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Citizen science is essential for nationwide ecological surveys of species distribution.
While the accuracy of the information collected by beginner participants is not
guaranteed, it is important to develop an automated system to assist species
identification. Deep learning techniques for image recognition have been successfully
applied in many fields and may contribute to species identification. However, deep
learning techniques have not been utilized in ecological surveys of citizen science,
because they require the collection of a large number of images, which is time-
consuming and labor-intensive. To counter these issues, we propose a simple and
effective strategy to construct species identification systems using fewer images. As
an example, we collected 4,571 images of 204 species of Japanese dragonflies
and damselflies from open-access websites (i.e., web scraping) and scanned 4,005
images from books and specimens for species identification. In addition, we obtained
field occurrence records (i.e., range of distribution) of all species of dragonflies and
damselflies from the National Biodiversity Center, Japan. Using the images and records,
we developed a species identification system for Japanese dragonflies and damselflies.
We validated that the accuracy of the species identification system was improved by
combining web-scraped and scanned images; the top-1 accuracy of the system was
0.324 when trained using only web-scraped images, whereas it improved to 0.546 when
trained using both web-scraped and scanned images. In addition, the combination of
images and field occurrence records further improved the top-1 accuracy to 0.668. The
values of top-3 accuracy under the three conditions were 0.565, 0.768, and 0.873,
respectively. Thus, combining images with field occurrence records markedly improved
the accuracy of the species identification system. The strategy of species identification
proposed in this study can be applied to any group of organisms. Furthermore, it has
the potential to strike a balance between continuously recruiting beginner participants
and updating the data accuracy of citizen science.

Keywords: citizen science, species identification, dragonfly, damselfly, deep learning, image recognition, web
scraping

Frontiers in Ecology and Evolution | www.frontiersin.org 1 December 2021 | Volume 9 | Article 762173

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2021.762173
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fevo.2021.762173
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2021.762173&domain=pdf&date_stamp=2021-12-20
https://www.frontiersin.org/articles/10.3389/fevo.2021.762173/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-762173 December 14, 2021 Time: 13:47 # 2

Sun et al. Deep Learning for Species Identification

INTRODUCTION

Monitoring biodiversity is essential to evaluate the status
of global ecosystems, as biodiversity is an indicator of
climate change, environmental pollution, overexploitation of
resources, invasive species, and natural disasters (van Klink
et al., 2020; Hallmann et al., 2021). However, basic data to
quantify recent degradation in biodiversity are insufficient.
Surveillance of bioindicators, such as dragonflies, frogs, and
birds, is the first step toward the methodical quantification
of biodiversity because these species are well-known, and
their conservation is a priority (Paoletti, 1999; Kadoya and
Washitani, 2007; Kadoya et al., 2009; Parmar et al., 2016;
Zaghloul et al., 2020).

A total of 204 species of dragonflies and damselflies (hereafter,
odonates), belonging to the order Odonata, have been well-
documented in Japan since ancient times (Sugimura et al., 1999;
Futahashi et al., 2004, 2012; Naraoka, 2005; Kadoya et al., 2008;
Ozono et al., 2021). The distribution surveys of well-known
native species, such as odonates, are expensive and rely on
amateur participants. In the 1990s, the Ministry of Environment
of Japan conducted a comprehensive national survey of well-
known animal groups, including odonates, in collaboration with
more than 300 donate specialists throughout Japan to compile
their distribution records (National Biodiversity Center of Japan,
Ministry of the Environment, Japan, Tokyo, 2002). Although
the survey was comprehensive, it could not collect adequate
information on some species, especially a few abundant species.
To quantify the dynamics of biodiversity loss, it is necessary
to regularly update field occurrence records. Nevertheless, no
similar biodiversity surveys have been conducted since the 1990s,
possibly because of insufficient budget for nationwide surveys.

Citizen science, which includes scientific or ecological
surveys conducted in collaboration with citizens, has been
used to collect ecological data for scientific purposes in
several countries and can improve the feasibility of sustainable
nationwide surveys of biodiversity (Silvertown, 2009; Newman
et al., 2012; Marzluff, 2013; Kobori et al., 2016). Furthermore,
recent advances in information technology have dramatically
reduced the barriers to public participation in ecological
research. It is reported that more than 500 citizen-science
projects have recruited more than 1.3 million participants
for data collection, and the recruitment has particularly
increased since 2010 for the projects wherein data is collected
using smartphones (Theobald et al., 2015; Pocock et al.,
2017). Using a smartphone, participants not only capture
images using the equipped camera but also record additional
information, such as date, time, and location. Thus, the
advantages of smartphone technology are a boon for citizen-
science projects.

Although citizen science can counter resource limitations,
it has a major drawback, that is, data quality is not
validated; compared to scientists and specialists, the low
accuracy of species identification by amateur participants
is an issue. Therefore, inaccurate data collected from
citizen-science projects cannot be directly used to quantify
biodiversity or its loss.

Recent advances in image recognition using artificial
intelligence can improve the reliability of data collected from
citizen-science projects (Langlotz et al., 2019). Image recognition,
also called object recognition, with convolutional neural network
(CNN) is a deep learning technique used to recognize the objects
in an image or to classify the objects in an image (Emmert-Streib
et al., 2020). This technique enables machines to self-learn
from a large number of images and identify the key features
for recognizing similar objects in different images. Since the
development of image recognition model AlexNet in 2012,
more than 20 different CNN architectures have been designed
nowadays (Khan et al., 2020). For example, the visual geometry
group network (VGGNet) architecture has been used since the
beginning of the deep learning era (Simonyan and Zisserman,
2014), and the residual network (ResNet) architecture has
deeper CNN layers and outperforms VGGNet under several
conditions (Veit et al., 2016). VGGNet and ResNet architectures
can have different number of CNN layers; there are 16 and 19
layers in VGGNet (VGGNet16 and VGGNet19, respectively)
and 18 and 152 layers in ResNet (ResNet18 and ResNet152,
respectively). Well-trained systems are equivalent to human
experts for image recognition in several industrial fields (Goëau
et al., 2018; Valan et al., 2019). Furthermore, deep learning-
based image recognition systems have been reported to solve
ecological problems, such as species identification (Kamilaris
and Prenafeta-Boldú, 2018; Wäldchen and Mäder, 2018; Christin
et al., 2019; Moen et al., 2019; Tabak et al., 2019; Hansen et al.,
2020).

