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Ordinary computing machines prohibit self-reference because it leads to logical

inconsistencies and undecidability. In contrast, the human mind can understand

self-referential statements without necessitating physically impossible brain states. Why

can the brain make sense of self-reference? Here, we address this question by

defining the Strange Loop Model, which features causal feedback between two brain

modules, and circumvents the paradoxes of self-reference and negation by unfolding the

inconsistency in time. We also argue that the metastable dynamics of the brain inhibit

and terminate unhalting inferences. Finally, we show that the representation of logical

inconsistencies in the Strange Loop Model leads to causal incongruence between brain

subsystems in Integrated Information Theory.

Keywords: self-reference, cognition, consciousness, computation, causal structure, integrated information theory

1. INTRODUCTION

Are brains like computers? Can technological metaphors provide satisfactory explanations for the
complexity of human brains (and brains in general)? Before electronic computers became a reality,
some versions of the previous questions had always been there. In the seventeenth century, the
development of mechanical clocks and later on mechanical automata led to questions with far-
reaching philosophical implications, such as the possibility of creating a mechanical human and
an artificial mind (by René Descartes and others Wood, 2002). Later, brains and machines were
compared to electric batteries (since it became clear that electricity was involved in brain processes),
and early works by visionaries such as Alfred Smee represented brains and the activity of thinking in
terms of networks of connected batteries (Smee, 1850). Other network-level metaphors of the brain
such as telegraphs and telephone webs replaced the old ones, until the metaphor of the computer
prevailed in the 1950s (Cobb, 2020).

The computer was apparently the right metaphor: It could store large amounts of data,
manipulate them and perform complex input-output tasks that involved information processing.
Additionally, the new wave of computing machines provided an appropriate technological context
to simulate logical elements similar to those present in nervous systems. Theoretical developments
within mathematical biology by McCulloch and Pitts (1943) revealed one first major result: The
units of cognition—neurons—could be described with a formal framework. Formal neurons were
described in terms of threshold units, largely inspired by the state-of-the-art knowledge of real
neurons (Rashevsky, 1960). Over the last decades, major quantitative advances have been obtained
by combining neuron-inspiredmodels withmultilayer architecture (LeCun et al., 2015) and physics
of neuromorphic computing (Indiveri and Liu, 2015; Markovi et al., 2020). These developments
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are largely grounded in early theories (Rumelhart et al., 1986;
Fukushima, 1988) with novel hardware improvements and a
massive use of training data.

Despite the obvious success of computing and information
technology, we are still far from the dream of building or
simulating a truly intelligent system. To begin with, computers
and their abstract representation in terms of Turing machines are
highly modular, programmable and sequential (Arbib, 2012) (see
Figure 1). Instead, neural systems are the result of evolutionary
tinkering and selection that favored exploiting redundancy and
parallelism (Allman, 1999; Martinez and Sprecher, 2020). That
does not prohibit the existence of interesting links that help make
sense of brain in terms of Turing machines: Many functional
responses of brains are essentially sequential in nature, despite
the highly parallel integration that feeds serial (and slow)
cognitive task production (Zylberberg et al., 2011). Yet, the
most remarkable departure of brains from computers is probably
the presence of re-entrant circuits, i.e., the recursive exchange
of signals across multiple, parallel and reciprocal connections

FIGURE 1 | Computer vs. brain architecture. A topological analysis of (A) computer chips and (B) brains (visual cortex organization) reveals fundamental

dissimilarities. These include the strict modular organization of the former contrasted with the highly parallel, integrated architecture of the latter. The circuits

responsible for higher-order cognitive brain tasks display re-entrant feedback loops that are absent on the in-silico counterparts (compare with Figure 2). Image

adapted from Jonas and Kording (2017).

(Edelman, 1992). Indeed, some authors have posited that closed
feedback loops are crucial for conscious experience (Hofstadter,
1979; Oizumi et al., 2014). Are closed feedback loops the key for
a formal differentiation between brains and computers? Closed
feedback loops can allow for self-reference (Grim, 1993), and the
human brain is capable of self-referential inference. So this begs
the question: Why can the brain make sense of self-reference,
whereas a computer can’t?

We address this question by considering paradoxes of self-
reference and negation (Prokopenko et al., 2019). Studies in
logic, linguistics, and general philosophy for many centuries have
illustrated that when statements negatively refer to their own
features, contradictions follow in short order. This is made clear
from sentences such as:

The sentence presently being uttered is false. (1)

Taking this sentence at its word—supposing it to be true—we
find out it is false. However, taking it to be false, we are forced to
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conclude that it is true. When we assign truth values to sentences,
we classically assume that truth and falsity are mutually exclusive
and exhaustive, yet self-referential sentences appear to have over-
determined truth values (Priest, 2006, pp. 14–15): We are obliged
to evaluate them simultaneously as true and false, a contradiction.
This may compel the logician to use formal languages that block
such self-referential constructions to preserve their consistency
at the cost of limiting their expressiveness. Such a pursuit of
consistency is perhaps well-motivated in purely formal settings
such as mathematics, but self-reference is readily available within
natural language, and human minds are capable of formulating
and thinking about self-referential paradoxes and becoming
aware of their inconsistency.

