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Continuous recording of environmental sounds could allow long-term monitoring of
vocal wildlife, and scaling of ecological studies to large temporal and spatial scales.
However, such opportunities are currently limited by constraints in the analysis of
large acoustic data sets. Computational methods and automation of call detection
require specialist expertise and are time consuming to develop, therefore most biological
researchers continue to use manual listening and inspection of spectrograms to analyze
their sound recordings. False-color spectrograms were recently developed as a tool
to allow visualization of long-duration sound recordings, intending to aid ecologists in
navigating their audio data and detecting species of interest. This paper explores the
efficacy of using this visualization method to identify multiple frog species in a large set
of continuous sound recordings and gather data on the chorusing activity of the frog
community. We found that, after a phase of training of the observer, frog choruses could
be visually identified to species with high accuracy. We present a method to analyze
such data, including a simple R routine to interactively select short segments on the
false-color spectrogram for rapid manual checking of visually identified sounds. We
propose these methods could fruitfully be applied to large acoustic data sets to analyze
calling patterns in other chorusing species.

Keywords: acoustic monitoring, Ecoacoustics, frog chorusing, acoustic data analysis, acoustic data visualisation,
chorus detection

INTRODUCTION

Passive acoustic monitoring is now a standard technique in the ecologist’s toolkit for monitoring
and studying the acoustic signals of animals in their natural habitats (Gibb et al., 2019; Sugai et al.,
2019). Autonomous sound recorders provide significant opportunities to monitor wildlife over long
time frames, and at greater scale than can be done physically in the field. Recording over extended
periods and locations provides insight into species’ activity patterns, phenology and distributions
(Nelson et al., 2017; Wrege et al., 2017; Brodie et al., 2020b), and allows for the study and monitoring
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of whole acoustic communities (Wimmer et al., 2013; Taylor
et al., 2017). Continuous and large-scale acoustic monitoring
has become feasible as technological advances have provided
smaller, cheaper recording units with improved power and
storage capacities. However, the large streams of acoustic data
that can be collected must be mined for ecologically meaningful
data, and so the problem of scaling of observations has been
translated into a problem of scaling data analysis (Gibb et al.,
2019). Ecologists using acoustic approaches require effective and
efficient sound analysis tools that enable them to take advantage
of the scaling opportunities in large acoustic data sets.

Often, computer-automated approaches to detecting and
identifying the calls of target species, such as pattern recognition
and machine learning, are put forward as the solution to
analyzing big acoustic data (Aide et al., 2013; Stowell et al.,
2016; Gan et al., 2019). However, developing automated detection
pipelines requires a high level of signal processing, computational
and programming expertise, as well as considerable time and
effort in labeling call examples to train classifiers, and then
test and refine their performance (e.g., Brodie et al., 2020a).
Unsupervised machine learning methods circumvent the need
for labeled data but still require a large amount of data, and
considerable time and expertise, to compute learning features and
interpret the results (Stowell and Plumbley, 2014). Long-duration
field recordings often contain intractable amounts of noise and
variability in the quality of calls, and achieving accurate species
identification is challenging in large-scale studies or studies
of multiple species (Priyadarshani et al., 2018). The focus of
automated acoustic analysis has been on detection of individual
calls, but this granularity of data is often not what is required in
studies of population chorusing activity, and call detections are
instead aggregated into calls per unit of time. The time and effort
in developing automated species detection methods to create
results of limited practical use means this approach is not feasible
in many studies and monitoring programs. Thus, manual sound
analysis continues to be used in the majority of ecological studies
using acoustic methods (Sugai et al., 2019), while automated call
detection methods continue to be developed and improved (e.g.,
Ovaskainen et al., 2018; Marsland et al., 2019; Brooker et al., 2020;
Kahl et al., 2021; Miller et al., 2021).

