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Adaptive cognitive biases, such as “optimism,” may have evolved as heuristic rules
for computationally efficient decision-making, or as error-management tools when
error payoff is asymmetrical. Ecologists typically use the term “optimism” to describe
unrealistically positive expectations from the future that are driven by positively biased
initial belief. Cognitive psychologists on the other hand, focus on valence-dependent
optimism bias, an asymmetric learning process where information about undesirable
outcomes is discounted (sometimes also termed “positivity biased learning”). These
two perspectives are not mutually exclusive, and both may lead to similar emerging
space-use patterns, such as increased exploration. The distinction between these
two biases may becomes important, however, when considering the adaptive value
of balancing the exploitation of known resources with the exploration of an ever-
changing environment. Deepening our theoretical understanding of the adaptive value of
valence-dependent learning, as well as its emerging space-use and foraging patterns,
may be crucial for understanding whether, when and where might species withstand
rapid environmental change. We present the results of an optimal-foraging model
implemented as an individual-based simulation in continuous time and discrete space.
Our forager, equipped with partial knowledge of average patch quality and inter-
patch travel time, iteratively decides whether to stay in the current patch, return to
previously exploited patches, or explore new ones. Every time the forager explores
a new patch, it updates its prior belief using a simple single-parameter model of
valence-dependent learning. We find that valence-dependent optimism results in the
maintenance of positively biased expectations (prior-based optimism), which, depending
on the spatiotemporal variability of the environment, often leads to greater fitness gains.
These results provide insights into the potential ecological and evolutionary significance
of valence-dependent optimism and its interplay with prior-based optimism.

Keywords: movement ecology, giving-up density, marginal-value theorem, optimal foraging, cognition, risk
allocation, landscape of fear, exploration - exploitation

INTRODUCTION

Cognitive biases are “consistent deviations from an accurate perception or judgment of the world”
(Fawcett et al., 2014). Such biases, as well as their associated costs and benefits, are increasingly
studied by biologists, psychologists and neuroscientists (Marshall et al., 2013). The general
consensus is that some cognitive biases may be beneficial under ecologically relevant conditions
and incomplete information, suggesting they are an adaptive product of natural selection. Adaptive
cognitive biases may have evolved as either heuristic rules for computationally efficient decision
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making, i.e., as computational “shortcuts” to avoid information-
processing limitations (Haselton et al., 2015; Trimmer, 2016), or
as error-management tools when error payoff is asymmetrical
(Tversky and Kahneman, 1974; Haselton et al., 2015; Bateson,
2016; Trimmer, 2016; Jefferson, 2017; Trimmer et al., 2017).

The disposition to expect a favorable outcome when faced
with uncertainty is a well-studied cognitive bias, often termed
“optimism”. A behavioral decision can be defined as optimistic
if it is consistent with having a positively biased expectation
of reward, or a negatively biased expectation of punishment
(Bateson, 2016). Ecologists typically use the term “optimism” to
describe a positively biased innate or initial belief (McNamara
et al., 2011; Berger-Tal and Avgar, 2012; Houston et al., 2012;
Marshall et al., 2015; Krakenberg et al., 2019), which we will refer
to hereafter as “prior-based” optimism. Consequently, ecological
research on optimism mostly focuses on the role of prior
knowledge in creating cognitive biases, leading to circumstances
in which animals treat resources that are seemingly identical
as strikingly different, depending on their past experiences
(Stroeymeyt et al., 2011; Berger-Tal et al., 2014a). Notably,
the acquisition of this prior knowledge may range from the
immediate time scale (Bateson et al., 2011; Hui and Williams,
2017), to experiences acquired through the individual’s life,
development or maternal effects, or even evolutionary history
(Murphy et al., 2014; Bateson et al., 2015).

Unlike ecologists, human cognitive psychologists often focus
on valence-dependent learning as the basis for optimism
(sometimes also termed “positivity bias”). Healthy human
subjects are known to display unrealistically positive expectations
about the future that are driven by an asymmetric learning
process, where information about undesirable outcomes is
discounted while information about desirable outcomes in
amplified (Weinstein, 1980; Sharot, 2011; Kuzmanovic et al.,
2015; Gesiarz et al., 2019; Garrett and Daw, 2020). Interestingly,
subjects suffering from depression display valence-dependent
pessimism – due to an overemphasis on information about
undesirable outcomes, their expectations about what the future
holds are typically grimmer than what they should be based
on the information they have (Strunk et al., 2006; Sharot et al.,
2007). The proximate mechanisms underlying this phenomenon
have been extensively studied in humans, as well as its
consequences (Sharot et al., 2007, 2012; Sharot, 2011; Lefebvre
et al., 2017; Dundon et al., 2019). These consequences may
range from positive effects of mild optimism on various aspects
of human wellbeing, to negative effects of extreme optimism
that may extend as far as global financial collapse (Johnson
and Fowler, 2011; Sharot, 2011; Jefferson, 2017). Optimism bias
is thus considered the only form of misbelief in humans that
may have evolved as an adaptive trait (McKay and Dennett,
2009; Johnson and Fowler, 2011; Marshall et al., 2015). To
sum, whereas the ecological perspective on optimism translates
into a biased belief that erodes toward the truth with the
accumulation of experience (a rigid learning process; Berger-Tal
and Avgar, 2012), the psychological perspective translates into
a dynamic learning process, where biased beliefs do not erode
but instead continuously update at a rate that is proportional
to the magnitude of environmental changes (Stankevicius et al.,
2014; Kuzmanovic et al., 2015; Bateson, 2016). Importantly,

valence-dependent optimism (or pessimism) is a plausible
mechanism for the emergence of temporally dynamic prior-
based optimism (or pessimism), even in the absence of
environmental change.