Computers are incapable of resolving a paradox such as
sentence 1—they get caught in endless loops—, whereas the
brain can “reason” about this paradox. Let us examine the
latter statement by bringing forward some basic facts about the
workings of the brain. In the ordinary course of experience, our
state of mind may possess many subtle and composite features,
but we only ever occupy one such mental state at a time: There
are no “superpositions” of mental states. Furthermore, if we
take mental states to be somehow derivative of brain states (by
whatever account of the emergence of consciousness one prefers),
the deterministic or unitary evolution of physical systems given
by our best physical theories suggests that our brains only
ever occupy a single physical state.1 Whatever the mechanism
responsible for the emergence of mental states from brain states
is, surely the brain state that grounds the awareness of some
fact is different from the brain state that grounds the awareness
of its negation. Thus, occupying a mental state corresponding
to awareness of a contradiction would seem to be a physical
impossibility par excellence insofar as it would necessitate one’s
brain to be in two distinct states at once. Yet, upon interpreting
the sentence 1, the reader comes to think about a self-referential
statement and understand its contradictory nature, and so the
cognitive processing of self-referential statements is clearly not a
physical impossibility (nor do they get stuck in an unhalting cycle
of thoughts one might expect of a machine tasked with deciding
the truth value of such a sentence). How is this possible?

In this paper, we address this question by constructing a high-
level model of the brain, termed a Strange Loop Model (Section
2), from which we conclude that:

1. The brain makes sense of self-reference by spreading out
inconsistent truth values in time, thereby avoiding physically
impossible states (Section 3.1).

2. The representation of logical inconsistencies in the brain
leads to causal incongruence between brain subsystems
(Section 3.3).

3. The metastable dynamics of the brain and its interactions with
external stimuli inhibit and terminate unhalting inferences
(Section 3.4).

1Since the brain is fundamentally a quantum system, this physical state could be in

a superposition, but as Tegmark (2000) has shown, even neurons are sufficiently

macroscopic systems that decoherence would likely prevent quantum effects from

being relevant.

Statement 1 says that the brain represents and processes self-
referential sentences by treating their truth values as dynamical
quantities. It follows that the resulting contradictions are
unfolded in time, and thus do not require physically impossible
brain states. Statement 2 describes how this “unfolding” works:
Different parts of the brain yield disagreeing predictions about
the brain’s future states, and this disagreement is made apparent
by analyzing the causal feedback between these parts. This
disagreement is known in Integrated Information Theory (IIT)
as incongruence (Albantakis and Tononi, 2019). This causal
feedback is not encountered in Turing machines because they are
feed-forward systems. Statement 3 claims that the brain does not
succumb to halting problems when processing statements whose
truth values are undecidable, because the metastable nature of
brain dynamics precludes falling into lock-in states (Tognoli and
Kelso, 2014).

This paper is structured as follows. We present the Strange
Loop Model (SLM) of the brain (Section 2), and we use it
to represent self-referential inferences in the brain (Section 3).
Finally we conclude and discuss further directions (Section 4).

2. THE STRANGE LOOP MODEL

Here we present a high-level model of the brain by describing
it as a discrete dynamical system (Section 2.1), partitioning it
into functionally distinct modules (Section 2.2), and investigating
their causal structure (Section 2.3). The name originates from
Hofstadter (1979, 2007): Strange loops arise when, by moving
only upwards (or downwards) in a hierarchy, one encounters
oneself at the same place where one started.

2.1. Discrete Dynamics of Brain Modules
Here we describe the brain as a discrete dynamical network of
connectomic units (Sporns et al., 2005). We consider that n such
units (indexed i = 1, . . . , n), evolving in discrete time t ∈ Z,
and denote the state of unit i at time t by xti ∈ 6i, where 6i is
a finite state space. The state of the “brain” in the SLM at time t
is denoted

Bt = (xt1, . . . , x
t
n) ∈ 61 × . . .×6n = :6.

The dynamics of such a system are given by a transition function
T :6 → 6 so that Bt+1 = T (Bt) and we denote ith component
of T (Bt) by Ti(B

t) : = xt+1
i .

We consider a probability distribution p on6. For any z ∈ 6i,
the conditional probability (also denoted p) is defined as

p(z|Bt) =

{

1 if z = Ti(B
t)

0 else.

We suppose that all units are conditionally independent at any
given time t ∈ Z, so they satisfy:

p(Bt+1|Bt) =

n
∏

i=1

p(xt+1
i |Bt). (2)

Additionally, we suppose that the future state of the brain
depends only on the immediately preceding state (Markovianity),
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so that if t1 < t2 < · · · < T, the joint probability distribution
factors as

p(Bt1 ,Bt2 , . . . ,BT) = p(Bt1 )

T−1
∏

n=1

p(Btn+1 |Btn ). (3)

With this setup one may use the intervention calculus from
probabilistic causal modeling (e.g., as elaborated by Pearl, 2009)
to understand how connectomic units causally influence each
other. Following the exposition in Krohn and Ostwald (2017),
given any two subsystems X,Y ⊆ B, one defines the effect
probability pe, the joint cause-effect probability pce, and the cause
probability pc to be:

pe(Y
t|Xt−1) : = p(Y t|Xt−1)

pce(Y
t−1,Xt) : = q(Y t−1)p(Xt|Y t−1) (4)

pc(Y
t−1|Xt) : =

pce(Y
t−1,Xt)

∑

Y t−1∈6 pce(Y t−1,Xt)

where q(Y t−1) is the uniform distribution over the state space
of Y . The distribution pe(Y

t|Xt−1) indicates the extent to which
the current state of Y is an effect caused the previous state of X.
Likewise, pc(Y

t−1|Xt) indicates the extent to which the previous
state of Y was a cause of the current state of X.

2.2. Brain Process Modules
The brain carries out a wide array of distinct, though integrated
processes. While it is difficult to list and classify all of them, they
may be roughly partitioned into three general interconnected
categories: (i) pre-conscious processes, (ii) conscious processes,
and (iii) post-conscious processes.

Pre-conscious processes are those which occur independent
of conscious experience. The activity of the autonomic nervous
system is paradigmatic of this category. Though extremely
important for sustaining life, these functions are somewhat
irrelevant to our considerations and shall hence be ignored in
what follows.