The manual approach to analyzing environmental sound
recordings for studies of vocal animals, is to inspect each
sound file using specialized software with both spectrogram
and playback functions (e.g., Audacity1; Raven, Cornell Lab
of Ornithology). An observer familiar with the calls of target
species will typically scan the spectrogram visually for candidate
sounds, and may use playback to confirm the species when
uncertainty exists. In this way, an expert observer does not
need to playback and listen to the entire recording to analyze
it and identify the species present. This can be more efficient
than designing automated call recognizers for short-term studies
where there are few target species. However, manual analysis
of sound recordings becomes impractical for large-scale studies
(long-term or many species). As a consequence, many acoustic
surveys are still designed with restricted sampling regimes

1https://www.audacityteam.org

that permit manual analysis. By programming recording units
to record for a limited time at regular intervals throughout
the study period, the temporal and spatial scale of surveys
can still be kept large while keeping manual analysis feasible.
Restricted sampling regimes have disadvantages over continuous
recordings, however, such as a reduced likelihood of detecting
rare species or species that vocalize infrequently (Wimmer et al.,
2013), as well as a narrower temporal sampling resolution, which
may miss ecological patterns of interest. Therefore, techniques
that allow analysis of long, continuous audio recordings that do
not rely on statistical techniques that are beyond the expertise of
many users (e.g., machine learning), and that do not restrict the
amount of time sampled, are required.

Recent developments in computational approaches to the
analysis of environmental sound recordings have led to software
tools being made available that generate visual representations of
sound recordings at scales of 24-h or more. Towsey et al. (2014)
developed a method of representing a long sound file in a single
spectrogram that can be viewed whole on a standard computer
monitor screen. This was achieved by using acoustic indices,
which are numerical summaries of the sound signal calculated
at coarse time scales, and which can be considered a form of
data compression (Sueur et al., 2008; Pieretti et al., 2011). The
compressed spectrograms were generated using three different
acoustic indices calculated at 1-min resolution and mapping the
values to three color channels (red, green, and blue) to form a
“false-color” spectrogram. The sound content of the recording is
reflected in the visual patterns which highlight dominant sound
events. While these false-color spectrograms were devised to
visualize general patterns in the soundscape, exploration of the
patterns revealed that the calls of some species could be identified
in the images (Indraswari et al., 2018; Towsey et al., 2018b). An
example of a false-color spectrogram for a recording used in this
study is presented here (Figure 1).

This manuscript presents a method of using long-duration
false-color spectrograms to navigate and sample a large set
of environmental recordings to detect species in a chorusing
frog community. The impetus for applying this method was to
collect data on the chorusing phenology and nightly chorusing
activity of frog species at multiple breeding sites. We present
simple R (R Core Team, 2021) routines for generating false-
color spectrograms and for interactive selection of time segments
to automate the process of finding and opening the segments
of interest in the audio for manual analysis. We also test the
accuracy of an observer, after some learning experience, to
visually identify the frog species present at the study sites from
patterns on the false-color spectrograms. Our aim is to outline
and describe a protocol that will be useful to ecologists looking for
an easily implemented method of navigating acoustic recordings
and identifying the calls of target species.

MATERIALS AND METHODS

Acoustic Recordings
Long-duration sound recordings were made at frog breeding
sites near Townsville, north Queensland, Australia (19.357◦ S,
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FIGURE 1 | (A) Example false-color spectrogram of a recording used in this study with chorusing of three frog species dominant. The frog choruses show as pink
and purple tracks below 4.5 kHz. Sporadic birds calls occur (green/yellow), and insect choruses are prominent as pink and blue tracks above 4 kHz. The horizontal
dotted lines delineate 1000 Hz frequency intervals (labeled in kHz on the axis outside the figure for clarity). Colors are derived from three acoustic indices (Acoustic
complexity – red; Entropy – green; and Event count – blue) which are defined in the text. (B) The same false-color spectrogram image with the chorusing frog
species identified inside the labeled boxes.

146.454◦ E). Recording units (HR-5, Jammin Pro, United States)
were set to record continuously at 10 sites each night
throughout a 19-month period from October 2012 to April 2014.
Recorders were housed in water-proof metal boxes with external
microphones in plastic tubing, and recordings were made in MP3
file format (128 kbps bit rate; 32000 Hz sampling rate). The study
area is in a tropical savanna ecoregion and frogs in this habitat
are nocturnal, so recordings were only made during the night.
Most recordings were between 10- and 13-h duration, typically
commencing between 1800 and 1930 h and ending after sunrise.
The number of nights recorded at each site during the study
period ranged from 375 to 473 nights (audio was not obtained
for all nights because of recording equipment failure). At the end
of recording period we had collected 3,965 nightly recordings
totaling approximately 46930 h of audio.