However, the accuracy of the species identification system
is still an issue because collecting a large number of images
to accurately identify species in the field is arduous (Perez
and Wang, 2017; Shahinfar et al., 2020). To compensate
for the low availability of images, researchers incorporate
prior knowledges into image recognition systems (Berg
et al., 2014; Ellen et al., 2019). Previous studies have
reported that prior information of species distribution
eliminates the probability of misidentification during the
image recognition process and improves the accuracy of
species identification (Berg et al., 2014; Aodha et al., 2019).
Other studies have shown that combining image recognition
systems with metadata, such as date, time, temperature,
and location, can also effectively improve the accuracy of
species identification systems (Ellen et al., 2019; Terry et al.,
2020).

Along the line of these precedent studies, we propose an
easy and simplified strategy to develop a species identification
system with few images. In this study, we selected odonates
as a representative species group, and developed three
types of species identification systems using datasets of:
(i) images collected from open-access websites (i.e., web
scraping), (ii) combined web-scraped and scanned images
obtained from books and specimens, and (iii) the combination
of images and field occurrence records obtained from the
National Biodiversity Center. We determined the accuracies
of the three species identification systems to demonstrate
how the accuracy of the species identification system
can be improved.
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TABLE 1 | Description of datasets.

Dataset # Original images # Images after augmentation # Genus # Species Description

F 4,589 40,800 86 204 Obtained by web scraping.

W1 4,005 40,800 86 204 Obtained by scanning books and specimens.

W2 – 40,800 86 204 Synthesized from W1.

W1F – 40,800 86 204 Randomly sampled 100 images from F and W1 for each species.

W2F – 40,800 86 204 Randomly sampled 100 images from F and W2 for each species.

T 316 – 41 62 Obtained from Osawa et al. (2017).

MATERIALS AND METHODS

Image Datasets
Six image datasets, namely, F, W1, W2, W1F, W2F, and T, were
used in this study to train the species identification system
(Table 1). Images of the dataset F were obtained from open-access
websites using the search engine Google (i.e., web scraping). We
searched images using their scientific and Japanese names. Article
30 (iv) and 47 (v) of the Japanese Copyright Act allows the use
of web-scraped images for implementation in machine learning
and data analysis. By web scraping, 4,571 images captured in the
field were collected. As the species were inaccurately identified
in a few of these images, we directly verified the species in all
the images and selected only reliable images. Then, rectangular
sections of the original images, containing a single odonate, were
trimmed using the image annotation software LabelImg (Lin,
2015) to obtain 4,589 images, as few original images contained
multiple individuals. Most of the odonate images were captured
from the lateral side of the individual, whereas few were captured
from the dorsal and frontal sides. These images included 86
genera and 204 species of Japanese odonates (Supplementary
Table 1). To improve the accuracy of the deep learning systems,
we augmented the images using random affine transformation,
adding noise, rotating, and applying flip-flop (Figure 1A). Image
augmentation was repeated until 200 images of each species were
obtained. All images were resized to a fixed size of 224 × 224
pixels. A total of 40,800 images of the dataset F were used
for model training.

Images of the dataset W1 were obtained by scanning images
from several books on Japanese odonates (Hamada and Inoue,
1985; Sugimura et al., 1999; Ozono et al., 2021) and specimens
collected by the authors. We scanned 4,005 images in the
RGB color mode and saved them in the PNG format. These
images included 86 genera and 204 species of Japanese odonates
(Supplementary Table 1). Each image contained a single odonate
individual against a white background, and all images were
captured from the lateral side of the individual. We then
augmented the scanned images until 200 images of each species
were obtained (Figure 1B), and resized them to a fixed size of
224 × 224 pixels.

Images of the dataset W2 were generated in the same way as
for dataset W1. However, during image augmentation of dataset
W2, the white background was replaced with images captured
in the field, and images with human fingers were piled up
(Figure 1C). This was because the images captured in the field
contained natural background and photographers’ fingers. Like

FIGURE 1 | Examples of the images for model training and validation. (A–C)
Examples of the original images and augmented images in dataset F (A), W1
(B), and W2 (C). (D) Examples of the original images from citizen surveys and
the cropped images for model validation.

the dataset W1, the dataset W2 included 40,800 images, and all
images were resized to a fixed size of 224 × 224 pixels.

The datasets W1F and W2F were generated by combining the
images of the datasets W1 and F and W2 and F, respectively.
To generate the dataset W1F, we randomly selected and merged
100 images of each species from the augmented images of
both W1 and F, resulting in 200 images of each species and a
total of 40,800 images in the dataset W1F. The dataset W2F
was generated in a manner similar to that of W1F using the
augmented images of W2 and F.

Images of the dataset T were obtained from citizen
surveys, primarily using the data archive of Osawa et al.,
2017. A total of 316 images captured using various types of
smartphones were collected throughout Japan from August
2011 to December 2018 (Supplementary Table 2). The
latitude and longitude of the location where the images
were taken are stored in exchangeable image file format
(EXIF) of the images. The sections of the original image,
containing a single odonate, were manually trimmed and
resized to a fixed size of 224 × 224 pixels (Figure 1D).
Species identification for these images was performed by
us. These images covered 41 genera and 62 species. The
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number of images in each genus and species can be found in
Supplementary Table 1.

Field Occurrence Records of Odonates
The field occurrence records of odonates were obtained from
the National Biodiversity Center, the Ministry of Environment,
Japan. The original dataset contained 1,07,717 occurrence
records of 204 odonate species primarily recorded during the
1990s (National Biodiversity Center of Japan, Ministry of the
Environment, Japan, Tokyo, 2002) in each secondary grid mesh
of the Japanese national grid mesh system (Ministry of Internal
Affairs and Communications, 1996). Each secondary mesh
measured approximately 10 km × 10 km and corresponded to
a square of 1:25,000 on the topographic map of Japan.