The study of optimism may be particularly relevant to
the well-known trade-off between exploration and exploitation
(Berger-Tal et al., 2014b; Mehlhorn et al., 2015; Addicott et al.,
2017). Consumers, whether they are foraging animals, capital
investment firms, or fishing vessels, are constantly balancing
known resource exploitation with the time and energy devoted
to exploring new resources in order to reduce uncertainty and
broaden their portfolio (Cohen et al., 2007; Berger-Tal et al.,
2014b; Bartumeus et al., 2016; Votier et al., 2017; Kembro
et al., 2019; O’Farrell et al., 2019). The trade-off stems from
the fact that gathering information and exploiting it are, to a
large degree, two mutually exclusive activities (March, 1991).
Exploratory behavior is, however, typically viewed under one
of two contrasting perspectives (Warren et al., 2017). One
assuming that exploration tendencies have evolved as an adaptive
trait in itself, treating information as independently sought-
after currency (Dall et al., 2005; McNamara and Dall, 2010;
Marvin and Shohamy, 2016). The contrasting, and arguably more
mechanistically parsimonious perspective, views exploration as
an emerging pattern rather than an adaptive process. Under
this view, exploratory behavior emerges from the interactions
between simple foraging heuristics, the informational state of
the animal, and the environment (Berger-Tal and Avgar, 2012;
Avgar et al., 2013; Riotte-Lambert et al., 2017; Davidson and
El Hady, 2019). For example, a consumer’s decision to exploit
a known resource or explore a new one would depend on the
perceived likelihood that exploration would lead to improved
long-term payoff (i.e., over multiple consumptive events), which
in turn depends of the consumer’s belief about the availability
and quality of yet unexplored resources. Thus, an optimistic
consumer will tend to “favor” exploration over exploitation
(Berger-Tal and Avgar, 2012), although the adaptive value of
this strategy will depend on the dynamics of the environment
across space and time.

Optimal Foraging Theory, perhaps more than any other
branch of ecology, emphasizes the importance of prior knowledge
in determining animal decision-making in the context of the
exploration-exploitation tradeoff. Optimal foragers are expected
to maximize their long-term intake rate by exploring new
patches when their current exploitation rate falls to a rate
that is equal to the average intake rate in the surrounding
environment (Charnov, 1976; Brown, 1988). However, real-
world environments are constantly changing, and foragers do
not possess perfect information about them. Bayesian Foraging
Theory addresses this reality by assuming that the forager’s
decisions are based on a prior belief about the expected value
of the environment, and about the variability around this
expectation, a belief that is constantly being updated as the
forager acquires new knowledge (Green, 2006; McNamara et al.,
2006; Biernaskie et al., 2009; Berger-Tal and Avgar, 2012).
A positively biased prior belief about the quality of other
patches thus corresponds to “optimism” as it is typically used
by ecologists (prior-based), whereas a positively biased updating
of this belief (learning more from positive compared to negative
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reinforcements) corresponds to “optimism” as it is typically
used by psychologists (valence-dependent). If the environment
does not change across space and time, and in the absence of
valence dependence, prior-based optimists would converge to the
optimal exploration rate after learning the true expected value of
the environment.

We have previously shown that, in the absence of valence
dependence, prior-based optimists are expected to outperform
prior-based pessimists (foragers with a negatively biased initial
belief about the expected quality of the environment), and,
when capable of revisiting patches following a resource renewal
process, prior-based optimists should outperform unbiased
foragers (Berger-Tal and Avgar, 2012). As far as we are aware,
the temporal dynamics and foraging performance of valence-
dependent optimists (or pessimists) has not yet been explored
in an ecological context, nor have the emerging space-use
patterns and consequences of such biased learners when faced
with a rapidly changing environment. Our goal here is thus
twofold; first, we aim to map the (theoretical) fitness response
to various degrees of valence-dependencies under different
ecological scenarios, and second, we aim to derive expectations
about the relationship between the two types of optimism bias,
environmental characteristics, and animal space-use patterns.

MATERIALS AND METHODS

Model Description
The model used here is an individual-based, fitness-maximizing
simulation, in continuous time and discrete (albeit implicit)
space. This model builds and expends on a model we developed
a decade ago to explore the role of prior-based optimism
in optimal foraging under uncertainty (Berger-Tal and Avgar,
2012). Simulations start with the forager arriving in a new
patch equipped with some initial energy reserves, E (t = 0),
and prior beliefs about the average quality of patches on the
landscape, Q (t = 0), and the average travel time between
patches,T (t = 0). Energy is gained by consuming discrete “food
units” (a mouthful, a bite, or a single resource item), and the
duration of each such consumption event, 1t, is calculated based
on current food availability in the occupied patch, k, following a
Type II functional response with search rate a and handling time
h (Holling, 1959):

1t =
(
a · k

)−1
+ h

Energy is lost via a constant field metabolic rate, FMR, or
via reproduction, with a per-offspring reproductive cost, Er.
The forager reproduces whenever energy reserves exceeded the
sum of its initial energy reserves and its reproductive cost
(E (t) > E (t = 0)+ Er), at which point its energy reserves
are adjusted accordingly (E (t)← E (t)− Er). If at any time,
the forager’s net energy reserve is insufficient (E (t) ≤ 0), the
forager dies of “starvation”. The forager may also die due
to “predation” with per-unit-time probabilities ptravel (when
traveling between food patches) and pforage (when foraging within
a patch). Simulations end with the forager either dying, or
reaching a predefined longevity threshold, tmax. The forager’s

fitness is its lifetime reproductive success – the total number
of offspring it produced. Fitness is thus a product of two
aspects of the forager’s resource-consumption rate: its long-term
mean (which directly translates into reproductive rate), and its
temporal variability (which enhances the risk of starvation and
predation). The longer a forager lives, and the more it was able to
consume during its lifetime, the greater would be its fitness.