Conscious processes are those which directly give rise to
conscious experience; that is, they govern the dynamics of the
neural correlates of consciousness, and include those responsible
for perception, the categorical discrimination thereof, awareness,
and short-term memory recall, among other things. They are
not to be conflated with the first-person subjective conscious
experiences to which these correlates are thought to somehow
give rise. At the physiological level, all we are concerned with are
the neural correlates of conscious experience and awareness; we
are agnostic as to how the mental states are determined by these
correlates, and therefore do not commit to any view about the
origins of consciousness as such.

Post-conscious processes are those which are not the primary
basis for conscious experience, but still depend on the correlates
of consciousness such as language processing and inference-
making. This class of brain functions is roughly equivalent to
cognitive processes2.

2It is worth mentioning that there may be some cognitive processes which

may be independent of conscious experience. We consider such processes to be

pre-consicous ones, and thus irrelevant to our analysis.

Each of these classes of brain processes has a reasonably well-
defined collection of physiological regions in the brain which
carry them out. Hence it is possible for us to conceptually
partition the brain into three physical “modules.” The important
feature of these modules is that they are deeply interconnected.
While it is hard to cleanly demarcate their physiological
boundaries, what is important for our purposes is not how to
carve up the brain into these modules, but the causal relations
between them.

In the SLM (cf. Section 2.1), we shall denote the
“consciousness” module by XCon ⊆ B and the individual
connectomic units that compose it by {xi}. Likewise, we shall
denote the “cognition”module byYCog ⊆ B and the connectomic
units that compose it by {yi}. The region of the brain that is
relevant for our purposes is the joint system XCon ∪ YCog.

2.3. Causal Feedback
We now argue that the brain modules XCon and YCog mutually
exhibit causal feedback.

To see that XCon causally influences YCog, note that cognitive
tasks are like computational tasks (broadly construed) which
take as their inputs the correlates of consciousness. For instance,
learning is a cognitive process that is informed by sensory stimuli.
Likewise, language processing is a cognitive process that begins
with a more abstract input of which the cognizing subject is
usually consciously aware. More generally, changing what a
person perceives or is conscious of affects how they make sense
of their perceptions and what sorts of inferences they will draw.

What does the causal relation from XCon to YCog look like? It
is known that a single neuron may participate in bringing about
many sorts of perceptions and experiences, and many different
neuronal states may correspond to one and the same perceptual
experience (as there is great degeneracy). Hence, one cannot
easily reduce a correlate of consciousness to an arrangement of
neurons. That is, the correlates of consciousness are not identical
to the state of XCon—they are only determined by XCon. More
specifically, the intrinsic network of causal influences withinXCon

determines these neural correlates (see Tononi and Edelman,
1998; Edelman, 2005; Park and Friston, 2013 for discussion).3

In order for cognition to take the correlates of consciousness as
inputs, the systemYCog must be connected to systemXCon in such
a way that the internal causal structure of XCon is “read off” of
its state and encoded directly into the states of the neurons of
YCog, which must encode features of the probability distributions
pe, pce, and pc of the subsystem XCon. Since we shall establish
that there are causal relations in both directions, to prevent
circularity, we suppose that YCog represents the intrinsic causal
structure of XCon as it appears when marginalized to XCon (i.e.,
ignoring correlations with YCog). Determining exactly how this
translation could be carried out would require a full account of
the emergence of conscious experience from the relevant causal
information which we do not have. However, one may view the

3While the dynamical evolution of the brain may be reduced to a description of

its individual neurons, and while its intrinsic causal structure is grounded in the

interactions of these neurons, the intrinsic causal structure is not robust against

small changes to the network architecture. It is in this way that neural correlates of

consciousness are not “reducible” to individual neurons.

Frontiers in Ecology and Evolution | www.frontiersin.org 4 December 2021 | Volume 9 | Article 802300

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Fraser et al. Brains and the Liar Paradox

units of YCog as “simulating” the intrinsic causal structure of
XCon, and then carrying out an effective computing procedure
on this simulation—this simulation could be modeled with ideas
from hierarchical predictive processing which adopts a similar
organizational structuring of the brain (cf. Friston, 2005; Friston
and Kiebel, 2009; Clark, 2013). In summary, the causal relation
XCon → YCog is highly non-trivial.

What does the causal relation from YCog to XCon look like? On
its own, the system XCon gives rise to the moment-by-moment
passive perceptions present in the thinking subject’s conscious
experience. However, the content of conscious experience—at
least for humans—is not merely a passive stream of perception;
there is further underlying semantic content within these
perceptions of which we come to be aware by carrying out
cognitive tasks. While our perceptual apparatus may be capable
of carrying out discrimination tasks to categorize our perceptions
(e.g., such that we may become aware of the presence of “pain” or
“blue” and so on within a given experience), we also come to be
consciously aware of much richer structural and abstract features
as well. Deprived of all sensory input, the mathematicianmay still
prove complex theorems structured by a sophisticated underlying
mathematical grammar and logic, but only if they are consciously
aware that they are doing so. To the extent that the thinking
subject may be conscious of the outcomes of their cognition—
which they certainly are in many cases—we see that there must
exist some non-trivial causal relation between YCog and XCon in
which the former causally influences the latter.

More specifically, acts of cognition may change the content
of conscious experience such that we may acquire understanding
of our perceptions, for instance by giving them grammatical
structure (over and above merely discriminating qualia), or by
carrying out introspection or higher inference-making. It is
through this process that one may go from a state of mind
of the form “it is the case that φ” to the state of mind
“I know that it is the case that φ.” Likewise, it is through
this process that one may go from the state of mind that
“it is the case that φ and φ → ψ” to the state of mind
“it is the case that ψ” (via inference by modus ponens). In
short, the outcomes of cognitive processes are re-integrated back
into the correlates of consciousness. This causal feedback via
simulation and re-integration between modules in illustrated in
Figure 2.

