). There are two trophic levels:
predators and prey (prey also consumes food, but this food
is not represented by an agent). The motivation for including
predator-prey dynamics in EcoSim was to create an evolutionary
arms race in which both populations are continuously evolving,
eliminating the need for a more explicit fitness landscape.
Individuals in EcoSim can move around the world, and are
controlled by an artificial brain model called a fuzzy cognitive
map. Each individual also has a separate genome determining its
physical characteristics.

In addition to its predator-prey dynamics, EcoSim is set apart
by its support for speciation research. Reproduction in EcoSim
is sexual, and occurs when two sufficiently genetically similar
individuals in the same location choose to breed. Whether the
individuals are sufficiently similar (i.e., whether they are part
of the same species) is determined via a clustering algorithm.
As a result, species gradually diverge from each other. EcoSim
has been used for a variety of research on speciation (Golestani
et al., 2012; Gras et al., 2015; Pour et al., 2017; Bhattacharjee
et al., 2018), species area relationships (Devaurs and Gras, 2010;
Mashayekhi et al., 2014b), and other ecological questions (Pour
et al., 2015; Bhattacharjee et al., 2019; Scott and Gras, 2020).

2.3. Symbulation
Symbulation is a simpler system targeted at precisely
understanding the evolution of interactions between hosts
and endosymbionts (Vostinar and Ofria, 2019). Each agent’s
genome consists of a single number (its “interaction value”)
between –1 and 1 that determines the extent to which it helps
or harms its partner (host or endosymbiont). In addition to
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interactions between hosts and endosymbionts, which are in and
of themselves a form of ecology, Symbulation supports having
multiple endosymbionts within the same host. A variety of
implicit ecological interactions occur in this scenario, although
little research has been done on them to date. As its name
implies, this platform lies on the border between simulation and
digital evolution, and represents a rich yet tractable environment
for exploring the complex game theoretic interactions that occur
in microbiome communities.

2.4. MABE
MABE (Modular Agent-Based Evolver) is a flexible digital
evolution research system designed to allow users to mix
and match modules that represent different styles of genome,
brain, fitness evaluator, and environment (Bohm et al., 2017,
2019b). MABE seeks to provide the best of both worlds by
simultaneously being friendly to new users, facilitating testing
hypotheses in multiple configurations, and promoting better
software development practices. Thus, far, the only ecological
research that has been published with MABE is focused on sexual
selection (Bohm et al., 2019a), but the system allows multiple
populations that can interact in any way that the user specifies.
Because of its flexibility, however,MABE could be used to address
any number of ecological questions.

2.5. Aevol
Aevol is a complex digital evolution system designed to be a
close analog to DNA-based genetics. Individuals in Aevol have
genomes with four bases that go through processes mirroring
transcription and translation (Knibbe et al., 2007; Batut et al.,
2013). Ultimately, organisms produce a set of triangles that are
overlaid on top of each other to approximate a continuous
function. Fitness is determined by how closely the triangles
match a target function specified by the environment. While this
basic set-up does not inherently promote ecological interactions
beyond simple competition for space, Aevol has been extended
to support more interesting ecologies. In particular, Aevol has
been used to study the evolution of cooperation via public goods
(Frénoy et al., 2012; Misevic et al., 2012, 2015).

2.6. Chromaria
In Chromaria, agents are colorful creatures with appearance
and behavior controlled by convolutional pattern-producing
networks (CPPNs) (Soros and Stanley, 2014). In order to
reproduce, these agents must find a region in which the
background color matches the agent’s color and “plant”
themselves there, at which point they become part of the
background. Consequently, ecological interactions are a core
component of this platform, as new phenotypes literally create
new ecological niches. Indeed, one of the hypotheses that
Chromaria was designed to explore is the idea that ecological
interactions are a necessary condition for open-ended evolution
to occur. Research in Chromaria thus far has supported this
hypothesis (Soros, 2018). Chromaria is unique among the
systems described here in that the primary ecological interaction
it features is facilitation (specifically commensalism), rather
than competition or other antagonistic interactions. Thus, it

is a promising platform for studying commensalism and its
evolutionary implications.

2.7. DISHTINY
DISHTINY (Distributed Hierarchical Transitions in
Individuality) is a system in which agents communicate
and cooperate to harvest spatiotemporally fluctuating resources
(Moreno and Ofria, 2019, 2021). As a system designed for
studying major evolutionary transitions, the organisms in
DISHTINY can be far more complex and slower to execute
than most of the other systems discussed here (often requiring
a super-computer to execute), making it a less ideal choice for
most research on eco-evolutionary dynamics. Populations in
DISHTINY can exhibit a rich ecological community containing a
variety of cooperative and competitive interactions. Cooperative
interactions typically become so essential that individual
cells in this community ultimately come together to form
multi-cellular organisms, sacrificing cellular-level replication
for reproduction of the multicellular organism. There is also
preliminary evidence of ecological interactions between these
multi-cellular organisms (Moreno and Ofria, 2021). In early
versions of DISHTINY, all ecological interactions were mediated
via a set of numerical genome values (Moreno and Ofria, 2019).
Subsequent work has used agents controlled by evolved code
(Moreno and Ofria, 2021).

2.8. Urdar
Urdar is an artificial life platform for studying eco-evolutionary
dynamics in a crossfeeding environment (Gerlee and Lundh,
2010). In contrast to the other systems we have discussed so
far, Urdar has neither predator-prey dynamics nor movement,
giving it the potential to be substantially more tractable for
addressing questions that do not require such properties. Urdar
consists of a population of organisms that process binary
strings. Each organism is an update rule for a one-dimensional
cellular automaton. On each evaluation, each organism receives
a random string from the environment, processes it according
to its rule, and places the resulting string in the environment.
The increase in the string’s Shannon entropy as a result of this
transformation is the amount of "energy" that the organism was
able to extract from the resource. Organisms that extract enough
energy are allowed to replicate. This rule results in a system
that self-organizes into a cross-feeding ecological community,
with stable coexistence of multiple species promoted by negative
frequency dependence.