After each consumption event, the forager “decides” (sensu
Leavell and Bernal, 2019) whether to stay in the current patch,
travel to a previously visited (memorized) patch, or travel in
search of a new patch. The decision to leave the current patch is
based on the forager’s expectation regarding the optimal Giving-
Up Density (GUD; the amount of resources left in a departed
patch; Brown, 1988) and associated time and predation costs:

(1) First, assume it is best to leave the current patch; the
current food availability in this patch is the optimal GUD
and so assume that the next patch will be utilized until it
reaches this GUD.

(2) Based on this assumption, calculate expected consumption
rates in each of the alternative patches: n memorized
patches + one yet-unvisited patch. Note that n does
not remain constant through the simulation but rather
increases as the forager visits more and more patches.
The expected consumption rate is calculated by dividing
the expected cumulative food intake in each of these
patches (the patch’s expected quality minus the GUD)
by the expected time it will take to reduce each to the
GUD, τi,GUD (i = 1 : n+ 1) (Olsson and Brown, 2006).
τi,GUD = τi,travel + τi,forage, where τi,travel is the expect
time it will take to travel from the current patch to patch
i, whereas τi,forage is the expected time it will take to deplete
patch i to the GUD (the sum of all 1t’s starting from k =
expected patch quality, and ending at k = GUD+ 1).

(3) For each of these alternative patches, also calculate the
expected survival based on the expected time in each of
two movement states (travel and forage), τi,travel and τi,forage(
τi,GUD = τi,travel + τi,forage

)
. The average per-unit-time

probability of surviving predation (until GUD is reached)
is then given by:

si = τi,GUD
√[

1− ptravel
]τi,travel

·
[
1− pforage

]τi,forage
(4) Next, assume instead that it is best to stay in the

current patch for (at least) the duration of the next
consumption event, and hence the optimal GUD is the
current food availability in this patch, minus one. Under
this assumption, it is best to forage in the current patch
(i = 0) for the duration of the next consumption
event (τi=0,GUD = τi=0,forage = 1t), with an associated
consumption rate of τ−1

i=0,GUD, and average per-unit-time
probability of surviving predation, si=0 = pforage .

(5) “Decide” whether to stay in the current patch or
leave to either of the n+ 1 alternative patches, by
choosing the option that maximizes the product of the
expected consumption rate and the average per-unit-time
probability of surviving predation (si ).

Frontiers in Ecology and Evolution | www.frontiersin.org 3 February 2022 | Volume 9 | Article 759133

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-759133 February 7, 2022 Time: 11:52 # 4

Avgar and Berger-Tal Optimistic Optimal Foraging

Once a decision is made, a “starvation mortality”
terminates the simulation if the forager’s energetic reserve
(E (t)) is lower than the product of its FMR and the
time elapsed since its previous bite. The simulation may
also end due to a “predation mortality”, with probability
1−

([
1− ptravel

]τtravel(t)
·
[
1− pforage

]τforage(t)), where τtravel (t)
is the realized duration of traveling (τtravel (t) = 0 if the forager
did not leave the patch), and τforage (t) is the time to consume
the next bite. If the forager survived, the focal patch’s quality
is updated by subtracting one bite, and E (t) is updated by
adding one bite and subtracting FMR expenditure (and, if
E (t) > E (t = 0)+ Er, reproductive cost). If the forager moved
to a previously unvisited patch, then n is updated accordingly
(n← n+ 1). The qualities of the n previously visited patches
are updated after each consumption event based on a stochastic
logistic regrowth model.

The forager is assumed to “know” the concurrent qualities
of all patches it has visited before, as well as the times it
takes to travel between any particular pair of patches, as
long as that particular journey was undertaken at least once
before. What the forager does not know with certainty is
the quality (food abundance) of yet unexplored patches, and
the travel time between pairs of patches it did not visit
sequentially before. Instead, the forager relies on its current
(at time t) beliefs about average patch quality, Q (t) and travel
time, T (t). Once a new inter-patch journey is decided on
or a new patch is visited, the true duration of that journey,
τtravel (t), or the true quality of that patch, k (t), are sampled
from two respective Gamma distributions, each with its own
characteristic mean and variance. The foraging environmental
is characterized by the values of these means and coefficients of
variation

(
CV =

√
variance/mean

)
. The forager’s beliefs about

the expected values of these quantities is then updated using a
simple yet powerful linear approximation to Bayesian learning
(McNamara and Houston, 1987; Lange and Dukas, 2009; Berger-
Tal and Avgar, 2012):

{
T (t + τ) = θT (t) · τtravel (t)+ [1− θT (t)] · T (t)

Q (t + τ) = θQ (t) · k (t)+
[
1− θQ (t)

]
· Q (t)

where θT (t) and θQ (t) are (temporally dynamic) normalized
weights [0, 1].