We have established that cognition causally influences the
content of conscious experience, and vice versa. This is not to
say, however, that cognition is itself “perceived.” In everyday
life, the content of our experience forms the basis of some
cognitive inference we may make and we become aware of
the outcome of this inference, but we never perceive the
inference itself. Indeed, even when one is proving mathematical
theorems, at most one is aware of what cognitive rules they
are applying when carrying out a deduction: they do not,
however, experience the application of these rules as such. This
illustrates that, while we argue that cognition causally influences
the course of conscious experience in a very strong way, it
is not itself directly responsible for conscious experience; the
neuronal basis for cognition is not itself populated with correlates
of consciousness, it merely interacts with these correlates in

a reentrant manner. In this sense, we may faithfully view the
cognitive module YCog as implementing feed-forward computing
procedures, e.g., through a neural network that is reintegrated
withXCon (such that inference making in its entirety is not merely
a computing procedure).

Formally, since both XCon and YCog causally influence one
another in a highly non-trivial manner, we expect that

p(Xt+1
Con|Y

t
Cog) 6= p(Xt+1

Con|X
t
Con) (5)

p(Y t+1
Cog |Y

t
Cog) 6= p(Y t+1

Cog |X
t
Con). (6)

Thus, the simulation of XCon encoded in YCog will generally not
be a faithful predictor of the future behavior of XCon, since it
ignores its own causal influence on this behavior. This is the
reason we suppose that YCog simulates the causal structure of
XCon as marginalized to XCon. In Box 1 we provide a concrete
realization of the SLM presented above model, as well as its
application to self-reference.

3. SELF-REFERENCE IN THE STRANGE
LOOP MODEL

Here we use the SLM to investigate how to make sense of self-
reference by unfolding the inconsistency in time (Section 3.1)
and provide some clarifying remarks (Section 3.2). Then we
show how logical inconsistency is transformed to incongruence
(Section 3.3), and argue that the brain does not get caught in
endless loops (Section 3.4).

3.1. Unfolding Self-Reference in Time
We now analyze how the intrinsic thought process of an agent
carrying out a self-referential deduction as given by the Inclosure
Schema (Box 2) would appear in the dynamical behavior of the
joint system XCon ∪ YCog. In formal logic, a deduction in a
given formal system is a sequence of grammatically well-formed
strings of symbols such that each string is either an instance of
an assumed axiom or premise, or is the result of the application
of a permitted rule of inference to previous lines in the sequence.
If one views a deduction as a dynamical time-dependent thought
process in which each line in the deduction corresponds to some
fact about which the thinking subject is aware, the sequential
ordering of the lines of the deduction may be interpreted as the
time ordering of a series of mental states (and thus, a constraint
of the compatible dynamics of the underlying brain states).

Given some statement φ, to say that an agent is aware of φ
at time t is to say that the physical state of Xt

Con grounds the
mental state of being aware of φ. One can actively perceive φ
by occupying such a mental state, or one can remember having
perceived φ at a previous time. Thus, there is an internal time
index τ ≤ t that tracks the time at which φ was perceived that
may differ from the time index of the state of XCon. If we denote
that class of all brain states that give rise to this mental state by
[φ], and index the time at which φ is thought to be (or have
been) perceived by [φτ ], we thus have Xt

Con ∈ [φt] if the thinking
subject is actively thinking about φ, and Xt

Con ∈ [φτ ] for τ < t if
they are recalling having thought about φ previously.
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FIGURE 2 | The causal relations XCon → YCog needed to simulate perceptions for inference-making, and YCog → XCon manifest in the awareness of the outcome of

cognitive processing.

BOX 1 | A concrete realization of the Strange Loop Model

To instantiate the SLM, suppose first that a mental state amounts to the awareness of some sentence in a formal language L. Such sentences carry an internal time

index τ : at physical time t, one may occupy a mental state of remembering some sentence φ at an earlier time (i.e., τ < t), they may anticipate being aware of φ

in the future (i.e., τ > t), or they may be aware of φ as a feature of the present experience (i.e., τ = t). We suppose that every pair (φ, τ ) is represented by a unit of

YCog. The mental state determined by the state of XCon is simulated by the elements of YCog via an injective map S :6X → {(φ, τ )|φ ∈ L, τ ∈ Z} where 6X is the state

space of XCon. That is, S takes the state of XCon to the unit of YCog that represents the corresponding mental state. The state of each unit y = (φ, τ ) ∈ YCog at time t is

given by yt = (at (y), st (y)) ∈ {0, 1} × {0, 1}, where at (y) = 1 if the thinking subject is consciously aware of y at time t, and it is 0 otherwise, and st (y) = 1 if the thinking

subject assigns truth to φ at time τ (i.e., if they think φ was/is/will be true at time τ ), and it is 0 otherwise. The state of YCog at time t is determined by:

yt = (at (y), st (y)) =

{

(1, 1) if y = S(X tCon)

(0, st−1(y)) if y 6= S(X tCon).