Image-Based Species Identification
Four CNN architectures, namely, VGGNet16, VGGNet19,
ResNet18, and ResNet152 (Simonyan and Zisserman, 2014;
Veit et al., 2016), pre-trained using ImageNet datasets (Deng
et al., 2009), were selected. This is because both VGGNet
and ResNet architectures are implemented by different layers
of neural networks, which can be used for evaluating the
correlation between number of layers and accuracy. Each
architecture was independently trained using the five datasets
with 50 epochs and a batch size of 32. The learning rate
was initially set at 0.001, which was automatically multiplied
by 0.1 after every 10 epochs. The architecture optimisation
was based on a categorical cross-entropy loss function using
stochastic gradient descent. The output score of each trained
architecture was transformed using the sigmoid function
based on the one-versus-the-rest approach. The transformed
scores represented probability-like scores (p) of the 204
species of odonates.

The trained architectures (i.e., models), were then validated
using the dataset T, and the top-1 and top-3 accuracies were
evaluated using the whole dataset, that is, the micro average of
accuracy was evaluated. The training and validation processes
were repeated ten times using identical codes and datasets but
with different random seeds to ensure that the model accuracies
were not affected by the initial-value problem.

A confusion matrix represents the number of true positives,
true negatives, false positives, and false negatives among the data
values of the validation results and is used to determine the
class (i.e., species) in which the model prediction was inaccurate.
To validate the prediction accuracy of the model with the
highest top-1 accuracy, we computed a confusion matrix and
analyzed the data.

Combining Image-Based Model and
Ecological Survey Datasets
To improve the accuracy of the species identification system, the
output of the image-based model was combined with the field
occurrence records (Figure 2). To evaluate the accuracy of the
combined model, we used the trained image-based model (for
example, ResNet152 trained using the dataset W2F) to determine
the p of each image in the dataset T. p, which is a vector

consisting of 204 elements, can be regarded as the probabilities
of occurrence of 204 odonate species.

Next, we obtained the geographic coordinates of each image
using its EXIF. Based on the latitude and longitude, we
determined the status of appearance of the 204 odonate species
within a radius of 50 km from the location where the image was
captured using the field occurrence records, as few migratory
species (for example, Sympetrum frequens and Pantala flavescens)
can fly more than 50 km during their lifetime (Sugimura et al.,
1999). The status of appearance of the 204 species was then
converted into a binary vector a, with 1 indicating presence,
whereas 0 indicating the absence of the species within a radius of
50 km. However, the status of appearance was unavailable for the
following 10 species: Anax junius, Agrionoptera sanguinolenta,
Neurothemis fluctuans, N. ramburii, Rhyothemis phyllis, R. regia,
Somatochlora exuberata, Sympetrum vulgatum, Tramea loewii,
and T. basilaris. According to the field occurrence records,
although these species were recently recorded, they were rarely
observed in Japan. Therefore, we set their binary vectors at 0.
In the combined model, the transformed scores for all odonates
were calculated as pa, which were then used to evaluate the
micro average of top-1 and top-3 accuracies for all images
in the dataset T.

One point to note here is that the first step (i.e., species
classification based on deep learning model) was trained with
training image datasets but the latter step (i.e., get a from
the occurrence records and calculate pa) was not trained.
This is because the occurrence records were simply used as
a filter against the outputs of the first step, thus it was
unnecessary to be trained.

Image-Based Genus Identification
We evaluated the accuracy of genus identification by grouping
the images of the datasets based on the genus rather than
species. Then, we trained and validated the accuracy of the genus
identification models using the same protocols that we used for
species identification.

System Environments and Source Code
The experiments were performed on a Ubuntu 18.04 system
equipped with an NVIDIA Tesla V100 SXM2 (Intel Xeon Gold
6254) and 128 GB memory. Python 3.6.8 (Python Software
Foundation, 2018) coupled with PyTorch 1.5.1 (Paszke et al.,
2019) was used to train and validate the CNN models. The source
codes for model usages and image augmentation used in this
study are downloadable at GitHub repository https://github.com/
biunit/dragonfly under the MIT license.

RESULTS

Accuracy of Image-Based Models for
Species Identification
The four CNN architectures (i.e., VGGNet16, VGGNet19,
ResNet18, and ResNet152) were separately trained with the five
types of datasets (i.e., W1, W2, F, W1F, and W2F). The execution
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FIGURE 2 | Combined model for species identification of odonates. Scores of 204 species (p) were calculated from the image-based model. Status of appearance
of 204 species (a) were summarized from ecological survey data. Scores of the combined model were calculated by multiplying p and a.

time of the training process depended on the model architectures.
The more layers in the architecture, the longer time was
required (Supplementary Figure 1). The trained architectures,
i.e., models, were then validated with dataset T, and the top-1 and
top-3 accuracies were calculated.

The models trained using the datasets W1 and W2 exhibited
lower accuracy, whereas that trained using the dataset F
exhibited approximately two times higher accuracy than W1
and W2, although the number of original images was similar
in the datasets W1 (4,005 images) and F (4,571 images). By
contrast, the models trained using combined datasets (W1F
and W2F) exhibited higher accuracy than those trained using
independent datasets W1, W2, or F (Table 2). In summary,
the training architectures using the integration of web-scraped
images and scanned images showed higher accuracy than those
trained individually.

VGGNet16 and VGGNet19, as well as ResNet18 and
ResNet152, are technologically similar but vary in the number of
CNN layers (Simonyan and Zisserman, 2014; Veit et al., 2016).
The findings of this study indicated that although the training
datasets were different, deeper architectures (i.e., VGGNet19 and
ResNet152) exhibited higher accuracies than the shallow ones
(i.e., VGGNet16 and ResNet18) (Table 2).

To further validate the prediction accuracy of the models,
we computed a confusion matrix (Supplementary Figure 2A)
and the identification accuracies of each species (Supplementary
Figure 3) against the model ResNet152 trained using the
dataset W2F, as this model exhibited the highest top-1 accuracy
(Table 2). We found that species in the same genus tended
to be confused, especially species that have highly similar
morphological characteristics (Supplementary Figure 4). For
example, images of Sympetrum frequens had tendency to
be confused by the model with those of the same genus,
S. striolatum, S. vulgatum, and S. depressiusculum. Similarly,

Orthetrum albistylum was easily confused by the model with
O. glaucum, O. poecilops and O. sabina.