The novelty of our approach lies in introducing valence-
dependent learning by allowing the θT (t) and θQ (t) to vary with
the difference between the current beliefs, T (t) and Q (t), and
newly acquired information, τtravel (t) and k (t):{

θT (t) = ηT
ηT+(1−ηT)·exp(αT ·[τtravel(t)−T(t)])

θQ (t) = ηQ
ηQ+(1−ηQ)·exp(αQ·[Q(t)−k(t)])

Here, ηT and ηQ [0, 1] are the basal normalized weights
(learning rates in the absence of a valence effect; unitless),
whereas αT and αQ are valence-dependent learning parameters
(with units of time−1 and quality−1, respectively). Positive
values of αT and αQ correspond to an increase in the
respective normalized weights whenever τtravel (t) < T (t)
or Q (t) < k (t), emphasizing new information when this

information exceeds expectations. Negative values of αT and αQ
correspond to an increase in their respective normalized weights
whenever τtravel (t) > T (t) or Q (t) > k (t), emphasizing new
information when this information is disappointing compared to
expectations. Consequently, for each of the two environmental
variables (patch quality and inter-patch travel time), our model
has two “cognitive traits”. The basal normalized weight, η, is
inversely related to the effect of prior-based judgment bias;
in the absence of valence-dependent learning (α = 0), new
information has little effect on the forager’s initial beliefs [i.e.,
Q (t = 0) and T (t = 0)] if it is low (close to 0), whereas new
information is heavily weighted and hence prior beliefs are
quickly eroded if it is high (close to 1). The valence-dependent
learning parameter, α, is our mathematical depiction of valence-
dependent judgment bias; if it is positive, the forager’s beliefs are
affected more by new information if that information is positive
(“optimism”), and vice versa.

Through their effects on the forager’s space-use decisions
(when and where to go), αT and αQ affect the forager’s
resource acquisition rate, risk of starvation, and exposure to
predation. Everything else being equal, those values of αT and
αQ that result in the greatest lifetime reproductive success (a
product of longevity and consumption rate), are expected to be
evolutionary adaptive.

Numerical Experiments
Our numerical experiments consisted of running 1,000 stochastic
realizations of the simulation across a full factorial design
of parameter and variable values, as detailed in Table 1.
While there are many axes along which our model could be
investigated, our focus here is on optimal valence-dependent
learning bias and its dependence on environmental variability
and prior-based bias. Environmental variability is manifested
in our “experiments” along two orthogonal axes. First, we
varied the coefficients of variation of patch qualities and inter-
patch travel times [CV (Q) and CV (T)] while keeping the
mean values constant (variability across space). High CV (Q)
means patches are more heterogeneous in their quality across
space, and an exploring forager is more likely to encounter
either an exceptionally rich patch, or an exceptionally poor
one. High CV (T) means patches are more aggregated in space,
and an exploring forager is more likely to travel either for an
exceptionally short time, or for exceptionally long time, before
encountering a new patch. Second, we varied the prior belief the
forager held with regards to each of these two landscape attributes
at the beginning of the simulation [Q (t = 0) and T (t = 0)],
reflecting a mismatch between the forager’s expectations and
the true environmental characteristics (e.g., due to abrupt
change in mean environmental qualities; variability across time).
By varying Q (t = 0) and T (t = 0), rather than Q̂ and
T̂, we are able to compare foraging performance, and the
resulting fitness, across different scenarios while keeping the
mean characteristics of the environment constant. We envision
a shift into a relatively enriched [Q̂ > Q (t = 0) or T̂ <

T (t = 0)] or degraded [Q̂ < Q (t = 0) or T̂ > T (t = 0)]
environment as one possible cause of prior-based pessimism or
optimism, respectively.
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TABLE 1 | the various parameters and state variables used in our numerical experiments.

Name Description Numerical values

Q̂ and T̂ mean patch quality (in the absence of depletion), and mean
travel time from one patch to another

100 and 10 (respectively)

CV (Q) and CV (T) coefficients of variation of patch quality and travel time 0.1, 0.5, or 1

Q (t = 0) and T (t = 0) initial (prior) belief about mean patch quality and travel time 50%, 100%, or 150% of Q̂ and T̂ respectivaly

FMR field metabolic rate 0.5*

Er energetic cost or producing a single offspring FMR · Q̂

E (t = 0) initial energy reserves Er

tmax maximum longevity 10,000

ptravel predation risk (per-unit-time) while travelling between
patches

tmax
−1, 2 · tmax

−1, or 3 · tmax
−1

pforage predation risk (per-unit-time) while foraging in a patch 0.1 · ptravel

h the Type II functional response’s handling time 1

a the Type II functional response’s search rate 0.02**

r logistic rate of forage regrowth 0.003***

ηQ and ηT basal normalized weights for updating Q(t) and T(t) 0.01

αQ and αT valence-dependent learning parameters for updating Q(t)
and T(t)

−e2, −e1, −e0, −e−1, −e−2, −e−3, −e−4,
−e−5, 0, e−5, e−4, e−3, e−2, e−1, e0, e1, or e2

*FMR was set so as to equal the energetic consumption rate at half Q̂. **Search rate was set so that consumption rate at half Q̂ is half the maximum consumption rate
(h−1). ***Forage growth rate was set so that, at its maximum (i.e., at half Q̂), exactly one bite will regrow in the expected time it takes the forager to consume one bite at
half Q̂ and travel to a new patch.

To reduce dimensionality (and hence make our results as
general as possible), we expressed several non-focal parameters
and variables as functions of others (Table 1). That said, we
acknowledge that the robustness of our results depends on
a comprehensive factorial sensitivity analysis, an analysis that
we view as the next step along this line of investigation. To
summarize our results, the outputs of each scenario (1,000
vectors of the various state variables) were bootstrapped 1,000
times, each time recording the average starvation rate, longevity,
consumption rate, and lifetime reproductive output, as well as
other attributes of the simulated realizations, such as the average
GUD or home range size (number of unique patches utilized over
the forager’s lifetime).