Generation of False-Color Spectrograms
False-color spectrograms were produced using the QUT
Ecoacoustics Audio Analysis Software v.17.06.000.34

(Towsey et al., 2018a) following the methods detailed in
Towsey et al. (2015) and Towsey (2017). Audio recordings were
divided into 1-min segments, re-sampled at a rate of 22,050
samples per second and processed into standard spectrogram
form using a fast-Fourier transform with Hamming window and
non-overlapping frames of 512 samples per frame (∼23.2 ms per
frame). Acoustic indices were calculated for each minute segment
in each of 256 frequency bins from 0 to 11025 Hz (bandwidth
∼43.1 Hz). False-color spectrograms can be produced using
a combination of any three of the calculated acoustic indices,
which are mapped to red, green and blue colors. We used
the default combination of indices output by the software –
the acoustic complexity index (ACI), spectral entropy (ENT)
and acoustic events (EVN) (Table 1). This combination of
acoustic indices best displays biotic sounds of interest in the
false-color spectrograms, because they are minimally correlated
and highlight different features (Towsey et al., 2018b).

The analysis to calculate acoustic indices and produce false-
color spectrograms for our large set of recordings was done by the
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TABLE 1 | Definitions of acoustic indices used in composing false-color
spectrograms, calculated for each minute in each frequency bin
(Towsey et al., 2014; Towsey, 2017).

Acoustic index Description

Acoustic complexity
index (ACI)

The average relative change in sound amplitude from
one frame to the next.

Entropy (ENT) A measure of temporal concentration of acoustic energy.

Event count (EVN) The number of acoustic events exceeding 3 dB.

QUT Ecoacoustics Research Group’s data processing lab using
multiple computers which were dedicated to research analyses.
However, the QUT Ecoacoustics Audio Analysis program is
available as open source software and can be run on a personal
computer. The program is downloaded as an executable file
and run from the command line which provides flexibility for
scripting and batch processing on different platforms (Truskinger
et al., 2014). R code to run the open source version on multiple
sound files in a single process is provided on GitHub (Brodie,
2021). When tested on a desktop PC (16 GB RAM, Intel(R)
Core(TM) i7-7700 CPU @ 3.60 GHz) and running analyses in
parallel, a 12-h recording took on average 7 min to analyze. For
large data sets where this rate of output is inadequate, dedicated
high-peformance computing facilities or professional support
may be required.

Navigation and Inspection of False-Color
Spectrograms
The QUT Ecoacoustics Audio Analysis software output a set
of files for each separate audio file including the raw acoustic
index values in CSV files, and the false-color spectrograms
as PNG image files. All the PNG image files of the ACI-
ENT-EVN indices combination were placed into a single
directory for each site for ease of navigation through each
set of images. Each pixel on the false-color spectrogram
images represented 1 min on the time scale and approximately
43 Hz frequency range. A time scale is included on the
image displaying the time since the start of the recording
or, if a valid date and time is included the audio filenames,
the time of the recording. Therefore, the position of a
pixel on a false-color spectrogram informs the time position

within the audio recording (x-axis), and the approximate
frequency range (y-axis). We used the XnView image viewer
application (v 2.432) to view the PNG image files, as this
application displays the position coordinates of the mouse
pointer on the image. This allowed identification of the
precise point, in number of minutes, from the start of
the recording.

The patterns in the false-color spectrograms reflect the
dominant sound sources in each time segment and frequency
bin. Learning to relate visual patterns to sound events was
done by identifying potential sounds of interest on the false-
color spectrogram images and then manually inspecting the
corresponding minute in the audio file to identify potential
sound sources. We used Audacity audio software (see text
footnote 1) for playback of the raw audio and viewing in standard
spectrogram format.