Field Occurrence Records Improved the
Accuracy of Species Identification
The combination of image-based models with the field
occurrence records resulted in improved accuracies for species
identification under all conditions (Table 2). Compared to the
highest top-1 (0.546) and top-3 accuracies (0.768) of the image-
based models, the accuracies of the combined models were 0.668
and 0.873, respectively.

To further validate the prediction accuracy of the combined
model, we computed a confusion matrix and identification
accuracies of each species against the combined model ResNet152
trained using the dataset W2F (Supplementary Figures 2B, 3).
We found that some images of S. frequens were correctly
identified by the combining model although these images
were incorrectly predicted as S. striolatum, S. vulgatum, and
S. depressiusculum by the image-based model; also, some images
of O. albistylum were correctly identified by the combining model
although these images were incorrectly predicted as O. glaucum,
O. poecilops, and O. sabina by the image-based model.

Accuracy Was Improved for Genus
Identification
The trends of model accuracies for genus identification were
similar to those of species identification (Table 3). Additionally,
the top-1 and top-3 accuracies for genus identification were
higher than those for species identification under all conditions.
We found that the highest top-1 and top-3 accuracies for genus
identification were 0.765 and 0.899, respectively, whereas 0.546
and 0.768 for species identification, respectively. The confusion
matrix (Supplementary Figure 5) and identification accuracies
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TABLE 2 | The top-1 and top-3 accuracies of image-based and combined models for species identification.

Training dataset Model Top-1 accuracy Top-3 accuracy

Image-based Combined Image-based Combined

mean sd mean sd mean sd mean sd

W1 VGGNet16 0.104 0.013 0.176 0.020 0.211 0.023 0.337 0.033

VGGNet19 0.124 0.015 0.198 0.017 0.230 0.021 0.375 0.032

ResNet18 0.101 0.015 0.167 0.014 0.197 0.019 0.316 0.029

ResNet152 0.153 0.021 0.224 0.020 0.263 0.025 0.362 0.029

W2 VGGNet16 0.071 0.008 0.153 0.013 0.179 0.011 0.298 0.017

VGGNet19 0.158 0.011 0.245 0.012 0.297 0.026 0.427 0.018

ResNet18 0.062 0.013 0.123 0.009 0.148 0.015 0.251 0.025

ResNet152 0.169 0.028 0.268 0.026 0.325 0.025 0.462 0.041

F VGGNet16 0.232 0.019 0.314 0.017 0.360 0.014 0.514 0.017

VGGNet19 0.317 0.020 0.427 0.018 0.465 0.023 0.638 0.021

ResNet18 0.194 0.018 0.348 0.022 0.403 0.024 0.576 0.030

ResNet152 0.324 0.032 0.483 0.034 0.565 0.026 0.734 0.021

W1F VGGNet16 0.386 0.020 0.494 0.017 0.560 0.019 0.737 0.025

VGGNet19 0.484 0.022 0.605 0.023 0.667 0.019 0.808 0.024

ResNet18 0.334 0.032 0.525 0.019 0.584 0.038 0.741 0.026

ResNet152 0.509 0.019 0.671 0.025 0.732 0.030 0.862 0.020

W2F VGGNet16 0.378 0.019 0.498 0.027 0.603 0.026 0.745 0.019

VGGNet19 0.546 0.019 0.653 0.018 0.733 0.015 0.828 0.012

ResNet18 0.323 0.027 0.500 0.018 0.588 0.025 0.741 0.016

ResNet152 0.519 0.023 0.668 0.016 0.768 0.012 0.873 0.013

The mean and sd represent the average and standard deviation of accuracies over 10 tries of model training and validation, respectively. The highest average of accuracy
in each condition (dataset × model) was shown in bold.

of each genus (Supplementary Figure 6) of ResNet152 indicated
that few classes (i.e., genera) were inaccurately identified.
Moreover, similar to species identification, the combination of
image-based model with field occurrence records for genus
identification also improved the accuracy of the identification
system (Table 3), with the highest top-1 and top-3 accuracies of
0.835 and 0.933, respectively, for the combined models.

DISCUSSION

Advantages of Image-Based Model for
Species and Genus Identification
Image recognition using deep learning technologies exhibits great
potential in many fields of biology and ecology (Kamilaris and
Prenafeta-Boldú, 2018; Christin et al., 2019; Moen et al., 2019;
Tabak et al., 2019; Hansen et al., 2020; Høye et al., 2021). However,
a large number of images are required to calibrate a large number
of parameters in a deep learning system (Perez and Wang,
2017; Shahinfar et al., 2020). Nonetheless, in field ecology, image
collection is an issue because of resource limitations. Therefore,
we proposed a strategy to develop a species identification model
using approximately no image datasets.

To develop species identification models, we did not prepare
any images by field work. Instead, we collected images by web
scraping and scanning of books and specimens. In this case,
it is essential to verify the species names are identical to the

web-scraped images before machine learning. By using these
images, we demonstrated that by using mixed image datasets
(i.e., web-scraping images and scanning images) contributed to
the accuracy for species identification (Table 2). We elucidated
that this accuracy improvement is resulted in: (i) the increasing
numbers of images; and (ii) compensating for features that
are present in one (e.g., dataset F) and not in the other (e.g.,
dataset W1), that allowed the model to better capture the
characteristics of odonates.

We also built identification models for the genus level. The
number of odonate species was 204, while the number of genera
was 86 (Supplementary Table 1). When images are grouped by
genus, the number of images in each genus is increased; also,
several species with the similar morphological characteristics
were grouped into the same genus (Supplementary Figure 4).
By grouping these similar odonates into a single class (i.e.,
genera), the deep learning models no longer need to distinguish
trivial differences in the species level and can more readily
capture the characteristics of the genus level. For example,
similar species in the genus Sympetrum, e.g., S. frequens,
S. striolatum, S. vulgatum, and S. depressiusculum, which are
often confused by the species model, can be treated as one
class in the genus model (Supplementary Figures 2, 5).
Indeed, our result showed that the top-1 and top-3 accuracy
of genus identification were 0.14–0.38 and 0.13–0.40 higher
than that of species identification (Tables 2, 3), respectively,
suggesting that mixing species with the similar morphological
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TABLE 3 | The top-1 and top-3 accuracies of image-based and combined models for genus identification.