RESULTS

First, we examine the relationship between our valence-
dependent learning parameters and the resulting beliefs held
by the foragers at the end of the simulation (Figure 1 and
Supplementary Figure 1). The terminal belief (held at the
end of the simulation) about the mean patch quality, Q

(
end

)
,

is always biased low (pessimism) at large negative values of
the valence-dependent Q-learning parameter (αQ � 0; valence-
dependent pessimism), and high (optimism) at large positive
values of αQ (valence-dependent optimism). The αQ value at
which an unbiased terminal belief is obtained

(
Q
(
end

)
= Q̂

)
decreases with the initial prior belief (Q (t = 0)), and the strength
of the effect increases with spatial variability in patch quality
(CV(Q)). These results are mirrored in the relationship between
αT and T

(
end

)
(Supplementary Figure 1). Note that, high

spatial variability in either patch quality or inter-patch travel

time translates into skewed distributions of these attributes (for
the Gamma distribution, skewness = 2 · CV). As a result, the
magnitude of terminal optimism at αQ � 0 is much larger than
the magnitude of terminal pessimism at αQ � 0 (Figure 1, lower
panels), and the magnitude of terminal optimism at αT � 0 is
much smaller than the magnitude of terminal pessimism at αT �

0 (Supplementary Figure 1, lower panels).
The fitness-maximizing value of the valence-dependent Q-

learning parameter (αQ), varies with environmental variability
across space and time (Figure 2). Moderate valence-dependent
optimism

(
αQ > 0

)
is adaptive (i.e., it results in greater lifetime

reproductive output) in six out of the nine scenarios depicted in
Figure 2. Valence-dependent optimism is associated with greatest
(relative) fitness gain when the forager is also a “prior-based
pessimist” (which may be interpreted as a shift into an enriched
environment), and when spatial variability in patch quality is
high. Valence-dependent pessimism

(
αQ < 0

)
is adaptive in only

two out of the nine scenarios, when the forager is “prior-
based optimist” (which may be interpreted as a shift into a
degraded environment), and the spatial variability of patch
quality is medium or low. It should be noted that the shape and
magnitude of these response curves vary with values of T (t = 0),
CV (T), and all other variables and parameters (e.g., ptravel;
Supplementary Figure 2). Overall, however, across all scenarios,
moderate valence-dependent optimism with regards to patch
quality is the most common fitness-maximizing strategy (146 out
of 243 scenarios).

The fitness effect of the valence-dependent T-learning
parameter (αT) follows similar trends but is less pronounced
than the effect of αQ (Supplementary Figure 3), which is
to be expected considering the range of T is an order of
magnitude smaller than that of Q. For the same reason, in those
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FIGURE 1 | Terminal belief (at the end of the simulation) about the mean patch quality as function of valence-dependence for patch quality (positive values of αQ

correspond to valence-dependent optimism whereas negative values correspond to valence-dependent pessimism). Vertical dashed lines denote unbiased learning
(αQ = 0), whereas horizontal dashed lines denote an unbiased terminal belief

(
Q (end) = Q̂

)
. Different panels refer to different scenarios: low (Q(t = 0) = 50),

unbiased (Q(t = 0) = 100), and high (Q(t = 0) = 150) initial prior belief (columns), and low (CV (Q) = 0.1), medium (CV (Q) = 0.5), and high (CV (Q) = 1) spatial variability
(rows). In each scenario, αT was kept constant at its optimal (fitness maximizing) value. T (t = 0) = T̂ = 10; CV (T ) = 0.5; Ptravel = tmax

−1 other parameters and
variables were as detailed in Table 1.

scenarios where valence-dependent optimism is adaptive, it is
typically extreme (αT � 0; Supplementary Figure 3). Valence-
dependent optimism is adaptive in unchanged or newly enriched
environments (i.e., for unbiased or pessimistic priors), but only
when CV(T) is moderate or high (patches are aggregated in
space). When CV(T) is low, αT has no significant effect on
lifetime reproductive success. When the environment is newly
degraded (i.e., for prior-based optimists) and CV(T) is high,
lifetime reproductive success is maximized when αT = 0 (i.e.,
unbiased learning; Supplementary Figure 3). Overall, across all
scenarios, valence-dependent optimism with regards to travel
time is the most common fitness-maximizing strategy (121 out
of 243 scenarios).

As for the adaptive value of prior-based biases, optimism is,
most often, the fitness maximizing strategy. For both medium
and high spatial variability in patch quality, absolute fitness is
highest for prior-based optimists, and lowest for prior-based
pessimists, across all levels of valance-dependent learning (lower
panels of Figure 2 and Supplementary Figure 2). This is also
true, albeit to a lesser degree, for prior-based optimism with
regards to travel time; for a given value of αT , the absolute

fitness value is highest when the forager is a prior-based
optimist, and lowest when the forager is a prior-based pessimist
(Supplementary Figure 3).