2.9. Polyworld
Polyworld is one of the oldest standalone artificial life platforms,
and includes ecological interactions at its core (Yaeger, 1993).
Organisms in Polyworld are controlled by Artificial Neural
Networks that use Hebbian learning over the course of each
individual’s lifetime. Organisms in Polyworld receive visual
sensory input, move freely around the world, forage for food,
and attack other organisms. They can also signal a desire to
mate, which will occur if another nearby organism also signals
this desire. Lastly, they can adjust their visual appearance. Each
of these behaviors is associated with an output neuron; the
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activation levels of these neurons determine which behaviors are
performed. Polyworld is an open-ended system for exploring
the evolution of various life history strategies within a complex
network of interaction. It is likely a particularly good choice for
research that deals with within-lifetime learning. However, the
complexity of the learning and interaction systems comes with
trade-offs. For many questions, Polyworld’s complexity makes it
harder to understand the drivers of a given result, and some have
suggested that the effect of learning may be disproportionately
strong (Channon et al., 1998). Perhaps as a result, despite the
inherent ecological dynamics built in to Polyworld, it has not
been used for much ecology research.

2.10. Geb
Geb is a similar system to Polyworld, but removes lifetime
learning from the mix, forcing all intelligent behavior to be
the result of evolution (Channon et al., 1998). Organisms
in Geb are controlled by recurrent neural networks encoded
genotypically as context-free L-systems. The process of building
the neural network from the genome mirrors development
in nature (Channon and Damper, 2000). Interactions are
also more constrained in Geb than in Polyworld, although
they are still complex enough to be potentially challenging
to analyze. Each time step, organisms choose between five
actions: 1) attempt to mate with the organism in front
of them, 2) attempt to fight the organism in front of
them, 3) turn clockwise, 4) turn counterclockwise, or 5)
move forward. This set-up yields complex movement-based
interactions between agents, often involving spinning in circles
while attempting to mate and fight (Channon et al., 1998).
Because analyzing the ecology of Geb requires analyzing the
movements of its agents, little ecological research has been
done in it to date. However, it could be especially effective
for addressing questions about competitive interactions in
movement ecology.

2.11. Echo
Perhaps the first digital evolution platform to foster a complex
ecology, Echo was proposed by Holland (1995). The central
currency in Echo is a set of limited resources. Genomes
in Echo are made up of these resources, and individuals
can only reproduce when they have obtained the necessary
resources to copy their genome. To obtain these resources,
individuals can uptake them directly from the environment,
take them from another organism via combat (akin to
predation), or trade another organism for them. Interactions
between individuals in Echo are controlled by the genome,
which is divided up into a set of “tags” and “conditions.”
An individual’s tags are the information about it that other
individuals can sense and make decisions based on. An
individual’s conditions determine how it will behave, and are
secret from others. Echo was used to study the generality of
ecological community assembly patterns (Hraber and Milne,
1997; Hraber et al., 1997) and to provide early confirmation
that digital evolution systems could produce complex ecologies
(Smith and Bedau, 1997).

2.12. Tierra
Tierra, the precursor to Avida, was the first digital evolution
system (Ray, 1991) to exhibit strong ecological dynamics. As
in Avida, individuals in Tierra are self-replicating sequences
of assembly-code-like instructions. Unlike in Avida, however,
these individuals all exist in one large “soup” of RAM. While
individuals do not have write-access to regions belonging to other
individuals, they are able to read and execute those areas of
memory. This configuration naturally allows for the evolution
of parasitism, in the form of programs that use other programs’
self-replication code, rather than maintaining their own. In
principle, other ecological interactions could occur in Tierra as
well, although they can be challenging to identify. In practice,
though, the ecology of Tierra tends to consist of only one type
of parasite and one type of host at a time, and the dynamics will
often stagnate (Ray, 1994).

2.13. Evolutionary Computation
While evolutionary computation is not a single stand-alone
research platform, it is included here because we argue
that it is an underappreciated class of model systems for
doing eco-evolutionary research. Evolutionary computation falls
approximately between simulations and digital evolution along
the continuum in Figure 1. While there is overlap between the
categories of digital evolution and evolutionary computation,
three important caveats are that many evolutionary computation
systems (1) allow for no direct interaction among individuals
in a population, (2) assign fitness based on an explicit fitness
function, and (3) ignore realism or biological plausibility in order
to generate high-quality solutions as rapidly as possible. As such,
they rarely exhibit ecological dynamics (with notable exceptions
discussed below) and fail to meet key criteria for inclusion in
this review.

Evolutionary computation is a sub-field of machine learning
in which principles from evolutionary biology are applied to
digital populations in an effort to solve computational problems.
The populations are composed of candidate solutions to a target
problem and the fitness of these solutions is evaluated based on
how well they solve that problem. Individuals are selected to
reproduce based on how well they solve problem instances and
their offspring are mutated. The general category of evolutionary
computation encompasses a number of more specific types of
evolutionary algorithms, including genetic algorithms, genetic
programming, and evolutionary strategies.

More advanced evolutionary algorithms do rely on underlying
ecological interactions (Dolson et al., 2018a,b). Evolutionary
computation researchers have devoted substantial attention to
understanding how to promote coexistence among lineages
exploring different regions of a fitness landscape (Goldberg
et al., 1987; Mahfoud, 1995; Mouret and Doncieux, 2009; Pugh
et al., 2015). Promoting diversity in an evolving population
is important for evolutionary computation because it allows
part of the population to sit on top of a fitness peak (referred
to as “exploitation” in machine learning) while the rest of
the population continues searching the rest of the fitness
landscape (referred to as “exploration” in machine learning). The
techniques that they have developed for achieving this goal all
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map back to ecological dynamics (Dolson et al., 2018b). Thus,
evolutionary algorithms can be used as a testing ground for high-
level hypotheses about ecological coexistance mechanisms and
their interplay with evolutionary dynamics.

A number of highly effective evolutionary-computation
techniques owe their success to ecological dynamics. These
largely fall into four categories: niching/speciation (e.g., Goldberg
et al., 1987; Stanley and Miikkulainen, 2004), parent selection
(e.g., De Jong, 1975; Mahfoud, 1992), dividing the population
into subpopulations (e.g., Hu et al., 2005; Hornby, 2006),
and adjusting the objective function to favor diversity and/or
novelty (e.g., Mouret and Doncieux, 2009). In particular,
fitness sharing and Eco-EA, both of which fall into the
niching/speciation category, show promise as model systems for
studying ecology.

Fitness sharing, one of the first ecology-based diversity
maintenance approaches, is by far the simplest of these
techniques (Goldberg et al., 1987). Under this regime, the
fitness of each individual is reduced based on the number
of similar individuals in the population. As such, constant
pressure to diversify is imposed. Coexistence dynamics under
fitness sharing are mathematically identical to coexistence
dynamics under modern coexistence theory in ecology
(Dolson et al., 2018b).