Training dataset Model Top-1 accuracy Top-3 accuracy

Image-based Combined Image-based Combined

mean sd mean sd mean sd mean sd

W1 VGGNet16 0.437 0.032 0.491 0.020 0.606 0.021 0.690 0.019

VGGNet19 0.406 0.069 0.480 0.055 0.609 0.040 0.696 0.028

ResNet18 0.274 0.054 0.335 0.051 0.449 0.047 0.549 0.048

ResNet152 0.291 0.031 0.344 0.027 0.464 0.036 0.535 0.042

W2 VGGNet16 0.337 0.016 0.379 0.025 0.544 0.018 0.600 0.017

VGGNet19 0.364 0.033 0.407 0.033 0.581 0.038 0.636 0.030

ResNet18 0.296 0.024 0.322 0.026 0.486 0.036 0.527 0.036

ResNet152 0.376 0.033 0.424 0.030 0.590 0.029 0.646 0.024

F VGGNet16 0.604 0.013 0.652 0.012 0.742 0.015 0.814 0.011

VGGNet19 0.693 0.014 0.746 0.015 0.824 0.010 0.877 0.013

ResNet18 0.576 0.014 0.650 0.010 0.756 0.017 0.808 0.020

ResNet152 0.685 0.019 0.751 0.014 0.849 0.011 0.902 0.009

W1F VGGNet16 0.711 0.015 0.762 0.014 0.858 0.010 0.905 0.006

VGGNet19 0.748 0.016 0.805 0.012 0.864 0.014 0.914 0.011

ResNet18 0.684 0.028 0.757 0.018 0.845 0.013 0.892 0.010

ResNet152 0.765 0.021 0.835 0.015 0.883 0.009 0.927 0.009

W2F VGGNet16 0.684 0.016 0.735 0.012 0.832 0.010 0.881 0.010

VGGNet19 0.753 0.012 0.801 0.015 0.878 0.009 0.912 0.010

ResNet18 0.629 0.021 0.704 0.017 0.816 0.022 0.873 0.011

ResNet152 0.760 0.026 0.822 0.018 0.899 0.011 0.933 0.009

The mean and sd represent the average and standard deviation of accuracies over 10 tries of model training and validation, respectively. The highest average of accuracy
in each condition (dataset × model) was shown in bold.

characteristics or targeting genus level have potential to improve
the identification accuracy.

Field Occurrence Records Compensate
for the Low Availability of Images
To compensate for the low availability of images, various
strategies have been reported in image recognition studies
(Berg et al., 2014; Aodha et al., 2019; Ellen et al., 2019;
Terry et al., 2020). Several strategies, such as a linear
combination of the image-based outputs and occurrence
records with weights or a combination of the output values
of the image-based model with the occurrence records,
followed by using them as input for another neural network
or support vector machine (SVM), are used for species
identification (Terry et al., 2020). These approaches rely on
a large number of images, along with their geographical
coordinates. However, most images used in this study, which
were web-scraped or scanned from books and specimens, did
not include any geographic coordinate information, thereby
the insufficiency of information prevented the execution
of the training processes of a linear combination, neural
networks, or SVM. Thus, we simply multiplied the image-
based outputs and occurrence records to improve the accuracy
of species and genus identification (Tables 2, 3). Despite
this simple approach, the result suggests that occurrence
records successfully distinguished morphologically similar but
geographically isolated species.

Imbalanced Validation Data Reflect the
Actual Frequency of Occurrence
Dataset T, which was used for accuracy validation in this study,
was obtained from citizen surveys by amateur participants.
Thus, the 62 species consisted in dataset T can be considered
as common ondonate species in Japan, and reflects the actual
frequency of odonate occurrence in nature. Therefore, it is
natural to evaluate the accuracy of identification models using all
images (i.e., micro average) rather than averaging the accuracy for
identifying each species (i.e., macro average). We believe that this
micro average reflects the accuracy of the identification system in
the practical citizen science. However, it is important to note that
the accuracy validated with dataset T only reflects the accuracy of
these 62 species. The remained 142 species could not be validated
due to lack of image data.

Related Work on Species Classification
of Ondonate
There were several studies of species classification of ondonate
were performed recently (Ožana et al., 2019; Manoj et al.,
2020). Ožana et al. (2019) developed a mathematical model for
classification only based on occurrence records including date,
location, surrounding environment type, suborder, and color. On
the other hand, Manoj et al. (2020) developed a deep learning-
based model based on images only. Compared to both previous
studies, our study used both occurrence records and images.
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As we described above, using both information is expected
to improve the accuracy of species classification rather than
using one of them.

Prospects of Ecological Surveys in
Citizen Sciences in the Deep Learning
Era
Citizen science has a great potential to determine the changes
in biodiversity loss. However, citizen science has two major
drawbacks: difficulty in ensuring data quality and the continuous
recruitment of new participants (Dickinson et al., 2012). Veteran
volunteers are required for accurate species identification, but it
is very difficult to keep their willingness. Furthermore, recruiting
new participants decreases the quality of species identification
surveys. Thus, automated species identification systems provide
an excellent solution for these problems in citizen science, that is,
automation will validate their observations and contribute to the
rationale of the participants. In addition, it would greatly enhance
data quality in citizen science even when most participants
would be amateurs.

The strategy proposed in this study is applicable to any
organism because images obtained from open-access websites
and books were utilized to develop the basic identification
system with an appropriate accuracy. After deploying the basic
identification system in surveys, it can collect large number
of image data from across the nation using the identification
system. By determining the species distribution using this system,
researchers can assess the real-time status of biodiversity loss at
low costs. Moreover, the image datasets can be used for further
improving the system. Thus, nationwide backyard biodiversity
surveys for all iconic species groups can be realized, which will
address long-standing challenges in ecology and contribute to
its advancement.

DATA AVAILABILITY STATEMENT

Image datasets used in this study are not publicly archived owing
to image licensing and data protection constraints. However,
most images of the dataset W1 can be found in the books of
Japanese odonates (Hamada and Inoue, 1985; Sugimura et al.,
1999; Ozono et al., 2021), and most images of the dataset T can be
found in Osawa et al. (2017). Occurrence records of odonates are
available from the National Biodiversity Centre of Japan, 2002.