To gain better understanding of these results, we examine
the effects of our valence-dependent learning parameters on the
components of fitness, namely consumption rate and longevity
(lifetime reproductive success is the product of these two
variables; Figures 3, 4). The effects of the valence-dependent Q-
learning parameter

(
αQ
)

on consumption rates follow similar
trends to those described above for lifetime reproductive
output (Figure 3). Mild valance-dependent optimism is
advantageous in newly enriched environments (i.e., for prior-
based pessimists), whereas valance-dependent pessimism is
only advantageous in relatively homogenous [low CV(Q)] and
newly degraded environments (i.e., for prior-based optimists).
Prior-based optimism about patch quality is associated with
a marked increase in absolute consumption rates across
all αQ values, under both moderate and high values (Figure 3).
As for the effect of our valence-dependent T-learning parameter
(αT) on consumption rates (Supplementary Figure 4), valence-
dependent optimism is advantageous in unchanged or newly
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FIGURE 2 | Lifetime reproductive output as function of valence-dependence for patch quality (positive values of αQ correspond to valence-dependent optimism
whereas negative values correspond to valence-dependent pessimism). Vertical dashed lines denote unbiased learning (αQ = 0). Different panels refer to different
scenarios: low (Q(t = 0) = 50), unbiased (Q(t = 0) = 100), and high (Q(t = 0) = 150) initial prior belief (columns), and low (CV (Q) = 0.1), medium (CV (Q) = 0.5), and high
(CV (Q) = 1) spatial variability (rows). In each scenario, αT was kept constant at its optimal (fitness maximizing) value. T (t = 0) = T̂ = 10; CV (T ) = 0.5; Ptravel = tmax

−1;
other parameters and variables were as detailed in Table 1.

enriched environments (i.e., for unbiased or pessimistic priors),
but only whenCV(T) is moderate or high (patches are aggregated
in space). When CV(T) is low, αT has no significant effect on
consumption rate. When the environment is newly degraded
(i.e., for prior-based optimists) and CV(T) is moderate or
high, consumption rates are maximized when αT = 0 (i.e.,
unbiased learning; Supplementary Figure 4). Finally,
prior-based optimism about inter-patch travel times is
associated with small but significant increase in absolute
consumption rates across all αT values, under both moderate and
high CV(T) values (Supplementary Figure 4).

Across all scenarios and parameters values, our simulated
foragers typically “died” of “natural causes” (either predation
or starvation), with less than 0.01% of simulations reaching
tmax (our maximum longevity cutoff). Variability in longevity
(Figure 4) is driven primarily by variability in starvation
mortality (Supplementary Figure 6); individuals that
die young typically die from starvation, whereas those
that live long, eventually die of predation (Figure 4 and
Supplementary Figures 5, 6). When spatial variability in patch
quality is low (CV (Q) = 0.1), valence-dependent optimism
is associated with longer life span (higher probability of

survival) in newly enriched environments (compared to the
forager’s initial expectation, i.e., for prior-based pessimists),
whereas valence-dependent pessimism is associated with longer
life span in newly degraded environments (compared to the
forager’s initial expectation, i.e., for prior-based optimists;
Figure 4). In contrast, when spatial variability in patch quality
is moderate or high (CV (Q) ≥ 0.5), longevity is typically
maximized in the absence of valence-dependent learning
(although slight deviations from αQ = 0 have little effect), with
the exception of prior-based pessimists under intermediate
environmental variability, where mild optimism is associated
with distinctly longer life span (Figure 4). Longevity is otherwise
insensitive to the prior-based bias, and is also unaffected by
the value of the valence-dependent T-learning parameter
(Supplementary Figure 7).

Lastly, we examine the relationship between our valence-
dependent learning parameters and emerging space-use patterns
(Figure 5). Movement rate (% time spent travelling; Figure 5A)
remain mostly unaffected by the valence-dependent Q-learning
parameter, until the latter reaches large positive values (extreme
valence-dependent optimism), where movement rate doubles
and then plateaus. Exploration rate (% patch departures to new
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FIGURE 3 | Consumption (feeding) rate as function of valence-dependence for patch quality (positive values of αQ correspond to valence-dependent optimism
whereas negative values correspond to valence-dependent pessimism). Vertical dashed lines denote unbiased learning (αQ = 0). Different panels refer to different
scenarios: low (Q(t = 0) = 50), unbiased (Q(t = 0) = 100), and high (Q(t = 0) = 150) initial prior belief (columns), and low (CV (Q) = 0.1), medium (CV (Q) = 0.5), and high
(CV (Q) = 1) spatial variability (rows). In each scenario, αT was kept constant at its optimal (fitness maximizing) value. T (t = 0) = T̂ = 10; CV (T ) = 0.5; Ptravel = tmax

−1;
other parameters and variables were as detailed in Table 1.

patches; Figure 5B) show a double sigmoidal increase pattern
with αQ, with an intermediate plateau at moderate αQ values
(mild pessimism or optimism), followed by full saturation (all
patch departures are explorations) at large positive αQ values.
Home-range size (number of unique patches used by a forager
over its lifetime; Figure 5C), and patch giving-up densities (GUD;
Figure 5D) follow a similar pattern as that or exploration rate.
As with other results, these patterns were similar for the effect
of αT , although exploration rate was mostly insensitive to αT .
These patterns also showed slight sensitivities to the values of
other variable and parameters, but were otherwise qualitatively
similar across all scenarios. Overall, valence-dependent optimists
explore more and consequently occupy larger home ranges, and
have higher giving-up densities (exploit less), then unbiased or
pessimistic learners.

DISCUSSION

Throughout their evolutionary history, animals faced novel
environments and situations primarily following dispersal
into new territories (Ronce, 2007; Dingle, 2014). However,

human-induced rapid environmental changes (HIREC; Sih et al.,
2016) makes encountering novel stimuli the rule rather than the
exception under many natural situations. Moreover, conservation
translocations (in which humans deliberately release animals into
novel environments) are increasingly used for the conservation
of species or the restoration of ecosystems (Berger-Tal and Saltz,
2014; Berger-Tal et al., 2020). Successful conservation therefore
depends on understanding how animals might cope with novel
environments and stimuli (Dunlap et al., 2017; Crowley et al.,
2019), and how they balance their exploration and exploitation
needs in an unknown environment. Optimism is likely to play an
important role in decision-making under novel situations, since
it is thought to encourage exploration and increase movement
rates and home range sizes. This seems to be the case regardless
of the suggested mechanism for this cognitive bias – either a
positively biased initial belief (“prior-based” optimism; Berger-
Tal and Avgar, 2012), or an asymmetric learning process where
information about undesirable outcomes is discounted (“valence-
dependent” optimism; Figure 5).