Eco-EA is an approach, originally built on top of Avida,
to solving complex problems by associating limited resources
with simpler challenges that can be used as stepping stones
(Goings and Ofria, 2009; Goings, 2010; Goings et al., 2012).
These challenges can be sub-problems of the larger problem,
individual test cases, or other related tasks that may be used as
components of a global solution. Resources remain plentiful until
a solution to the corresponding sub-problem is discovered.When
a population first solves a sub-problem, the accumulated resource
dramatically boosts the fitness of individuals that use it. As the
number of individuals using the resource increases, it become
less valuable. As long as there is some cost to attempting to
use each resource, negative frequency dependence fosters small,
but stable sub-populations capable of solving each sub-problem.
Coexistence dynamics under fitness sharing are mathematically
identical to coexistence dynamics under R∗ theory in ecology
(Dolson et al., 2018b).

In general, evolutionary computation systems are a
particularly good fit for eco-evolutionary questions centering
around ecology’s role in facilitating the evolution of solutions to
complex problems. They run quickly, feature a variety of well-
understood but non-trivial fitness landscapes, and instantiate a
wide range of simple ecological dynamics.

2.14. Digital Evolution System Comparison
For ease of reference when attempting to choose a system for
research, we have assembled a summary table (see Figure 3)
comparing the extent to which each system supports various
research directions. Note that most of these systems are under
active development, and many of these dynamics could easily be
added to more systems in the future.

3. PREVIOUS ECO-EVOLUTIONARY
DYNAMICS RESEARCH USING DIGITAL
EVOLUTION

3.1. Competition
While the first major discoveries to come out of digital evolution
research fell squarely into the category of pure evolutionary
theory (Wilke et al., 2001; Lenski et al., 2003), simple ecological
dynamics were soon explored. Cooper and Ofria demonstrated
that limiting the quantity of resources available was sufficient
to evolve a stable and diverse ecosystem (Cooper and Ofria,
2003). They set up this experiment by associating computational
tasks in Avida with a resource that had a limited availability
and inflow rate. Every time an organism performed a task
and received the reward, it used up some of the resource,
resulting in a situation where digital organisms performing tasks
is effectively equivalent to biological organisms metabolizing
chemical resources. This arrangement created negative frequency
dependence; tasks being performed by fewer organisms were
more valuable, just as inhabiting any underutilized niche in
an ecosystem is advantageous. In prior experiments, where
resources were unlimited, some phenotypes in the population
were simply more fit than the others; the fitnesses did not
change over time. Layering the shifting biotic fitness seascape
and the static abiotic landscape created pressure for adaptive
radiation and subsequent stabilizing selection on the different
ecotypes. These results were consistent with mathematical theory
being contemporaneously developed by theoretical ecologists
(Chesson, 2000), and demonstrated that this theory holds up
when populations are allowed to evolve.

Chow et al. expanded on this work, exploring the continuum
from environments with scarce resources to ones where resources
were effectively unlimited (Chow et al., 2004). They found
that ecotypic diversity peaks at intermediate levels of resource
availability. Resource availability, in this context, is roughly
analogous to primary productivity; it determines the carrying
capacity of each niche. Previous field research had found that
species richness tends to be highest in environments with
intermediate productivity, but there had been a lack of consensus
over which properties of environments were driving this effect.
Chow et al. replicated this finding in Avida, purely by varying the
amounts of each resource that were present in the environment.
This result demonstrated that limited resources alone are
sufficient to explain the productivity-diversity relationship.
This ability to isolate potential drivers of a phenomenon and
determine which ones are sufficient to produce a given result is
a major strength of individual-based digital systems.

The finding that competition can drive adaptive radiation
has since been corroborated in many other digital ecosystems.
Research in Urdar also found stable coexistence between species
specialized on different types of food, although in this case
the negative frequency dependence may have partially resulted
from mutualism in addition to competition (Gerlee and Lundh,
2010). Similarly, in Ecosim, different predator species evolve
to specialize on different types of prey, leading to physical
and behavioral differences (Mashayekhi et al., 2014a). Eldridge
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FIGURE 3 | Comparison of digital evolution platforms. This table rates digital evolution platforms on the extent to which they can be used to study specific dynamics.

A rating of “central” indicates that a dynamic is a critical component of a system and has likely been studied in that system. A rating of “optional” indicates that the

dynamic is not present by default but can be turned on. A rating of “incidental” indicates that the dynamic may occur in the system, but likely not in a particularly

straightforward way. A rating of “impossible” indicates that a dynamic is excluded from that system, as it currently exists. The speciation rating specifically refers to

speciation in the context of sexual recombination. The “Complex Dynamics” and “Simple Dynamics” columns reflect each system’s position along the continuum in

Figure 1. “Complex Dynamics” indicates the extent to which the system supports dynamics toward the rich and natural end of the spectrum. “Simple Dynamics”

indicates the extent to which the system supports being configured to be simple and tractable. Note: Endosymbiosis is rated "central" to Tierra, due to the ubiquitous

evolution of parasites. However, these parasites are unconventional in that they do not disproportionately harm the host.

and Kiefer found further evidence of competition-driven niche
partitioning, this time in the context of agents evolving to
vocalize at different frequencies (Eldridge and Kiefer, 2018).
Lastly, continuing with the perspective that all of evolutionary
computation can be viewed as a model system for studying
biology as well, the widespread success of niching algorithms
is a clear final confirmation of the generality of this result
(Dolson et al., 2018b).

These initial digital eco-evolutionary dynamics papers tell
a compelling story about how evolution guides the long-term
assembly of ecosystems. However, ecology also effects long-
term evolutionary trends. Walker and Ofria explored how
continued evolutionary innovation in Avida plays out differently
within ecological communities assembled at different levels of
productivity (Walker and Ofria, 2012). Previous research on
the connection between population diversity and evolutionary
potential (as measured by the probability of evolving complex
traits) suggested that there is generally a positive correlation
between these two variables. This hypothesis makes sense, as a
more diverse population is necessarily more spread out across the
fitness landscape, increasing the probability that some members
of the population will be close to an adaptive peak. However,
Walker and Ofria found that the relationship between diversity
and evolutionary potential is more complicated; evolutionary
potential peaked at a different level of productivity than diversity
did. Follow-up work in Avida has yielded consistent results
(Dolson and Ofria, 2017; Dolson et al., 2017). This observation
is an example of the difficulty of predicting eco-evolutionary

feedbacks a priori. Digital systems give us the fine-grained control
necessary to find such deviations from our expectations.