R Routines for Efficient Analysis
Although sound analysis software packages such as Audacity can
open and display long sound files, opening and navigating long
recordings is inefficient when short segments from many separate
recordings need to be analyzed. We made the analysis more
efficient using R routines in the RStudio environment (RStudio,
2021) to slice short segments of the recordings at specified time
points using the “Audiocutter” function in the QUT Ecoacoustics
Audio Analysis software (Towsey et al., 2018a). The R routines
included user-defined functions to select and cut audio segments
using two alternative methods of selection:

(i) direct user input - the user entered the start minute (the
x-value identified on the false-color spectrogram image)
and desired length of audio segment as variables into the
R script;

(ii) interactive selection – the user invoked a function from
the R ‘imager’ package (Barthelme, 2021) which opened a
graphic window displaying the false-color spectrogram and
prompted the user to select the desired minute(s) (x-value)
interactively on the image (the ‘grabPoint’ function to select
a single x-value, or the “grabRect” function to select a range
of x-values).

2https://www.xnview.com/en

TABLE 2 | Results of accuracy test of visual identification of frog species in 321 test minutes using false-color spectrograms.

Species Minutes
present

Correct
(TP)

Incorrect
(FP)

Missed
(FN)

Not present
(TN)

Precision
TP/(TP + FP)

Recall (sens)
TP/(TP + FN)

Specificity
TN/(TN + FP)

Rhinella marina 132 125 1 7 189 99.2% 94.7% 99.5%

Litoria fallax 149 140 3 9 172 97.9% 94.0% 98.3%

Litoria nasuta 100 88 3 12 221 96.7% 88.0% 98.7%

Limnodynastes convexiusculus 30 28 0 2 291 100.0% 93.3% 100.0%

Limnodynastes terraereginae 21 17 2 4 300 89.5% 81.0% 99.3%

Limnodynastes peronii 15 13 0 2 306 100.0% 86.7% 100.0%

Litoria rubella 7 4 0 3 314 100.0% 57.1% 100.0%

Minutes present, number of randomly selected minutes in which the species was confirmed to be calling; TP, True positive; FP, False positive; FN, False negative;
TN, True negative.

Frontiers in Ecology and Evolution | www.frontiersin.org 4 January 2022 | Volume 9 | Article 761147

https://www.xnview.com/en
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-761147 January 15, 2022 Time: 14:10 # 5

Brodie et al. Visualization Tool for Acoustic Surveys

The user input was then passed to the “Audiocutter” function
which cut the selected minute(s) from the audio file and opened
the selected segment in the Audacity program. The R code files
have been made available on GitHub (Brodie, 2021).

Validation of False-Color Spectrograms
as a Species Identification Tool
To validate that the false-color spectrograms were a reliable
tool for visual identification of the frog species in this data set,
a random selection of minutes was analyzed by an observer
(SB) before being validated by inspecting the raw audio. Fifty
false-color spectrograms (i.e., for recordings of different nights)
from three sites were chosen which had not been previously
analyzed. A random selection of up to 20 one-minute segments
was made from each spectrogram using a random number
generator. The presence of frog species was predicted for each
randomly selected minute in each recording solely from visual
inspection of the false-color spectrogram and prior to any
inspection of the audio file. The visually based predictions were
then validated by inspecting the corresponding audio segment
using the Audacity program. A total of 321 separate minutes were
randomly selected for validation, and the identification precision,
recall and specificity metrics were calculated for each species
identified. The frog species present at the study sites aggregate
at water bodies to breed and males call in choruses. We did not
distinguish between times when only one individual was calling
and more than one individual was calling, since the ultimate aim
is to use calling or chorusing as an indicator of breeding activity.
It should be noted that this test was performed after the observer
(SB) had gained some familiarity with the species’ patterns in the
false-color spectrograms of the data set, and had an expert level
of ability to identify the calls of the frog species present in the
raw audio.

RESULTS

Using the false-color spectrograms as a visual guide to the
sound content of long environmental recordings, we were able
to efficiently collect data on the presence and timing of chorus
activity of multiple species of frogs in a large set of acoustic
recordings. This method greatly reduced the manual listening
effort required when compared to scanning entire recordings
and increased the detectability of species over a method using
a restricted sampling regime of regular time intervals. The time
taken to survey the nightly recordings using the R routine to
select, cut and open short segments of audio ranged from a few
seconds (on nights with no frog chorusing) to 90 min (a full 13-
h continuous recording with 11 species of frogs identified and
extensive chorus activity). The average time taken to survey each
night was 14 min.