AUTHOR CONTRIBUTIONS

JS and TY conceived the ideas and designed the methodology
and led the writing of the manuscript. TY and RF collected

and verified the datasets. JS developed the models and analyzed
the data. All authors have read, revised, and approved the
final manuscript.

FUNDING

This study was supported by the Japan Society for the Promotion
of Science (JSPS) KAKENHI Grant Numbers 24651040 and
17K20068 to TY and 15K12154 to TY and RF.

ACKNOWLEDGMENTS

Computations were partially performed on the SHIHO
supercomputer at the National Agriculture and Food Research
Organization (NARO), Japan.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fevo.2021.
762173/full#supplementary-material

Supplementary Figure 1 | The execution time of training for species identification
model (A) and genus identification model (B).

Supplementary Figure 2 | Confusion matrix of ResNet152 trained with dataset
W2F for species identification. (A) Confusion matrix of image-based model.
(B) Confusion matrix of combined model.

Supplementary Figure 3 | Identification accuracy of each species of ResNet152
trained with dataset W2F. (A) Image-based model. (B) Combined model.

Supplementary Figure 4 | Specimen images of odonate species of Sympetrum
(A) and Orthetrum (B) genera that were easily confused with each other by deep
learning models.

Supplementary Figure 5 | Confusion matrix of ResNet152 trained with dataset
W2F for genus identification. (A) Confusion matrix of image-based model. (B)
Confusion matrix of combined model.

Supplementary Figure 6 | Identification accuracy of each genus of ResNet152
trained with dataset W2F. (A) Image-based model. (B) Combined model.

Supplementary Table 1 | Summary of image datasets saved with XLSX format.
Sheet 1 contains the number of odonates images of dataset W1, F, and T, and the
number of mesh codes that summarized according to species. Sheet 2 contains
the number of odonates images of dataset W1, F, and T, and the number of mesh
codes that summarized according to genus.

Supplementary Table 2 | Exchangeable image file format (EXIF) information of
dataset T saved with XLSX format. Sheet 1 contains date, time, latitude, and
longitude of location of photos taken. Sheet 2 contains a Japanese map which
represents the location of photos taken.

REFERENCES
Aodha, O. M., Cole, E., and Perona, P. (2019). Presence-only geographical priors

for fine-grained image classification. arXiv [Preprint]. arXiv: 1906.05272.
Berg, T., Liu, J., Lee, S. W., Alexander, M. L., Jacobs, D. W., and Belhumeur,

P. N. (2014). “Birdsnap: large-scale fine-grained visual categorization

of birds,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Columbus, OH. doi: 10.1109/CVPR.20
14.259

Christin, S., Hervet, É, and Lecomte, N. (2019). Applications for deep learning
in ecology. Methods Ecol. Evol. 10, 1632–1644. doi: 10.1111/2041-210x.
13256

Frontiers in Ecology and Evolution | www.frontiersin.org 8 December 2021 | Volume 9 | Article 762173

https://www.frontiersin.org/articles/10.3389/fevo.2021.762173/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fevo.2021.762173/full#supplementary-material
https://doi.org/10.1109/CVPR.2014.259
https://doi.org/10.1109/CVPR.2014.259
https://doi.org/10.1111/2041-210x.13256
https://doi.org/10.1111/2041-210x.13256
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-762173 December 14, 2021 Time: 13:47 # 9

Sun et al. Deep Learning for Species Identification

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., and Li, F. (2009). “ImageNet: a
large-scale hierarchical image database,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (Miami, FL). doi: 10.1109/cvprw.
2009.5206848

Dickinson, J. L., Shirk, J., Bonter, D., Bonney, R., Crain, R. L., Martin, J., et al.
(2012). The current state of citizen science as a tool for ecological research
and public engagement. Front. Ecol. Environ. 10:291–297. doi: 10.1890/11
0236

Ellen, J. S., Graff, C. A., and Ohman, M. D. (2019). Improving plankton image
classification using context metadata. Limnol. Oceanogr. Methods 17, 439–461.
doi: 10.1002/lom3.10324

Emmert-Streib, F., Yang, Z., Feng, H., Tripathi, S., and Dehmer, M.
(2020). An introductory review of deep learning for prediction models
with big data. Front. Artif. Intell. Appl. 3:4. doi: 10.3389/frai.2020.
00004

Futahashi, R., Futahashi, H., Araki, K., and Negoro, H. (2004). The dragonflies
and damselflies of Toyama prefecture, central Honshu, Japan. Bull. Toyama Sci.
Museum 28, 97–107.

Futahashi, R., Yamanaka, T., Yoshinobu, U., and Hisamatsu, M. (2012). Collection
and photographic data on dragonflies and damselflies from ibaraki prefecture.
Nat. Museum 15, 13–38.

Goëau, H., Joly, A., Bonnet, P., Lasseck, M., Šulc, M., and Hang, S. T. (2018).
Deep learning for plant identification: how the web can compete with
human experts. Biodivers. Inform. Sci. Standards 2:e25637. doi: 10.3897/biss.2.
25637

Hallmann, C. A., Ssymank, A., Sorg, M., de Kroon, H., and Jongejans, E. (2021).
Insect biomass decline scaled to species diversity: general patterns derived
from a hoverfly community. Proc. Natl. Acad. Sci. U.S.A. 118:e2002554117.
doi: 10.1073/pnas.2002554117

Hamada, K., and Inoue, K. (1985). The Dragonflies of Japan in Colour. Tokyo:
Kodansha Ltd.

Hansen, O. L. P., Svenning, J. C., Olsen, K., Dupont, S., Garner, B. H., Iosifidis,
A., et al. (2020). Species-level image classification with convolutional neural
network enables insect identification from habitus images. Ecol. Evol. 10,
737–747. doi: 10.1002/ece3.5921

Høye, T. T., Ärje, J., Bjerge, K., Hansen, O. L. P., Iosifidis, A., Leese, F.,
et al. (2021). Deep learning and computer vision will transform entomology.
Proc. Natl. Acad. Sci. U.S.A. 118:e2002545117. doi: 10.1073/pnas.200254
5117

Kadoya, T., and Washitani, I. (2007). An adaptive management scheme for
wetland restoration incorporating participatory monitoring into scientific
predictions using dragonflies as an indicator taxon. Glob. Environ. Res. 11,
179–185.