3.2. Facilitation
So far, we have discussed ecosystems assembled purely on the
basis of competitive interactions. While these model ecosystems
are useful for gaining basic insights into eco-evolutionary
dynamics, ecosystems in nature involve a wide variety of different
types of interactions among organisms. These include various
forms of facilitation, in which species make it easier for other
species to survive.

Among the simplest of facilitation interactions is cross-
feeding (also called syntrophy), wherein organisms of one
ecotype feed off of byproducts generated by organisms of a
different ecotype. Yet, even such a simple interaction can have
unpredictable eco-evolutionary dynamics. Johnson and Wilke
built an incredibly simple cross-feeding ecosystem in Avida
by providing two resources, each of which created the other
as a byproduct when it was metabolized (Johnson and Wilke,
2004). This type of environment produces an even stronger
form of stabilizing selection than occurs with purely competitive
interactions; increased competition for one resource is combined
with a decrease in the production of that resource (assuming
a fixed population size). The result is a pair of ecotypes that
exhibit either Lotka-Volterra-like oscillatory dynamics or a
more stable equilibrium. Which one of these regimes occurs
appears to be largely determined by stochastic factors. More
complex hierarchical cross-feeding food webs have also been
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constructed in Avida (Yedid et al., 2008, 2009, 2012) and Urdar
(Gerlee and Lundh, 2010). Additionally, more recent digital
evolution research has shown that the existence of seasonality
or temporal niches can facilitate the evolution of stable cross-
feeding interactions (Rocabert et al., 2017).

Cross-feeding is a relatively simple form of facilitation as it
is not susceptible to cheating. Cooperation, in which cheating
is a possibility, poses a more challenging evolutionary problem.
Nevertheless, cooperative species interactions play a critical role
in many ecosystems (Frederickson et al., 2005; Goudard and
Loreau, 2008). Understanding what evolutionary pressures can
lead to such scenarios is critical to understanding this component
of ecosystem assembly, but is, again, challenging to address
in vitro or in vivo. Digital evolution has facilitated a deeper
exploration of the intricate mechanisms that allow for the
evolution of cooperative behaviors.

For example, based on inclusive fitness theory we would
expect that genes that code for altruistic behavior should be
more evolutionarily successful if they more effectively direct
that altruistic behavior at other individuals with the same gene.
Clune et al. tested this hypothesis in Avida by providing various
altruistic instructions that could be included in organisms’
genomes by mutation (Clune et al., 2010). When organisms
executed these instructions, they would lose some of their
CPU cycles and a neighboring organism would receive some
number of CPU cycles. The neighbor that received this benefit
was determined by the specific altruistic instruction that was
used. The available instructions fell along a continuum of how
accurately they could target the benefit at organisms likely to
be altruistic back. The least accurate (other than the random
controls) was kin targeting, which donated the CPU cycles to
a parent or offspring. Slightly more accurate was similarity
targeting, in which the organism receiving the CPU cycles had
to have a genome that had a high level of overall similarity to
the donating organism (as measured by the quality of the best
possible sequence alignment between their two genomes). Lastly,
there was greenbeard targeting, named for the idea that altruistic
organisms can display visual markers (like a green beard) that
are tied to their altruism and thus provides a reliable signal to
other organisms (Hamilton, 1964; Dawkins, 1976). With this
method, only other organisms that have previously executed
the greenbeard altruism instruction can receive benefit from an
organism executing it. Theoretically, this greenbeard approach
should be the most accurate form of altruism targeting, as, in
the Avida implementation, it literally allows organisms to help
only those that express the same gene. Surprisingly, however,
while similarity targeting was favored over kin targeting,
greenbeard targeting was not selected over the other forms.
Further experimentation revealed that the key difference was that
greenbeard targeting did not provide a way to distinguish mildly
altruistic organisms from highly altruistic organisms (those that
executed the instruction repeatedly). This result may explain the
fact that most greenbeard altruism observed in nature tends to
relate to binary rather than continuous forms of altruism. Indeed,
when the greenbeard instruction was adjusted to only benefit
other organisms exhibiting the same level of altruism, it did
become the preferred mechanism.

Some traits, such as releasing a beneficial chemical into
the surrounding environment (i.e., public goods), do not have
a specific other organism being targeted. For these traits to
be evolutionarily favored, there must be some mechanism for
ensuring that their benefit primarily goes to kin. In many cases,
this guarantee can come from living in a sufficiently spatially-
structured environment, such that the majority of neighboring
organisms are kin. Another option is quorum-sensing, wherein
altruistic organisms signal their presence to each other, allowing
them to base their actions on the number of kin that are present
(Diggle et al., 2007). Beckmann and McKinley demonstrated
that digital organisms in Avida are capable of evolving quorum
sensing if allowed to pass messages to each other (Beckmann
and McKinley, 2009). In collaboration with biologists, they were
then able to use this system to understand how bacteria might
evolve resistance to efforts to interfere with their quorum sensing
(Beckmann et al., 2012). Vostinar (née Johnson) et al. expanded
on this research, finding that not only is the evolution of quorum
sensing in Avida possible, it also increases the range of conditions
in which altruism will evolve and the extent to which it is
beneficial (Johnson et al., 2014). This work provided the basis
for a more precisely targeted digital system that directly modeled
quorum sensing in a species of bacteria (Vostinar et al., 2018).

The evolution of public goods cooperation has also been
studied in Aevol (Misevic et al., 2012). Taking advantage of
Aevol’s rich genome system, Frenoy et al. studied the interactions
between genetic architecture and the stability of cooperation in
the form of secreting a public good (Frénoy et al., 2013). They
found that in populations where cooperation was robust, the
genes governing public good secretion were interconnected with
genes supporting the organism’s basic metabolism. In essence,
the populations had evolved a genetic architecture that made
the evolution of cheating challenging. This phenomenon seemed
to occur more frequently when cooperation was costly. These
findings highlight the value of studying these questions in
complex digital systems; such behavior is only possible due to
Aevol’s elaborate genomes.

Subsequent research in Aevol investigated the effect of a
population’s shape within physical space on the evolution of
public goods cooperation (Misevic et al., 2015). Specifically, they
compared populations in long narrow worlds to populations in
more evenly-proportioned worlds. Counter-intuitively, despite
the fact that a long and narrow world should reduce interactions
between cooperators and cheaters, evenly-proportioned worlds
promoted greater levels of cooperation.