In this manuscript, we examined the adaptive value of
valence-dependent optimism (positivity biased learning).
Valence dependence is the main mechanism used by cognitive
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FIGURE 4 | Longevity (life expectancy) as function of valence-dependence for patch quality (positive values of αQ correspond to valence-dependent optimism
whereas negative values correspond to valence-dependent pessimism). Vertical dashed lines denote unbiased learning (αQ = 0). Different panels refer to different
scenarios: low (Q(t = 0) = 50), unbiased (Q(t = 0) = 100), and high (Q(t = 0) = 150) initial prior belief (columns), and low (CV (Q) = 0.1), medium (CV (Q) = 0.5), and high
(CV (Q) = 1) spatial variability (rows). In each scenario, αT was kept constant at its optimal (fitness maximizing) value. T (t = 0) = T̂ = 10; CV (T ) = 0.5; Ptravel = tmax

−1;
other parameters and variables were as detailed in Table 1.

psychologists to explain the emergence of optimism bias
(Weinstein, 1980; Sharot, 2011; Kuzmanovic et al., 2015; Garrett
and Daw, 2020; Gesiarz et al., 2019), but has rarely been tested
in an ecological framework. More specifically, whereas several
studies demonstrated the existence of “valence-dependent”
optimism in non-human animals, its explicit evolutionary
adaptive value has, to our knowledge, never been evaluated.
We found that moderate valence-dependent optimism is the
most common fitness-maximizing strategy across a wide range
of ecological scenarios. Further, valence-dependent optimism
results in the maintenance of prior-based optimism (Figure 1),
and consequently to enhanced fitness in spatially variable
environments. Lastly, optimism promotes exploration and
consequently always leads to enhanced learning. The resulting
rapid acquisition of information may be advantageous even when
it results in slightly suboptimal short-term foraging patterns.
Taken together, these theoretical explorations suggest we should
expect behavioral responses consistent with having positively
biased expectations to be the rule in many natural systems.

Optimism, whether valence-dependent or prior-based,
promotes exploration. Consistently expecting to find better
resources or condition “out there” leads to spending less time

in familiar places (exploitation) and more time searching, and
consequently learning. We thus expect optimism, which is
generally adaptive even in the absence of HIREC, should play
an important role in species adjusting their behavioral patterns
to new conditions brought about by HIREC. Optimism will
not help a species persist in an environment that is degraded
to the point it cannot support it, but it should accelerate
information-based shifts in behavioral strategies, promoting
post-HIREC population viability. It is worth noting that we
have found a clear fitness advantage of mild valence-dependent
pessimism in scenarios where foragers are (initially) prior-based
optimists, and spatial environmental variability is low (e.g.,
top-right panel of Figure 2). This leads to the prediction that
species with recent evolutionary history dominated by spatially
homogenous yet temporally degrading environments, should be
valence-dependent pessimists. Consequently, such species are
expected to explore less, be slower to learn, and hence be more
vulnerable to HIREC.

In our simulations, mortality was driven primarily by
starvation. Extreme valence-dependent optimists or pessimists
tend to die of starvation early in life due to low resource
consumption rates (except when they are also prior-based
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FIGURE 5 | Emerging space-use patterns as function of valence-dependence for patch quality: (A) “movement rate” (% time spent travelling; 9–23), (B) “exploration
rate” (% patch departures to new patches; 55–100), (C) home-range size (number of unique patches used during the simulation; 5–24), and (D) mean giving-up
density (average number of bites remaining in a patch once departed; 36–80) Q(t = 0) = Q̂ = 100; T (t = 0) = T̂ = 10; CV (Q) = CV (T ) = 0.5; ptravel = 2 tmax

-1; other
parameters and variables were as detailed in Table 1. αT was kept constant at its optimal value (which is 0 in this specific scenario).

pessimists or optimists, respectively, and living in homogenous
environment). Fitness, however, is a product of life expectancy
and reproductive rate, with the latter being tightly linked
to resource consumption rate, which is generally highest for
mild optimists. Hence, we get scenarios (particularly when
environmental spatial heterogeneity is high; e.g., the bottom mid
and left panels in Figures 2–4) where strategies that lead to
longer lives are not necessarily those with the highest fitness.
A useful perspective on this tradeoff may be based on the notion
of “pace of life” (Careau et al., 2011; Nakayama et al., 2017;
Campos-Candela et al., 2018; Mathot and Frankenhuis, 2018;
Betini et al., 2019) – a “fast” (optimistic) forager may not live for
a longer period of time, but it accomplishes more in the time it
has, presumably due to higher exploration rate which allows it to
encounter and utilize high quality patches.