Kadoya, T., Suda, S. I., and Washitani, I. (2009). Dragonfly crisis in Japan: a
likely consequence of recent agricultural habitat degradation. Biol. Conserv. 142,
1899–1905. doi: 10.1016/j.biocon.2009.02.033

Kadoya, T., Suda, S. I., Tsubaki, Y., and Washitani, I. (2008). The
sensitivity of dragonflies to landscape structure differs between life-
history groups. Landscape Ecol. 23, 149–158. doi: 10.1007/s10980-007-
9151-1

Kamilaris, A., and Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture:
a survey. Comp. Electronics Agric. 147, 70–90. doi: 10.1016/j.compag.2018.
02.016

Khan, A., Sohail, A., Zahoora, U., and Qureshi, A. S. (2020). A
survey of the recent architectures of deep convolutional neural
networks. Artif. Intell. Rev. 53, 5455–5516. doi: 10.1007/s10462-020-09
825-6

Kobori, H., Dickinson, J. L., Washitani, I., Sakurai, R., Amano, T., Komatsu,
N., et al. (2016). Citizen science: a new approach to advance ecology,
education, and conservation. Ecol. Res. 31, 1–19. doi: 10.1007/s11284-015-
1314-y

Langlotz, C. P., Allen, B., Erickson, B. J., Kalpathy-Cramer, J., Bigelow,
K., Cook, T. S., et al. (2019). A roadmap for foundational research on
artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/The
academy workshop. Radiology 291, 781–791. doi: 10.1148/radiol.201919
0613

Lin, T. (2015). LabelImg. GitHub. Available online at: https://github.com/tzutalin/
labelImg (accessed September 10, 2020).

Manoj, B. J., Chinmaya, H. S., Ganesh, S. N., and Nithish, D. (2020). Dragonfly-net:
dragonfly classification using convolution neural network. J. Appl. Inform. Sci.
10, 60–66.

Marzluff, J. M. (2013). Citizen science: public participation in environmental
research. BioScience 63, 139–140. doi: 10.1525/bio.2013.63.2.10

Ministry of Internal Affairs and Communications (1996). Method of Demarcation
for Grid Square. Available online at: https://www.stat.go.jp/english/data/mesh/
05.html (accessed September 10, 2020).

Moen, E., Bannon, D., Kudo, T., Graf, W., Covert, M., and Van Valen, D. (2019).
Deep learning for cellular image analysis. Nat. Methods 16, 1233–1246. doi:
10.1038/s41592-019-0403-1

Naraoka, H. (2005). The life histories of dragonflies inhabit in irrigation pond, laied
emphasis on the damselflies. Insects Nat. 40, 12–15.

National Biodiversity Center of Japan, Ministry of the Environment, Japan, Tokyo
(2002). Data From: The National Survey on the Natural Environment Report
of the Distributional Survey of Japanese Animals (Dragonflies). Available
online at: http://www.biodic.go.jp/reports/4-09/h000.html (accessed January
21, 2021).

Newman, G., Wiggins, A., Crall, A., Graham, E., Newman, S., and Crowston,
K. (2012). The future of citizen science: emerging technologies and
shifting paradigms. Front. Ecol. Environ. 10:298–304. doi: 10.1890/11
0294

Osawa, T., Yamanaka, T., Nakatani, Y., Nishihiro, J., Takahashi, S., Mahoro, S.,
et al. (2017). A crowdsourcing approach to collecting photo-based insect and
plant observation records. Biodivers. Data J. 5:e21271. doi: 10.3897/BDJ.5.e2
1271

Ožana, S., Burda, M., Hykel, M., Malina, M., Prášek, M., Bárta, D., et al. (2019).
Dragonfly hunter CZ: mobile application for biological species recognition
in citizen science. PLoS One 14:e0210370. doi: 10.1371/journal.pone.021
0370

Ozono, A., Kawashima, I., and Futahashi, R. (2021). Dragonflies of Japan, Revised
Edition. Tokyo: Bunichi Sogo Shuppan.

Paoletti, M. G. (1999). “Using bioindicators based on biodiversity to assess
landscape sustainability,” in Invertebrate Biodiversity as Bioindicators of
Sustainable Landscapes, ed. M. G. Paoletti (Amsterdam: Elsevier), 1–18. doi:
10.1016/B978-0-444-50019-9.50004-2

Parmar, T. K., Rawtani, D., and Agrawal, Y. K. (2016). Bioindicators: the natural
indicator of environmental pollution. Front. Life Sci. 9:110–118. doi: 10.1080/
21553769.2016.1162753

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
PyTorch: an imperative style, high-performance deep learning library. arXiv
[Preprint]. arXiv: 1912.01703.

Perez, L., and Wang, J. (2017). The effectiveness of data augmentation in image
classification using deep learning. arXiv [Preprint]. arXiv: 1712.04621.

Pocock, M. J. O., Tweddle, J. C., Savage, J., Robinson, L. D., and Roy, H. E.
(2017). The diversity and evolution of ecological and environmental
citizen science. PLoS One 12:e0172579. doi: 10.1371/journal.pone.017
2579

Python Software Foundation (2018). Python Language Reference (Version 3.6.8).
Available online at: http://www.python.org (accessed January 6, 2021).

Shahinfar, S., Meek, P., and Falzon, G. (2020). How many images do I
need?” Understanding how sample size per class affects deep learning model
performance metrics for balanced designs in autonomous wildlife monitoring.
Ecol. Inform. 57:101085. doi: 10.1016/j.ecoinf.2020.101085

Silvertown, J. (2009). A new dawn for citizen science. Trends Ecol. Evol. 24,
467–471. doi: 10.1016/j.tree.2009.03.017

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv [Preprint]. arXiv: 1409.1556.

Sugimura, M., Ishida, S., Kojima, K., Ishida, K., and Aoki, H. (1999). Dragonflies of
the Japanese Archipelago in Color. Sapporo: Hokkaido University Press.