3.3. Predation
Predation is a fundamentally different interaction than those
we have discussed so far, and a critical component of many
ecological communities in nature. There is an asymmetry in
predator-prey relationships that is not necessarily present in
competition or facilitation, which results in a system with
fundamentally different behavior (Johnson and Wilke, 2004).
Studying predation is complicated by the fact that most predators
need to be motile in order to reach enough prey to sustain
themselves. As such, systems that allow predation generally allow
organisms to move around the world.
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Of the systems considered here, EcoSim is the one to which
predation is most central. Thus, it is unsurprising that EcoSim
has been used for a number of interesting studies related to
predation. For example, Khater et al. addressed the non-lethal
impacts of predators on prey (Khater et al., 2016), showing that
the presence of predators has a strong impact on evolved prey
behavior. Prey that coexist with predators spend a substantial
portion of their time evading predators, leading them to forage
dramatically less than prey in the absence of predators. These
findings are consistent with prior field research, and support
the idea that non-lethal impacts of predators on prey play an
important role in structuring multi-trophic communities.

In related work, Khater et al. investigated the impact of
predator removal (Khater et al., 2014), finding evidence that
it can have a variety of impacts. In particular, the decrease
in predator-evasion behavior by prey dramatically alters their
spatial distribution. The reduction in movement results in
reduced gene flow among prey, ultimately producing higher
levels of genetic diversity. Interestingly, this study also involved
a condition in which predators were added to a naive population.
If this introduction was performed too late into a run of the
system, the predator population was generally unable to stabilize,
suggesting that, even in the absence of predators, prey evolved
properties that posed an increased challenge to the predators.

Predation has also been studied in Avida. Here, movement
instructions are enabled, as are instructions that give them
sensory information about the environment, making for far
more complex (and thus slower) experimental worlds. Prey
organisms forage for abiotic resources in the environment and
store them in their cells (initial foraging research was conducted
byWalker, 2011). Predators can attack prey and receive a portion
of their stored resources by executing a specific instruction while
facing them.

Because of the huge impact that movement has on the
strategies evolved by digital organisms, a lot of predation research
in Avida deals with the evolution of movement strategies and
sensory behaviors. As it turns out, these behaviors profoundly
affect and are affected by the presence of predators. Wagner
et al. (2020) compared the behavior of prey evolved with and
without a co-evolving population of predators and found that
predators force the prey to explore a much wider space of
strategies. They also evolved to make better use of their sensory
capabilities, which in turn made them better at foraging as well.
We hypothesize that the fact that ecosystems often include a
variety of related-but-different survival pressures, many of which
consistently become more challenging as a population adapts
to them, makes them particularly effective at promoting the
evolution of more complex organisms.

O’Donnell et al. expanded on some of these questions by
investigating properties of prey communities that make them
better at evolving to avoid novel predators (O’Donnell et al.,
2014). They looked at two factors: the amount of standing genetic
variation in a prey population, and the evolutionary history of
that population (i.e., whether the lineages had been exposed to
different predators in the past). Surprisingly, they found that
standing genetic variation had little impact on the extent to which
the prey population was able to evolve resistance to predators.

Evolutionary history, on the other hand, had a dramatic effect.
Despite the fact that the predators used in the experimental
phase were from a completely different population than the ones
that the prey had co-evolved with, prey populations that had
historically been exposed to predators were substantially more
likely to evolve resistance to novel predators.

Further research on the specific techniques used to avoid
predators has addressed the evolution of mimicry and prey
grouping. Mimicry requires a fascinating and complex set of
ecological interactions: for example, a poisonous prey species
that signals its toxicity to potential predators, a predator species
that responds to this signal, and an additional non-poisonous
prey species that mimics the signal so that predators will avoid
it as well. This set-up creates an interesting form of density-
dependence, where the efficacy of the mimicry decreases as the
relative abundance of the mimic species increases. Lehmann et al.
created such an ecosystem in Avida, and studied the scenarios
under which it is stable (Lehmann et al., 2014). They found that
the degree to which the toxin harms predators and the accuracy
of the mimicry are both important variables in the evolution of
a stable population of mimics. The more harmful the toxin, the
greater the density of mimics the system can support.

Prey grouping is a more complex predator avoidance
strategy, as it requires some degree of coordination among
prey organisms. Biswas et al. used Avida to untangle the
mechanisms that drive the evolution of such behavior (Biswas
et al., 2014). Two different potential mechanisms had previously
been proposed: dilution and predator confusion. Dilution is the
simple observation that being in a group can lower an individual’s
chances of being selected by predators for attack, while predator
confusion is the idea that predators may have trouble visually
perceiving individual prey to hunt if those prey are in a group.
To study this phenomenon, the authors observed the extent to
which prey organisms evolved grouping behavior under various
conditions. While the presence of predators did significantly
increase prey grouping behavior, the effect was no different when
predators’ visual sensors were inhibited. This result suggests that
the dilution effect is sufficient to evolve prey grouping behavior,
and that the more complex explanation of predator confusion
is unnecessary.

3.4. Symbiotic Interactions
The full spectrum of symbiotic interactions (e.g., parasitism,
commensalism, mutualism, etc.) contains a variety of different
dynamics. While some of these dynamics fall into previously-
discussed categories, they are worth considering collectively
due to their fluid nature. When species are living in close
association with each other (symbiosis), they can rapidly shift
between different types of interactions in response to changing
evolutionary or ecological forces. As a thorough review of work
on studying symbiosis with digital evolution has already been
performed (Vostinar et al., 2021), we will restrict this section
to a few highlights and direct the reader to Vostinar et al. for
further detail.

Parasitism is the symbiotic interaction that has received by
far the most attention thus far. There is increasing evidence that
parasites play a critical role in many ecological communities
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(Lafferty et al., 2006). Conveniently, parasites fit naturally into
Avida. Indeed, the evolution of parasitism is a major finding
of research in Avida’s precursor, Tierra (Ray, 1994). Since
the uncontrolled evolution of parasites in Tierra led to long-
term ecological stagnation, Avida implements parasites more
intentionally. Like normal organisms in Avida, parasites are a
sequence of simple computer code instructions. Unlike normal
organisms, parasites cannot survive in a cell on their own.
Instead, they inhabit the same cell as a normal organism and
steal its CPU cycles (i.e., when the host organism should
have been allowed to execute an instruction, the parasite may
instead execute one from its own genome). For most parasite
experiments in Avida, hosts are required to perform at least one
task in order to replicate. Parasites are able to infect hosts that
perform the same tasks as them. Thus, there is pressure for hosts
to evolve the ability to perform novel tasks and lose the ability
to perform the old tasks. This set-up promotes the generation
and maintenance of diversity (Zaman et al., 2011), and ultimately
leads the hosts to evolve to be more complex than they would
otherwise have been (Zaman et al., 2014).