In the test of species identification accuracy, 9 false-positive
identifications were made, and 39 false-negative identifications
(species missed) out of a total of 454 occurrences of any frog
species (Table 2). As a result, precision (the percentage of correct
identifications) was very high for all species present. Recall (the
percentage of actual species occurrences detected) was high for

the most common species, but low for Litoria rubella which was
present in only 7 of the minutes selected for validation.

Inspection of the possible reasons for the identification errors
revealed that other noises in the same frequency band caused
the false-positive detections (Table 2). Litoria fallax and Litoria
nasuta were falsely detected occasionally because they were
confused with visual patterns made by splashing water. L. fallax
was also falsely detected in one instance when insect noise was
present. L. fallax has a call in the frequency range 2–6 kHz,
which overlaps with some insect sounds. L. nasuta was falsely
detected in one instance when L. rubella was calling, and once
when L. fallax was calling. L. nasuta has a short, broadband
call in the frequency range 1–4 kHz which entirely overlaps the
calls of L. rubella and partly that of L. fallax. Rhinella marina,
which has a long, low-frequency call made up of a trill of rapid
pulses, was misidentified only once when rapid dripping of water
onto the recorder housing created a similar pattern on the false-
color spectrogram. In two instances, R. marina was mistakenly
identified as L. terraereginae. The calls of these two species
overlap in the frequency range of approximately 500–900 Hz.
False-negative identifications (species missed) occurred either
because the missed species was obscured by other dominant noise
(vehicles, wind, other frogs or insects) or because the calls were
very faint and distant, very short bouts or one individual calling
at a very slow rate.

DISCUSSION

Visualization of long sound recordings is an innovative approach
for providing insight into the acoustic structure of environmental
soundscapes, and to aid detection of wildlife vocalizations. We
found that false-color spectrograms generated using acoustic
indices were a reliable and accurate method of identifying
the chorus activity of individual species in a large community
of chorusing frogs. A routine using the R programming
environment was developed that automates searching and
opening segments of sound files after interactive selection on
the false-color spectrogram image. This method provided an
easily implemented and practical tool for biological researchers
to explore and navigate sound recordings for species of
interest, and provides opportunities for increasing the scale of
acoustic analysis with open-source software tools. False-color
spectrograms allowed easy identification of which recordings
contained large amounts of vocal activity and those that did not.
For example, recordings with no frog chorusing had false-color
spectrograms with very little color pattern in the frequency range
below 4 kHz (e.g., Figure 2). This allowed us to quickly eliminate
nights with no frog chorus activity without the need to manually
check the audio file, and focus on those recordings with high
vocal activity (e.g., Figure 3).

The use of visualization as a tool to analyze long recordings
in ecological studies was developed independently by several
researchers (Wiggins and Hildebrand, 2007; Towsey et al., 2014)
but, despite its demonstrated usefulness, it has not been applied
extensively in practice. Wiggins and Hildebrand (2007) first
devised a method of visualizing sound recordings by averaging
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FIGURE 2 | False-color spectrogram of a recording used in this study showing a night with no frog vocal activity. The dominant sounds are insect choruses above
4 kHz. The occasional pink and red tracks at 3–4 kHz are also insects. Sporadic sounds below 3 kHz which occur include wind, passing vehicles and occasional
bird calls. The obvious green broadband mark at approx. 23:40 hrs is made by water birds splashing and flapping wings close to the microphone. The horizontal
dotted lines delineate 1,000 Hz frequency intervals (labeled in kHz on the axis outside the figure for clarity).

FIGURE 3 | False-color spectrogram of a recording used in this study which features the choruses of six frog species calling simultaneously. The horizontal dotted
lines delineate 1,000 Hz frequency intervals (labeled in kHz on the axis outside the figure for clarity). Patterns are sometimes obscured by other dominant species but
can be distinguished at other times.

spectral power values over chosen time frames to generate
compressed spectrograms. Their method was implemented in the
MATLAB programming environment using the Triton software
package (Wiggins, 2007) which also facilitates navigation to
specific segments of the raw audio for manual analysis. Published
examples have applied visualization using the Triton package in
marine environments, for which it was designed, to detect whale
calls (Soldevilla et al., 2014) and describe marine soundscapes
(Rice et al., 2017), but it has also been used in freshwater
environments to detect chorusing of an underwater-calling frog
(Nelson et al., 2017), and in terrestrial environments to detect
chimpanzee vocalizations (Kalan et al., 2016).