Tabak, M. A., Norouzzadeh, M. S., Wolfson, D. W., Sweeney, S. J., Vercauteren,
K. C., Snow, N. P., et al. (2019). Machine learning to classify animal species in
camera trap images: applications in ecology. Methods Ecol. Evol. 10, 585–590.
doi: 10.1111/2041-210x.13120

Terry, J. C. D., Roy, H. E., and August, T. A. (2020). Thinking like a
naturalist: enhancing computer vision of citizen science images by harnessing
contextual data. Methods Ecol. Evol. 11, 303–315. doi: 10.1111/2041-210x.
13335

Frontiers in Ecology and Evolution | www.frontiersin.org 9 December 2021 | Volume 9 | Article 762173

https://doi.org/10.1109/cvprw.2009.5206848
https://doi.org/10.1109/cvprw.2009.5206848
https://doi.org/10.1890/110236
https://doi.org/10.1890/110236
https://doi.org/10.1002/lom3.10324
https://doi.org/10.3389/frai.2020.00004
https://doi.org/10.3389/frai.2020.00004
https://doi.org/10.3897/biss.2.25637
https://doi.org/10.3897/biss.2.25637
https://doi.org/10.1073/pnas.2002554117
https://doi.org/10.1002/ece3.5921
https://doi.org/10.1073/pnas.2002545117
https://doi.org/10.1073/pnas.2002545117
https://doi.org/10.1016/j.biocon.2009.02.033
https://doi.org/10.1007/s10980-007-9151-1
https://doi.org/10.1007/s10980-007-9151-1
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1007/s11284-015-1314-y
https://doi.org/10.1007/s11284-015-1314-y
https://doi.org/10.1148/radiol.2019190613
https://doi.org/10.1148/radiol.2019190613
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
https://doi.org/10.1525/bio.2013.63.2.10
https://www.stat.go.jp/english/data/mesh/05.html
https://www.stat.go.jp/english/data/mesh/05.html
https://doi.org/10.1038/s41592-019-0403-1
https://doi.org/10.1038/s41592-019-0403-1
http://www.biodic.go.jp/reports/4-09/h000.html
https://doi.org/10.1890/110294
https://doi.org/10.1890/110294
https://doi.org/10.3897/BDJ.5.e21271
https://doi.org/10.3897/BDJ.5.e21271
https://doi.org/10.1371/journal.pone.0210370
https://doi.org/10.1371/journal.pone.0210370
https://doi.org/10.1016/B978-0-444-50019-9.50004-2
https://doi.org/10.1016/B978-0-444-50019-9.50004-2
https://doi.org/10.1080/21553769.2016.1162753
https://doi.org/10.1080/21553769.2016.1162753
https://doi.org/10.1371/journal.pone.0172579
https://doi.org/10.1371/journal.pone.0172579
http://www.python.org
https://doi.org/10.1016/j.ecoinf.2020.101085
https://doi.org/10.1016/j.tree.2009.03.017
https://doi.org/10.1111/2041-210x.13120
https://doi.org/10.1111/2041-210x.13335
https://doi.org/10.1111/2041-210x.13335
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-762173 December 14, 2021 Time: 13:47 # 10

Sun et al. Deep Learning for Species Identification

Theobald, E. J., Ettinger, A. K., Burgess, H. K., DeBey, L. B., Schmidt, N. R.,
Froehlich, H. E., et al. (2015). Global change and local solutions: tapping the
unrealized potential of citizen science for biodiversity research. Biol. Conserv.
181, 236–244. doi: 10.1016/j.biocon.2014.10.021

Valan, M., Makonyi, K., Maki, A., Vondráèek, D., and Ronquist, F. (2019).
Automated taxonomic identification of insects with expert-level accuracy using
effective feature transfer from convolutional networks. Syst. Biol. 68, 876–895.
doi: 10.1093/sysbio/syz014

van Klink, R., Bowler, D. E., Gongalsky, K. B., Swengel, A. B., Gentile, A., and
Chase, J. M. (2020). Meta-analysis reveals declines in terrestrial but increases
in freshwater insect abundances. Science 368, 417–420. doi: 10.1126/science.
aax9931

Veit, A., Wilber, M., and Belongie, S. (2016). Residual networks behave like
ensembles of relatively shallow networks. arXiv [Preprint]. arXiv: 1605.06431.

Wäldchen, J., and Mäder, P. (2018). Machine learning for image based species
identification. Methods Ecol. Evol. 9, 2216–2225. doi: 10.1111/2041-210x.
13075

Zaghloul, A., Saber, M., Gadow, S., and Awad, F. (2020). Biological
indicators for pollution detection in terrestrial and aquatic

ecosystems. Bull. Natl. Res. Centre 44:127. doi: 10.1186/s42269-020-
00385-x

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Sun, Futahashi and Yamanaka. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 10 December 2021 | Volume 9 | Article 762173

https://doi.org/10.1016/j.biocon.2014.10.021
https://doi.org/10.1093/sysbio/syz014
https://doi.org/10.1126/science.aax9931
https://doi.org/10.1126/science.aax9931
https://doi.org/10.1111/2041-210x.13075
https://doi.org/10.1111/2041-210x.13075
https://doi.org/10.1186/s42269-020-00385-x
https://doi.org/10.1186/s42269-020-00385-x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles

	Improving the Accuracy of Species Identification by Combining Deep Learning With Field Occurrence Records
	Introduction
	Materials and Methods
	Image Datasets
	Field Occurrence Records of Odonates
	Image-Based Species Identification
	Combining Image-Based Model and Ecological Survey Datasets
	Image-Based Genus Identification
	System Environments and Source Code

	Results
	Accuracy of Image-Based Models for Species Identification
	Field Occurrence Records Improved the Accuracy of Species Identification
	Accuracy Was Improved for Genus Identification

	Discussion
	Advantages of Image-Based Model for Species and Genus Identification
	Field Occurrence Records Compensate for the Low Availability of Images
	Imbalanced Validation Data Reflect the Actual Frequency of Occurrence
	Related Work on Species Classification of Ondonate
	Prospects of Ecological Surveys in Citizen Sciences in the Deep Learning Era

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