The parasitism-mutualism continuum has been addressed
in other digital systems as well. Most notably, Symbulation is
designed to simplify the study of these topics by providing
a simpler and more targeted platform (Vostinar and Ofria,
2019). Symbulation was recently used to demonstrate that spatial
structure has an entirely different impact on host-parasite co-
evolution than it does on other forms of potentially-cooperative
co-evolution (Vostinar and Ofria, 2019).

3.5. Interaction Networks
All of the ecological forces mentioned above can, of course,
be combined. Such studies can quickly become too complex
to understand the results of, so it is important to take care
in experimental design. However, a number of interesting
directions for research on eco-evolutionary dynamics concern
the network of interspecific interactions that defines an ecological
community. For such lines of research, combining different
drivers of ecology in a single experiment is necessary. A number
of ideas for approaching such questions have been laid out
by Fortuna et al. (2013), and some are already being put into
practice, with promising results (Strona and Lafferty, 2016).

3.6. Perturbations
Most of our pressing concerns about ecosystems on Earth
stem from the fact that many of them are currently facing
novel perturbations. Biological data tend to be too limited to
allow us to fully understand how an ecological system will be
affected by particular perturbations. Digital systems, on the other
hand, cannot easily model a specific, real-world ecosystem. In
conjunction, however, the combination of natural and digital
systems can help us dramatically improve our expectations about
the results of a particular perturbation in a natural environment.

The most dramatic types of perturbations an ecosystem can
experience are mass extinction events. Mass extinctions are
divided into two categories: press and pulse (Erwin, 1998). Press
extinctions are those that are induced by a prolonged stressor,
to which adaptation is theoretically possible. In Avida, press

extinctions can be induced by lowering resource inflow rates
to low levels (Yedid et al., 2008). Pulse extinctions, on the
other hand, are those that occur too quickly and too intensely
for populations to adapt to. In Avida, pulse extinctions can be
induced by directly killing a high percentage of the population
(Yedid et al., 2009).

Part of the reason that extinctions can be so damaging
to ecosystems is that most ecological communities are highly
interdependent (Roopnarine et al., 2007). While communities
evolved via adaptive radiation in a static environment would
almost certainly change if they lost a member, they lack the
level of interdependence that a food web creates. As such,
understanding the impact of mass extinctions on an ecological
community requires us to assemble a more complex community.
Most of the research on mass extinctions in Avida has used
a complex cross-feeding environment that functions similarly
to a trophic pyramid (Yedid et al., 2008, 2009, 2012). In this
environment, simpler tasks produce byproduct resources that
can be metabolized by performing more complex tasks. Thus, as
in most ecological communities, species at higher trophic levels
(which are often more complex) are dependent on species at
lower trophic levels.

In a press extinction, this dependency means that the most
complex ecotypes are generally lost from the population (Yedid
et al., 2008). If the amount of resources entering the lowest
trophic levels is decreased, less of the byproduct resources can by
produced, with a cascading effect across all trophic levels. This
deficit percolates up through the trophic pyramid, resulting in
minimal resource available for the highest level. What are the
long-term of effects of such episodes on a community? Yedid
et al. studied the process of regaining complex traits after the
press event is over, and found that ecological communities that
contained ecotypes with the ability to perform the most complex
trait were more likely to re-evolve it than communities that never
had such functionality (Yedid et al., 2008).While themechanisms
behind this dynamic were complex and varied, many of them are
also present in biological ecosystems, suggesting that this result
might generalize.

However, a follow-up study by Yedid et al. (2009) showed that
recovery from press extinctions still takes a long time, particularly
at higher trophic levels. Recovery from pulse extinctions, on the
other hand, occurs much more rapidly. This tendency is believed
to be the result of press extinctions providing an alternative
selection regime that encourages the loss of more complex traits
in favor of simpler traits that will more reliably yield a reward.
The authors also observed some parallels between the results
of this experiment and observations from the fossil record,
further supporting the idea that these same dynamics may occur
in biological ecosystems. Further analysis of the phylogenies
of populations subjected to these perturbations revealed that
stronger perturbations, particularly press events, result in a
substantial loss of phylogenetic diversity (Yedid et al., 2012).

Similar research conducted with only a single trophic level
suggests that the use of multiple trophic levels in Yedid et al.’s
work was important to their results. Communities evolved in
an environment in which computational tasks were associated
with limited resources and then subjected to extreme bottlenecks
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(effectively strong pulse extinctions) were able to regain their
original levels of consumption of each resource relatively quickly
(Olson et al., 2013). This finding is in contrast to the delayed
recovery of the most complex task observed in the cross-feeding
set-up. Interestingly, although the post-bottleneck communities
fulfilled all of the same functions as the original communities, the
ecotypes present often partitioned resources very differently. This
result reflects the fact that many distinct sets of ecotypes are able
to stably co-exist in Avida under limited resources.

A much milder form of perturbation is a localized disruption
of some regions within the environment, but not others. Such
a scenario is commonly observed in nature in the form of
anthropogenically fragmented ecosystems. Often, governments
will set aside some regions as biological reserves, where the
native ecosystem will, theoretically, be undisturbed. Making such
choices determines the spatial structure that populations in this
environment will have going forward, a property known to
have a dramatic effect on evolutionary dynamics (Tomassini,
2005). While this topic had received a great deal of attention
from ecologists, there is a relative lack of knowledge of
how evolutionary considerations should inform such decision-
making. Some preliminary investigation of this question has been
carried out in Avida (Dolson et al., 2016).

3.7. Macroecological Patterns
A number of large-scale patterns have received a great deal of
attention in ecology. Many of these patterns, such as species-
area relationships, exist in the form of scaling laws that describe
how two related variables collectively change. Others are patterns
in the distribution of a variable of interest, such as species-
abundance curves. Traditionally, these patterns have existed
squarely within the realm of pure ecology. However, as evolution
is the ultimate source of ecological variation, studying them
from an evolutionary perspective can provide relevant insight. A
number of digital evolution experiments have done exactly that.