That is, to be aware of (φ, τ ) at time t is to think it to be true, and to think φ is false is to be aware of the truth of ¬φ. The state of YCog at time t+ 1 is determined by

the application of some inferential mechanism by YCog. If the thinking subject applies a rule of inference of the form {σ1, . . . , σk} ⊢ ψ , a
t (y) is updated so that one is

only presently aware of ψ , namely at+1(ψ , t+ 1) = 1, and at+1(φ, τ ) = 0 for φ 6= ψ and any τ . The transition rule for st is

st+1(ψ , t+ 1) =

k
∏

i=1

st (σi , t)

and st+1(φ, τ ) = st (φ, τ ) for all τ when φ is independent of ψ , and st+1(ξ , τ ) = st (ξ , τ ) for all τ 6= t + 1 and any ξ . Sentences containing ψ have their truth values

adjusted according with the change in the truth value of ψ , for example st+1(¬ψ , t+ 1) = 1− st+1(ψ , t+ 1) and st+1(φ ∧ ψ , t+ 1) = st+1(φ, t+ 1) · st+1(ψ , t+ 1) and

so on. We do not fully specify the transition rule for XCon, but we require that it be such that after such an inference, S(X t+1
Con ) = (ψ , t+ 1).

The self-referential paradox arises when one may assert that (at (φ, t1 ), s
t (φ, t1 )) = (at (¬φ, t2), s

t (¬φ, t2)) for t1 6= t2. But, as shown in Section 3.1, this scenario

is not challenging to understand; these are two different nodes of Y t
Cog, and there is no consistency requirement preventing this as a value assignment. Even if one

imposes consistency conditions at equal times, since these are unequal-time units, such conditions need not prohibit this behavior.

If φ and ψ are two formulas that are not logically equivalent
to one another, one might suppose that [φτ ] ∩ [ψτ ] = ∅. This
very general claim may be objected to in principle by noting, for
instance, that if φ and ψ are sufficiently complex, the thinking
subject may not always be immediately aware of their logical

(in)equivalence4. Nevertheless, it should be agreeable that there

4One might consider, for instance, the classic example due to (Descartes, 1993,

Meditation VI) of the chiliagon (a 1000-sided polygon). The thinking subject, it

may be argued, uses an identical mental representation to depict a polygon with
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BOX 2 | Diagonalization, self-reference and paradoxes

While self-reference and its paradoxical consequences arise in a wide range of settings, the construction of the self-referential statement leading toward contradiction

typically has a standard form, termed the Inclosure Schema; cf. Priest, 2002, Chapter 9.4). At a higher level of abstraction, this may be viewed as an instance of

Lawvere’s Theorem (Yanofsky, 2003; Lawvere, 2006; Roberts, 2021).

In plain language, the relevant actresses of the Inclosure Schema are the following. A predicate is a property that elements of a set may possess, and we

identify the predicate with its extension, i.e., with the set of elements that instantiate it. For example, the predicate “odd” of the set of natural numbers is the set

{1, 3, 5, 7, 9, . . .}. If a set x has property P, we write P(x), meaning that P(x) is true, i.e., x is in the extension of P. We will consider the collection of all sets V, and a

function 1 :V → V.

More formally, let ϕ and ψ denote two predicates that may apply to arbitrary sets (where “set” is meant in the sense of natural language, which is more expressive

than formal set theory at the cost of being inconsistent), and let 1 be a function on sets. Then self-reference occurs when:

1. Eϕ = {y|ϕ(y)} is a set, and ψ (Eϕ )

2. If x ⊆ Eϕ such that ψ (x), then 1(x) /∈ x and 1(x) ∈ Eϕ

Statement 1 says that the extension of the predicate ϕ is a set and is called Eϕ , and that Eϕ has property ψ . Statement 2 defines the features of 1, namely 1

takes sets with property ψ whose elements all have property ϕ to sets whose elements have property ϕ but are not contained in the original set. The contradiction

associated with self-reference appears when one applies condition 2 to the maximal subset, namely, Eϕ itself, from which it follows that 1(Eϕ ) ∈ Eϕ and 1(Eϕ ) /∈ Eϕ ;

a contradiction.

Let us see this argument in action by considering Russell’s paradox. In naïve set theory, the extension of any predicate is a set. Russell’s paradox is as follows:

suppose X is the set of all sets that do not contain themselves. Then if X ∈ X, by definition it follows that X /∈ X. However, if X /∈ X, then since X is the set of all

sets that do not contain themselves, we find X ∈ X; a contradiction. On the Inclosure Schema this paradox may be recast as follows. First, ψ is the predicate “is a

set,” ϕ is the predicate “does not contain itself,” and 1 is defined by 1(x) = {y ∈ x|y /∈ y}, i.e., it’s image is the set of all sets in x that do not contain themselves.

Since ψ is a predicate in naïve set theory, 1 is true and asserts that Eϕ exists and is the notorious “set of all sets that do not contain themselves.” Then if x is a set,

clearly 1(x) ∈ Eϕ . Likewise, if 1(x) ∈ 1(x), then by definition of 1, 1(x) /∈ 1(x) and so we must conclude 1(x) /∈ x. Thus 2 is also satisfied. But then setting x = Eϕ ,

this implies simultaneously that 1(Eϕ ) ∈ Eϕ and 1(Eϕ ) /∈ Eϕ ; a contradiction. This contradiction historically called for the reformulation set theory and was one of the

many factors leading to modern-day ZF axiomatic set theory. All other famous self-reference paradoxes may be articulated using this Inclosure Schema.

are no brain states that are simultaneously neural correlates of
the awareness of φ and also neural correlates of the awareness of
¬φ. This weaker hypothesis is all we shall require. Then, if the
thinking agent carries out a deductive inference whose sequential
lines are denoted {φn}, this corresponds to their brain undergoing
a dynamical evolution of the form:

Xt
Con ∈ [φ

τ (t)
0 ] → Xt+1

Con ∈ [φ
τ (t+1)
1 ] → Xt+2

Con ∈ [φ
τ (t+2)
2 ]

→ · · · → Xt+n
Con ∈ [φτ (t+n)

n ] (7)

where τ :Z → Z satisfies τ (t) ≤ t. While the individual lines
of a deduction correspond to mental states (and thus restricted
classes of brain states), the axioms and rules of inference from
which subsequent lines are produced do not reflect processes of
which one is consciously aware during such a thought process.
Rather, they reflect the cognitive rules that the thinking agent’s
brain may apply to the content of their experience in order
to bring about their subsequent mental states. In this way, the
axioms and rules of inference that enable one to formalize a
given deduction correspond in the underlying thought process
to processes implementations of cognitive processes via YCog (see
Box 1 for a concrete realization thereof).