The false-color spectrograms developed by Towsey et al.
(2014), Towsey et al. (2015), and demonstrated here, progressed

the concept of soundscape visualization, by using acoustic indices
that highlight biological sounds. The method of visualization
using three color channels based on different metrics enables
display of more complex patterns, and highlights a greater variety
of sound sources than using the single spectrogram power values.
False-color spectrograms have been used in ecological studies to
describe and compare soundscapes, by using the visual images
to detect the dominant sounds in the environment (Dema et al.,
2018; Campos et al., 2021). Several studies have shown the calls
of individual species can be detected visually using false-color
spectrograms. Towsey et al. (2018b) and Znidersic et al. (2020)
were able to visually detect the presence of cryptic marsh birds.
Brodie et al. (2020b) used the method to confirm the nightly
presence of invasive toad calling activity.
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The general advantage of visualization of environmental
recordings is that it allows rapid detection of candidate sounds of
interest without relying on complex computational methods, and
reduces the effort required to manually scan sound files. While
previous published studies have used false-color spectrograms
for detecting species presence and characterizing soundscapes,
here we have demonstrated the method can scale to studies of
communities of chorusing frogs over extended time periods and
multiple locations. The constant choruses of several frog species
left unique traces on the false-color spectrograms which, in many
instances, could be confidently identified without the need to
analyze the raw audio, decreasing further the manual analysis
required. Manual inspection of the audio, either by listening or
viewing the standard spectrogram, was still required for many of
the recordings where the noise source of presence of a frog species
was unclear. Therefore, there is a limit to the scalability of using
this method for very large data sets.

The high precision and specificity of frog species identification
achieved in the test cases (Table 2) reflects the low rate of
false-positive detections. That is, patterns on the false-color
spectrograms were only very occasionally incorrectly identified
as another species. The majority of identification errors were
missed species’ presence, in cases where the frog calls were distant
and low-quality in the recording, or there was a low rate of
calling. Low-quality, background calls will always be difficult
to detect regardless of the method used. The accuracy results
presented here are better for the 5 species that are shared with
a previous study investigating the use of automated classification
using acoustic indices and machine learning (Brodie et al., 2020a).
This suggests that even with considerable time and effort to label
training data and train classification models, automated methods
may still not perform as desired, and manual methods such that
presented here may be more suitable.

Our aim in this study was not to compare the accuracy
of species identification using false-color spectrograms with
automated detection methods, as these are different approaches
to data reduction and analysis of acoustic data. The use of
false-color spectrograms to survey acoustic recordings for target
species can reduce the amount of manual analysis required, but
still requires significant manual effort and time to learn to identify
patterns of interest. In addition, computing time to calculate
acoustic indices and generate the images is considerable for
large data sets. Automated species detection for environmental
sound recordings is a rapidly advancing field, however, may
not be feasible or practical for all acoustic studies. The most
successful automated detection algorithms are for species with
well-described calls which are distinct from the calls of other
species (e.g., Walters et al., 2014 for bats; reviewed in Kowarski
and Moors-Murphy, 2020 for fin and blue whales) or for which
large sets of training data are available (e.g., Kahl et al., 2021;
Miller et al., 2021). Nonetheless, the challenge of automating
analysis of acoustic data is far from solved for many research
questions. Automated animal call detection is now the domain
of computer scientists and computational experts, and there is
considerable time and expertise required in developing accurate
detection algorithms. Further, recent reviews have revealed that
the majority of studies utilizing automated call detection methods

incorporate manual human intervention in post-processing
stages, such as manual validation and cleaning of call detection
results (Sugai et al., 2019; Kowarski and Moors-Murphy, 2020).
There are inevitable trade-offs in time, cost and effort when
researchers decide whether to utilize automated or manual
methods in their acoustic data analysis.