Species-area relationships are curves relating the size of a
region to the number of species found there. Their general shape
is remarkably consistent across ecosystems. Thus, an obvious
question to ask in the context of a digital ecological community
is whether it conforms to this rule. In Echo, the observed species-
area curves were positive, but were not a close match to the
curves observed in nature (Hraber et al., 1997). Interestingly,
this study also examined the species-area relationship in a
neutral version of echo, in which all interactions were random.
Although the neutral model was not a better approximation of
nature, it did behave somewhat differently from standard Echo,
suggesting that species interactions do play a role in structuring
the species-area relationship.

Mashayekhi et al. undertook a more detailed investigation
of species area relationships in EcoSim (Mashayekhi et al.,
2014b). They measured species-area relationships under a variety
of conditions and using a variety of sampling designs. They
compared their results to a variety of mathematical functions
that have been proposed to describe the specific shape of
species area relationships. Functions in the power function
family consistently performed best, although no one function
was best across all circumstances. In particular, sampling scale

was important in determining which function was the best fit.
Additionally, they found a direct relationship between the slope
of the species-area curve and the level of beta diversity (variation
between spatial locations) in the environment.

Species abundance distributions are another commonly
studied macroecological pattern. They are consistently right-
skewed, indicating a large number of rare species and much
smaller numbers of species that are more common. These
patterns were also studied in Echo and EcoSim. Both the
traditional version of Echo and the neutral model were found
to exhibit species abundance distributions qualitatively similar
to those observed in nature, although the neutral model had
substantially fewer rare species (Hraber et al., 1997). EcoSim also
produces species abundance distributions that are consistent with
those observed in nature across a wide variety of spatial scales
(Devaurs and Gras, 2010).

4. CONSIDERATIONS FOR STUDYING
ECOLOGY WITH DIGITAL EVOLUTION

Clearly, digital evolution is a powerful tool for studying ecology.
Nevertheless, there are a few challenges that it is important to be
aware of when applying it:

4.1. Competition for Space
Many digital evolution platforms have a hard limit on the size
of the population they can contain. Often, this restriction is
necessary due to resource constraints. However, it is important
to be aware that doing so imposes competition for space.
Moreover, this competition may occur on a different level
than other competitive interactions (i.e., it may be global
whereas other interactions are local, or vice versa). Such a
discrepancy is not inherently a problem, but it can complicate
the interpretation of results, particularly in the case of research
on local competitive interactions.

Some ways of implementing space limits are more realistic
than others. Density-dependence, in which fitness decreases as
population size increases, is a common and important dynamic
in ecology (Hendry, 2019). This effect can be achieved by
decreasing reproduction rates as a pre-defined carrying capacity
is approached. A more organic implementation of density
dependence is to make the population dependent on a highly
limited resource (Zaman et al., 2011).

4.2. Evolving Interactions
When studying feedbacks between evolution and complex
ecological networks, it is often desirable to allow the interactions
in the network to evolve. However, representing interactions in
a genome is not as straightforward as it may initially seem. It
is tempting to create a section in the genome for each type of
agent; the contents of these sections would control how a given
agent interacts with each other type of agent. Unfortunately, this
approach is not viable if there are more than a few species, as
selection on the interactions rules becomes weaker as the number
of agent types increases. This weakened selection causes genetic
drift to be the primary driver of most interactions, producing
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what is most likely a very different eco-evolutionary regime than
what generally occurs in nature.

The simplest approach to building interaction networks that
do not experience this problem is to allow the environment
to mediate them. Environment-mediated interactions can be
achieved through resource competition and/or sharing, the
implementation of laws of physics, or an artificial brain that can
perceive other agents and choose actions based on its perception.
In all of these cases, agents affect each other without needing to
specifically evolve rules for how to do so.

A promising more general solution to this problem is the idea
of tag-based referencing (Spector et al., 2011; Lalejini et al., 2021;
Moreno and Ofria, 2021; Moreno et al., 2021). In this paradigm,
possible events that an individual might experience, such as
interacting with an individual of another type, are assigned “tags.”
These tags are sequences of 0 and 1 s that are matched to
corresponding tags in the individual’s genome, which in turn
determine which region of the genome controls the individual’s
response to the event. Importantly, tag-based referencing can
be set up to allow the same response to be associated with
multiple events. Thus, a population is able to evolve only as
many unique interactions between species as it needs. Because
tags are also capable of evolving, stabilizing selection is required
to keep a given response associated with a given tag. Thus, in
a circumstance where selection is not strong enough to prevent
an interaction from being controlled by drift, selection will also
likely not be strong enough to keep the response associated
with the tag at all. Interestingly, this approach is similar to
how interactions worked in John Holland’s early Echo model
(Holland, 1995). While this solution has not been used much
recently, we believe that it is currently the most promising
approach to implementing arbitrary evolvable interactions.

4.3. Choosing the Right Level of
Complexity
Systems for studying evolution and ecology exist along a
continuum of biological richness and realism, frommathematical
models on one extreme to field research on the other (see
Figure 1). Across this continuum, there is an inherent trade-off
between the richness of the dynamics in a system and the ease
of untangling those dynamics. While digital evolution systems as
a whole sit near the middle of this continuum, different digital
evolution systems fall at different points along it. Thus, the same
factors that one might consider when choosing digital evolution
over other research environments should also be considered
when choosing among digital evolution platforms.

Within the space of digital evolution platforms, it can
often make sense to start with the simplest possible system
that can display the dynamics of interest. Anecdotally, it is
rare to conduct a digital evolution experiment and find a
simpler result than expected. The opposite, however, is quite
common. Conducting initial experiments in a simple system
facilitates rapid discovery of the most important mechanisms
and parameters. Subsequently, scaling up to a more complex
system can provide the necessary biological richness to validate
and deepen understanding gained with simpler systems. For

an example of this approach, compare (Moreno and Ofria,
2019) with (Moreno and Ofria, 2021). Fortunately, many digital
evolution systems facilitate such work by supporting a range of
complexity levels via changes to their settings.