To illustrate this, let us consider a simple example. Suppose
one sees a green apple before them. This perception, and
the discrimination of various features of this perception are

1000 sides as one with only 999 sides. Such mental representations, then, would be

given the same class of corresponding brain states, even if it is a logically different

object. Hence, logical inequivalence is inadequate for individuating mental states

(or brain states).

grounded in neural correlates that reside physiologically in the
brain module XCon at the present time t. Suppose, subsequently
(say, at time t + 1), that one remembers from their past
experiences that essentially all green apples have a sour taste. (Of
course, the inductive formation of such a generalized belief from
past memories is non-trivial, but it nevertheless happens.) This
association, then, of sour flavor with green apples in general is
something about which the thinking subject becomes consciously
aware, and hence forms part of their conscious experience.
Therefore, it is likewise encoded in the neural correlates of
consciousness present in XCon at time t + 1. From these two
perceptions, the thinking subject may apply modus ponens to
conclude that the apple they saw at time t would likely have had
a sour taste were they to eat it. The general rule ofmodus ponens,
however, is not something of which one has direct perception
when it is being implemented; making such inferences is a
higher cognitive process. The implementation of modus ponens,
therefore, is a process carried out by the brain module YCog.
Importantly, once this inference has been carried out, the subject
becomes aware of its outcome. Namely, at a subsequent time
(say, t + 2), they become consciously aware that, had they eaten
the apple, it would likely have tasted sour. This is the general
manner in which deduction may be realized as thought processes
implemented within our brain model.

We now apply this perspective to the linguistic processing of
self-referential statements via the Inclosure Schema (see Box 2).
The idea is to distinguish between the abstract logical results
and the thought processes obtained when a thinking subject
confronts an instance of self-reference and thinks about it over a
finite period of time. Logically speaking, the contradiction arising
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from a diagonalization argument is absolute; we do not contest
this. However, when we infer this contradiction—i.e., when the
dynamical behavior of a subject’s brain implements the thought
process that yields this contradiction—using diagonalization, we
do so in two temporally separate parts; first, we prove that1(x) /∈
x and conclude that 1(Eϕ) /∈ Eϕ . Then, at a later time, we
conclude that 1(Eϕ) ∈ Eϕ . The contradiction arises when we
remember at a third time that we had proven both of these two
facts separately.

Let us look at Tarski’s paradox to see this play out concretely,
following the exposition by Priest (2002). To begin, let T be a
“truth” predicate on sentences, i.e., for any sentence x, T(x) is
true if and only if x is true (this is called Tarski’s T-schema). Let ψ
denote definability such that ψ(X) is true for any set of sentences
X just in case there exists a sentence x which defines X as a set
(of sentences). If X is any definable set of sentences, let1(X) = α

where α = 〈α /∈ X〉 (here 〈·〉 is used to denote the proper name of
a sentence). That is, 1(X) is the sentence α which expresses that
α is not an element of the set of sentences X. Clearly, α is self-
referential. If an agent thinks about the T-schema, their thought
process might look like the following. First, one supposes that the
totality of all true sentences exists and is definable, that is, that
Tr : = {x | T(x)} is a set that may be defined by some sentence.
If X is definable (whence ψ(X) is true) and if X ⊆ Tr, we have in
the temporal framework described:

Time Inference Rule

t = 0 1(X ) ∈ X → 〈α /∈ X〉 ∈ X Definition of 1

t = 1 〈α /∈ X〉 ∈ X → 〈α /∈ X〉 ∈ Tr Comprehension in ZF

t = 2 〈α /∈ X〉 ∈ Tr → α /∈ X T-Schema

t = 3 α /∈ X → 1(X ) /∈ X Definition of 1

t = 4 1(X ) ∈ X → 1(X ) /∈ X Modus ponens (three times)

t = 5 1(X ) /∈ X → 1(X ) /∈ X Tautology

t = 6 (1(X ) ∈ X ) ∨ (1(X ) /∈ X ) → 1(X ) /∈ X Propositional logic

t = 7 (1(X ) ∈ X ) ∨ (1(X ) /∈ X ) Excluded middle

t = 8 1(X ) /∈ X Modus ponens on t = 6 and t = 7

t = 9 1(Tr) /∈ Tr Substitution of X = Tr to t = 8

t = 10 1(Tr) ∈ Tr Substitution of X = Tr to t = 1

t = 11 (1(Tr) ∈ Tr) ∧ (1(Tr) /∈ Tr) Propositional logic

Let us now look at the brain states that could in principle
produce the mental states associated with each line of this
deduction. We may rewrite the above inference as follows:

X0
Con ∈ [(1(X) ∈ X → 〈α /∈ X〉 ∈ X)0]

X1
Con ∈ [(〈α /∈ X〉 ∈ X → 〈α /∈ X〉 ∈ Tr)1]

X2
Con ∈ [(〈α /∈ X〉 ∈ Tr → α /∈ X)2]

X3
Con ∈ [(α /∈ X → 1(X) /∈ X)3]

X4
Con ∈ [(1(X) ∈ X → 1(X) /∈ X)4]

X5
Con ∈ [(1(X) /∈ X → 1(X) /∈ X)5]

X6
Con ∈ [((1(X) ∈ X) ∨ (1(X) /∈ X) → 1(X) /∈ X)6]

X7
Con ∈ [((1(X) ∈ X) ∨ (1(X) /∈ X))7]

FIGURE 3 | Unfolding self-reference in time can be imagined as unfolding a

circle many-times packed into a corkscrew, where the time dimension

corresponds to the long dimension of the corkscrew. Equivalently, it can be

imagined as the evolution of circularly polarised light.