Prior-based (“innate”) expectations about the environment are
an emerging product of the learning process, the prior belief
held at its onset, and the characteristics of the environment.
Consequently, these beliefs should be viewed as a dynamic state
variable (rather than a rigid trait), which continually change
through time, even if the characteristics of the environment do

not (Figure 1 here and Figure 1B in Berger-Tal and Avgar, 2012).
The rate and direction of this change depend on initial beliefs,
environmental heterogeneity, and valence-dependent learning
(Figure 1). There are at least three processes that may give
rise to a prior-based optimism at a certain point in time: an
innate disposition that is unaffected by learning (e.g., due to
genetic effects or early-life imprinting), a history of learning in
a better environment (where expectations would be set high
compared to the current environment), and positively biased
learning (valence-dependent optimism). We have shown here
that the latter is advantageous on its own accord, and is a
plausible mechanism for the emergence of temporally dynamics
prior-based biases.

The initial value of innate expectations (prior-based bias) has
a large effect on both the shape and magnitude of the relationship
between valance-dependent learning bias and fitness (Figure 2).
These interactions deserve an explicitly dynamic investigation,
one that will track the trajectories of innate expectations not only
within, but also across generations. Such an analysis is beyond
the scope of the current work but we would nevertheless like to
speculate here about the nature of these dynamics. Assuming first
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that innate beliefs are passed on from parent to offspring, so that
offspring start their life with the same innate beliefs their parents
held at the end of theirs, and that the environment does not
change across generations. Under these assumptions, the fitness
advantage of mild valence-dependent optimism we have observed
here should lead to the next generation consisting mostly of
prior-based and valence-dependent optimists. These optimists
will then suffer reduced fitness compared to either prior-based
or valence-dependent pessimists (Figure 2). Consequently, we
might then expect an emerging pattern of fluctuating selection
across generations (despite a constant environment); selection
pressure will alternate back and forth between valence-dependent
optimism and pessimism. If, on the other hand, the initial
beliefs held by offspring are independent of the terminal beliefs
of their parents, valence-dependent optimism should maintain
(on average) its adaptive advantage. Lastly, let us assume the
environment itself fluctuates from one generation to the next
(either in terms of its mean quality, or its spatial heterogeneity),
and offspring initial beliefs are affected by their parents’
environment and/or terminal belief. Under these assumptions,
the long-term fitness value of valence-dependent optimism (or
pessimism) should depend on the direction (trend) and temporal
autocorrelation of this environmental change, with long-term
degradation leading to a selection for optimism, and vice versa.
Either way, we believe these dynamics should be further studied
in the context of evolutionary traps (Robertson et al., 2013;
Robertson and Blumstein, 2019), and whether optimism is in fact
such a trap, or rather a way out of it.

Other important aspects of foraging dynamics that were
not addressed here, for the sake of simplicity, are the effects
of competitive interactions, density dependence, and memory
decay. Even in the absence of territoriality or other social
interactions, an optimal forager operating in a shared space
must also consider the effect competitors may have on current
patch qualities (via exploitation), and possibly even predation
risk (due to a dilution effect; Avgar et al., 2020). It is possible
that the effect of resource exploitations by competitors could
be boiled down to increased uncertainty in patch quality across
space and/or time (Riotte-Lambert and Matthiopoulos, 2020).
However, we must consider the possibility that, in the absence
of spatiotemporal-specific information about the foraging activity
of others, the utility of learning and revisiting a set of patches
(known as “traplining”) is critically diminished (but see Riotte-
Lambert et al., 2015, 2017). In that case, memory decay me
be not only more realistic, but also adaptive. Competition may
moreover have qualitative effects on the relationship between
environmental heterogeneity and fitness (Trevail et al., 2019).
At the same time, social information, gained by following or
monitoring competitors, plays a major role in the cognitive
movement ecology of many species (Kashetsky et al., 2021), and
may have non-trivial interactions with the effects of cognitive
biases. Lastly, the presence of other individuals with different
cognitive strategies (e.g., different levels of optimism) could
potentially play an important role in the evolution of an optimal
cognitive strategy, and hence the formation of a cognitive
niches, via either density- or frequency-dependent selection
(Beecham, 2001). The consideration of explicit exploitative

interactions among individual foragers, cognitive limitations
such as memory decay, and the availability and use of social
information are thus important future avenues for research.

Whereas our model focuses on a theoretical exploration of
the roles of prior-based and valence-dependent optimism in
shaping animal behavior and determining population viability
(through their effects on fitness), our model can also serve
as the basis for a slew of predictions that can be empirically
tested in the field. Supplementary Figure 8 details some of
these predictions regarding the space-use patterns of individuals
maintaining an optimal valence-dependent cognitive bias. For
example, an increase in predation risk is expected to lead to a
decrease in home range size, patch giving-up density, and lifetime
reproductive output, but also an increase in both movement and
exploration rates. Reproductive output is expected to increase
with environmental variability, movement rate is expected to be
substantially lower when variability in patch quality is low, but
giving-up density is expected to be highest at an intermediate
degree of patch quality variability. Lastly, exploration rate is
expected to be substantially lower when variability in patch travel
time is high (i.e., when patches are more aggregated in space).
Whereas some of these predictions are consistent with previous
theory (Calcagno et al., 2014; Riotte-Lambert and Matthiopoulos,
2020), some others are counterintuitive and novel, and warrant
further theoretical and empirical investigations.

To summarize, we have shown how cognitive biases can
serve as an adaptive foraging strategy. The question remains on
whether these biases can help individual cope with a rapidly
changing environment, or whether changing environments can
turn such cognitive biases into dangerous evolutionary traps. As
any other model, ours suffers from simplifications, intentional
omissions, and operational assumptions that might or might
not be important. That said, we believe our carful treatment
of “fitness” [considering the effects of predation, starvation,
and reproductive investment; (Houston et al., 1993)], and our
broad consideration of various ecological scenarios, provide solid
foundation for our findings. We are thus optimistic about future
extensions of our investigation.
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