Several factors combine to render frog choruses visually
distinct and readily identifiable on the false-color spectrograms.
Frog choruses tend to be persistent through time, often
continuing for several hours, and are the dominant sound at
breeding sites during breeding periods. Frog calls are repetitive
and consistent in structure within species, but vary in both
structure and frequency range among species. This method of
using visualization to analyze long-duration audio is, therefore,
highly suited to monitoring frog communities where species form
persistent, loud choruses at breeding sites. This approach would
also be applicable to other chorusing species, such as soniferous
insects. Sounds that occur over short periods may also be visible
on the false-color spectrograms but are less obvious than patterns
that extend through a large portion of the recording. Some
nocturnal birds that call continuously for at least a few minutes,
such as owls and cuckoos, can also be identified (Phillips et al.,
2018; personal observation). Short bursts of sounds may also be
highlighted on the false-color spectrograms if they are louder
than other sounds in the same minute segment, so this technique
of detecting sounds is not limited to species with long-duration
calls. However, it became clear from our experience analyzing
this data set that the representation of sounds in the false-color
spectrograms is dependent on other sounds present in the same
minute segment and frequency band. The loudest sounds in
each segment are highlighted so that the choruses of several
frog species were sometimes obscured, or masked, in periods of
high chorus activity dominated by other frog species. On the
other hand, soft short calls may be identified in other periods
when there are no competing noises in the same frequency
range (Znidersic et al., 2020; personal observation). We found
that the masking by dominant frog species could be somewhat
overcome by using long, continuous recordings rather than
shorter, intermittent recordings. Having a complete, continuous
recording for each study night meant we could detect most
of the chorusing frog species at some point in the false-color
spectrogram when masking was reduced. Whether false-color
spectrograms are a suitable tool for the detection of a species
depends on the likelihood of capturing calling individuals within
range of the microphone and the level of competing noise in the
target frequency range.

A further advantage to the approach described is that all
software used was open source and does not require a specialized
platform. The QUT Ecoacoustics Audio Analysis program3

automatically performs all processing of raw audio, calculation of
acoustic indices and generation of the false-color spectrograms.
Some knowledge of running programs from a command-line
environment is required, but user input requirements are limited
to defining the input and output files, with some configuration
options. The interactive selection functions were implemented in

3https://github.com/QutEcoacoustics/audio-analysis/releases
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R using R Studio (Brodie, 2021), and are simple to run for users
with basic knowledge of the R programming environment. R is
now widely used in ecological research (Lai et al., 2019) and easily
accessible for most researchers.

The false-color spectrograms can be a useful tool to analyze
long recordings, even without the R routine program, simply by
manually opening the corresponding sound file and navigating
to the time-point of interest indicated on the false-color
spectrograms. The interactive R routine was created to increase
time efficiency, as shorter sound files are quicker to open than
longer files, and when opened can be immediately inspected
without having to navigate through a long recording to the
relevant time point. In addition to increased efficiency, the R
routine reduces the risk of human error. When dealing with large
sets of sound files there is a risk of choosing the wrong file if many
files have similar names with the same date, or of navigating to the
wrong time point in long recordings.

Although automated methods of identifying species in
acoustic data is an advancing field of research, many researchers
continue to use manual analysis methods in acoustic monitoring
studies. Our aim in this paper was to demonstrate a work-flow
including the practical application of false-color spectrograms
(Towsey et al., 2014) as a navigation aid to streamline the manual
analysis of acoustic data. The process described here takes this
innovative method of visualizing sound and incorporates it into
an efficient routine for detecting the chorusing of multiple species
of frogs in large acoustic data sets. The accuracy achieved in
identifying multiple species of frogs from field recordings taken
at different times and locations confirms this can be a reliable
method of species detection and identification. Used as a means
to quickly scan the content of recordings for target sounds, the
amount of manual analysis is greatly reduced. There is potential
for its use in increasing the coverage of ecological monitoring
programs, particularly where automated methods of analysis are
not practical or feasible. In describing and outlining our process
of utilizing false-color spectrograms to analyze long-duration

recordings, we seek to make this method accessible and practical
for use by other researchers using acoustic monitoring methods.
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