X8
Con ∈ [(1(X) /∈ X)8]

X9
Con ∈ [(1(Tr) /∈ Tr)9]

X10
Con ∈ [(1(Tr) ∈ Tr)10]

X11
Con ∈ [((1(Tr) ∈ Tr)9 ∧ (1(Tr) /∈ Tr)10)11]

To prove a contradiction in time in a manner that could require a
physically impossible brain state, one would need to show that
Xt
Con ∈ [φt] and Xt

Con ∈ [¬φt] for a single t. This does not
happen. In this way, if we want to model deductive inferences
as processes carried out by a physical systems such as the brain
which evolves in time, we see that the contradictions appear not
directly, but spread out in time and then recalled, and so they
may be implemented by amachine such as the brain that operates
in time (Figure 3). In particular, we do not encounter the fractal
picture given in Grim et al. (1993).

Moreover, because it is possible to have Xt
Con ∈ [φt] and

Xt′

Con ∈ [¬φt
′
] at different times t 6= t′, we see that the brain

has on this model sufficient expressive power to treat truth values
as dynamically changing quantities. This may be contrasted with
Turing machines tasked with deciding truth values; the state of
such a machine may evolve in time, but the truth value it aims to
decide is static.

3.2. Clarifying Remarks
Let us make a few remarks on the conclusions reached so far.
We are not denying the logical contradiction that appears in the
above deduction. Indeed, what we have done here amounts to a
temporal version of what (Priest, 2002) calls parameterization; it
is a standard approach to avoid paradoxes, and in general, any
contradiction that is avoided by parameterization will reappear
at a higher level again when one analyzes the parameterized
formalism. However, this is irrelevant to our aims: what we
have shown is that an inference-making device that has a
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register that expresses its state of deduction in time (while
some auxiliary system carries out further inference-making tasks
leading to eventual update of the register) can effectively model
contradictory scenarios without existing in a contradictory state
itself. That is, there is never an instant where such a system need
occupy two different physical states simultaneously.

Extending this to our model of the brain, the “inference”
column label could be replaced with “the thought of
which the conscious agent is aware” at each given time,
while the “rule” column label could just as well be
interpreted as “the cognitive process being carried out in
the intermediate time window.” In this way, we have a
rough picture for how the brain could physically model
the contradictions that arise from self-reference paradoxes
(noting that the above proof for the contradiction in Tarski’s
paradox is of the generic diagonalization form) without
itself being in any strange superposition of disagreeing
physical configurations.

What makes this temporal parameterization technique useful
is that while in a purely logical setting, the relation between
subsequent lines in a deduction is strictly a logical one (with
no temporality and so forth), when represented on a physical
system, is no longer an abstractly logic relation, but is instead
a causal relation indicating an interaction between these two
brain modules we have discussed. In particular, it is a causal
relation which requires an intermediate physical process to
commence and terminate. Hence, there is an intermittent time,
and so the contradiction may be “stretched out” in time in the
appropriate sense. (This is analogous to the Kantian view of time
as a means for the thinking subject to experience contradictory
perceptions without an actual contradiction obtaining Kant,
1998, A32/B48).

3.3. Transforming Logical Inconsistency to
Incongruence
We now apply the IIT formalism (see Box 3) to the SLM, and
show how the logical inconsistency of self-referential paradoxes
is transformed to incongruence.

First observe that since the correlates of consciousness
were taken to reside in XCon, it is reasonable to suppose
that for any subsystem of the brain Z ⊆ B, if Z is
maximally irreducible while in some state Zt , it must be
the case that Z ∩ XCon 6= ∅. In most cases, Z will
simply be a subsystem of XCon. However, from Equation (5),
there will be some irreducible subsystems that overlap with
YCog as well. In particular, XCon ∪ YCog is expected to be
maximally irreducible.

Incongruence in IIT is defined as follows. For any system S,
given a pair of subsystems G,H ⊆ S, G and H are incongruent if
they make differing predictions about the past or future behavior
of some particular node z ∈ S (see Haun and Tononi, 2019;
Albantakis and Tononi, 2019, p. 5). This occurs, for instance,
if p(zt+1|Gt) 6= p(zt+1|Ht). When self-referential inferences are
made, if we suppose φ is thought about at time t, ¬φ is thought
about at t+1, and φt∧¬φt+1 is thought about at time t+2, then
it is because of the cognitive processes in YCog implemented at

time t and t + 1 that this is the case. In particular, if we presently
think some sentence is true, we expect that it will be true still at
the next instant, so that

p(Xt+1
Con ∈ [¬φt+1] | Xt

Con ∈ [φt],YCog)

is large, while

p(Xt+1
Con ∈ [¬φt+1] | Xt

Con ∈ [φt])

is small. However, YCog implements a rule of inference in

this transition, which causes Xt+1
Con ∈ [¬φt+1] to occur.

During self-referential inferences, not only do two different
subsystems disagree about the probabilities assigned to a
particular node’s future state (cf. Equation 5); rather, they assign
essentially opposite probabilities to the future behavior of the
subsystem spanned by all maximally irreducible subsystems.
Hence, incongruence arises in a strong way.