Beyond the richness vs. tractability trade-off, other important
considerations in selecting a system include: 1) which types
of ecological interactions it allows and promotes, 2) ease of
use, and 3) the extent to which it has been used to address
similar questions. This last point may seem counter-intuitive; as
scientists, we are often encouraged to constantly seek out novelty.
However, when first examining a new corner of a digital evolution
platform, there is generally some “digital naturalism” (Fahmy,
2014) style work to be done. Every system has quirks that need to
be understood before meaningful experiments can be conducted.
There is value in this work, but if the goal is to answer a specific
question it is generally more efficient to study it in a systemwhere
these quirks are already understood.

5. FUTURE DIRECTIONS

The range of promising future directions for ecology research
in digital evolution platforms is as vast as the set of open
questions in eco-evolutionary theory. However, there are some
specific directions that we think this approach is particularly
well-suited to:

5.1. Robustness of Ecological Theory
Ecological theory is often developed with the simplifying
assumption that evolution—at least in the sense of the evolution
of novel traits and new species—is not occurring. Sometimes
this assumption is justified with the argument that all species
have already achieved optimal fitness. However, based on the
trajectories of fitness even in incredibly simple systems (Wiser
et al., 2013; Wiser, 2015), it seems unlikely that this justification
is valid. Furthermore, the changing seascape of fitnesses in any
ecological system will ensure that even a seemingly stable fitness
peak does not remain so forever. Thus, much of ecological theory
could benefit from being tested in a system that relaxes these
assumptions, such as digital evolution. Indeed, much of the work
reviewed in this paper stemmed from efforts to do exactly that,
often yielding interesting and counter-intuitive discoveries in the
process (Bohm et al., 2019a; Vostinar and Ofria, 2019).

A particularly likely source of discrepancies between theory
and nature is that ecological theory often requires making
assumptions about the distributions of variables of interest. In
some cases, distributions that seem like reasonable null models
have proven to differ in important ways from the distributions
observed in nature (Lurgi et al., 2016). Because evolutionary
processes play a key role in generating many of the patterns
ecologists study, digital evolution platforms can, in some cases,
produce distributions of these variables that better match those
observed in nature.

5.2. Community-Level Evolution
In a recent critique of current research on eco-evolutionary
dynamics, Hendry pointed out the importance of moving beyond
research that focuses on a single species, and instead studying

Frontiers in Ecology and Evolution | www.frontiersin.org 14 November 2021 | Volume 9 | Article 750779

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Dolson and Ofria Digital Evolution for Ecology

eco-evolutionary dynamics at the community level (Hendry,
2019)1. Relatedly, the extent to which selection operates at
a community level was recently highlighted as an unsolved
problem in ecology (Loreau, 2020). We heartily agree with
the importance of this direction. Most long-term practical
applications of eco-evolutionary theory —such as steering
evolution in human microbiomes, pathogens, or synthetic
ecosystems —require an understanding of how evolution will
proceed within an entire community, not a single species within
that community.

One of the primary obstacles to understanding
community-level evolution is the sheer complexity of the
dynamics involved and our lack of theoretical frameworks for
understanding them. Even given a world where we have perfect
knowledge of a fitness landscape and all possible ecological
interactions, we are usually unable to point toward “rules”
describing how we expect a community to evolve (i.e., we lack
what economists would call “stylized facts” Abad and Khalifa,
2015). These challenges magnify the benefits of studying ecology
in digital evolution platforms. The ability to tune the level of
complexity in a system to exactly the level that is currently being
studied is always useful, but it is invaluable for problems with as
many interacting components as this one.

5.3. Digital Pilot Experiments
As climate change progresses, eco-evolutionary dynamics will
become increasingly important to study for practical reasons.
In order to forecast changes in ecosystems that are important
to humanity, we will need to study eco-evolutionary dynamics
in species that are not conducive to such research. These
challenges may stem from long generation times, difficulty
in collecting data, or insufficient confidence in experimental
success. We propose that these issues can be mitigated via digital
pilot experiments. Whereas much digital evolution research is
designed to investigate general theory, digital pilot experiments
would be tailored closely to specific lab or field experiments
planned for the near future. This general approach has already
been used in medical research, where it is referred to as a
phase i clinical trial (Scott, 2012). Digital pilot experiments
would provide an opportunity to (1) confirm that experimental
hypotheses hold up under idealized in silico conditions, (2)
determine which variables are the most important to prioritize
measuring, and (3) obtain preliminary estimations of effect sizes,
to facilitate more accurate power analysis and select appropriate
experimental scales (spatial, tmeporal, and number of replicates).
We suggest that, where lab or field experiments are risky or costly,
digital pilot experiments should become a standard first step.

5.4. Ecology’s Role in the Evolution of
Complexity
There is increasing evidence from both evolutionary
computation and from more traditional digital evolution to

1Hendry also advocates for the importance of more “real-world” experiments, but

notes that not all of his critiques can be addressed within the same studies. Thus,

we do not think it unreasonable to suggest that digital experiments can play a

complementary role in addressing his critiques.

suggest that ecology plays an important role in the evolution of
complexity (Walker and Ofria, 2012; Dolson et al., 2018a). As
has been clear since the early days of evolutionary computation,
mutation, inheritance, and selection alone are insufficient to
generate solutions to complex problems (Goldberg et al., 1987);
additional dynamics and properties are necessary. For the most
part, the dynamics that have helped achieve this goal have been
ecological in nature (Dolson et al., 2018b). However, it is still
unclear whether ecological dynamics are truly necessary for the
evolution of complexity, and, if so, which ecological dynamics
in particular.

Digital evolution has previously proven to be a powerful tool
for understanding the evolution of complexity (Lenski et al.,
2003). It has also been a powerful tool for untangling ecology
from evolution, via experiments in which mutations and/or
ecological interactions are turned on and off (Zaman et al., 2011).
Thus, it seems an ideal platform for untangling questions at the
intersection of ecology and the evolution of complexity.

6. CONCLUSIONS

Digital evolution offers a rich environment for asking ecological
questions, particularly as they intersect with evolutionary
questions. We have summarized a number of promising
software systems to use for this purpose, and reviewed
ecologically-relevant research carried out to date using them.
While much of the research thus far has centered on
eco-evolutionary dynamics, we believe that digital evolution
platforms also have potential as a platform for studying more
traditional ecology questions. To aid in such research, as well
as to further research into eco-evolutionary dynamics, we have
spelled out some suggestions for how best to study ecology in a
digital evolution system. Lastly, we have provided suggestions for
future research directions. We hope that this review will assist
and encourage others to take advantage of the powerful tool-set
offered by digital evolution.
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