Put differently, causal incongruence in IIT offers a precise
sense in which the parts of a system fail to describe the
whole of the system, namely, taken separately, the parts
may disagree with one another about the descriptions they
provide. In the SLM framework, this is exploited as a feature:
it is this disagreement that enables the brain to represent
contradictions in the requisite manner needed to make sense of
self-referential statements.

3.4. Avoiding Unhalting Cycles
We now argue that the cyclic behavior of the SLM, as described
in Section 3.1, does not persist indefinitely (as it would for
an unhalting Turing machine). When the thinking subject gets
caught in a cognitive cycle of the same form, if their attention
is drawn away from the cyclic inference at hand, the cycle will
end. This is so because, as a thinking subject learns by repeating
a task many times, they devote less and less attention and focus
toward the task being learned (Kandel et al., 2013, Chapter 64).
In the present context, this means that if the thinking subject
cycles through the thought process associated with deriving
disagreeing truth values for a self-referential statement, they will
not get caught in a loop, but rather will pay less attention to
the inference upon subsequent iterations. Since the brain actively
monitors a large class of sensory stimuli and implements many
cognitive processes in parallel, as this attention diminishes, the
thinking subject is increasingly likely to refocus their attention
elsewhere. In short, if attention is a resource, the architecture
of the brain is such that the re-allocation of this resource
inhibits the ensuing feedback and makes infinite inferential
loops unstable.

This is analogous to binocular rivalry, where the subject’s
visual field is eventually changed, whence their visual sensations
escape from flowing toward lock-in states (Hohwy et al.,
2008; Clark, 2013), and to visual paradoxes, like the Necker
cube (where two alternative possible attractors are present) or
the recognition of ambiguous images (Inoue and Nakamoto,
1994; Kelso, 1995). This metastable behavior due to self-
reference can also be found in gene networks, where the
causal feedback associated with cross-regulatory interactions
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BOX 3 | Integrated Information Theory

Integrated Information Theory (IIT; see Oizumi et al., 2014; Tononi and Koch, 2015; Tononi et al., 2016) is a framework that seeks to provide a constructive account of

the origins of conscious experience by describing it as an emergent feature of causally integrated dynamical systems such as the brain. IIT begins by articulating those

features of conscious experience that one might take to be constitutive, and then identifies features of the causal structure of a dynamical system that qualitatively

realize these features (in a manner that can be made quantifiably precise via informational measures). A model of the IIT formalism is a dynamical system X (such

as the SLM) together with all of the probabilities of the form p(xt+1
i |X t ). From the causal probabilities defined in Equation (4), the IIT formalism defines measures to

quantify the extent to which a subsystem S ⊆ X cannot be causally reduced, e.g., to a pair of subsystems G and H with S = G ∪ H and the extent to which every

such S is causally integrated.

A state of a subsystem at some time is irreducible if and only if the probabilities that characterize its intrinsic causal structure cannot be exactly recovered by

partitioning it into subsystems. Irreducibility is quantified using an informational measure; those subsystems of X that realize the maximum of this measure for the

system X are called maximally irreducible. There are generally many different maximally irreducible subsystems.

According to IIT, only those subsystems that are maximally irreducible at a given moment contribute to consciousness at that moment, forming the instantaneous

correlates of consciousness. The manner in which a maximally irreducible subsystem contributes to consciousness is dictated by its causal probabilities which

populate points in a supposed space of qualia. The conscious experience realized by a physical substrate (a human brain or otherwise) is a byproduct of that

substrate’s maximally irreducible intrinsic causal structure. Here we do not assess the plausibility of IIT as a theory of consciousness; rather, we note that our SLM

can be recast within the IIT formalism straightforwardly.

can be spread in time or space leading to interesting
phenomena (Isalan, 2009).

4. CONCLUSIONS AND OUTLOOK

In this work, we have constructed a high-level discrete
dynamical model of the brain, termed the Strange Loop
Model (SLM; Section 2), in order to describe inference-
making, which uses causal feedback between conscious and
cognitive processes. We have used the SLM to model self-
reference and shown that logical inconsistencies unfold in
time (Section 3.1), and hence the contradictions dissolve, as
one never encounters inconsistent truth values simultaneously.
Rather, one deduces at different times that a sentence has
different truth values and then remembers having carried
out both such deductions. This flexibility enables the human
brain to model self-reference in a manner that is inaccessible
to usual computing devices by construction. We have also
applied the SLM within the context of IIT and shown that
logical inconsistencies are transformed into incongruences
(Section 3.3). Finally we have argued that, because the brain
is receptive to a wide range of different stimuli, and because
one devotes less attention to repetitive cognitive tasks as time
passes, these cyclic inferences are unstable are thus terminated
(Section 3.4).

The interaction between XCon and YCog via the
described causal feedback enables the human mind to
be aware of the outcomes of cognitive inferences, and
likewise further cognize about such an awareness. Put
differently, the causal feedback here described enables
the thinking subject to be aware of their own cognitive
processes, and to then make inferences about their own
cognition. This situation is reminiscent of universality
encountered in Turing machines, spin models and neural
networks (De las Cuevas, 2020).

Finally, we may compare the SLM with a Turing machine
or any other standard computing machine. Unlike an algorithm
running in a Turing machine, the processing carried out by the
SLM is not a deciding process, because it need not reach a static
truth value of a variable. Moreover, the only relevant features of
a Turing machine are its input–output functionality (that is, the
formal language it recognizes Kozen, 1997), whereas the intrinsic
causal structure of the brain is crucial. In this way, we conclude
that the process carried out by the brain and the computer
is different.
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