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Epibionts are organisms that utilize the exterior of other organisms as a living
substratum. Many affiliate opportunistically with hosts of different species, but others
specialize on particular hosts as obligate associates. We investigated a case of apparent
host specificity between two barnacles that are epizoites of sea turtles and illuminate
some ecological considerations that may shape their host relationships. The barnacles
Chelonibia testudinaria and Chelonibia caretta, though roughly similar in appearance,
are separable by distinctions in morphology, genotype, and lifestyle. However, though
each is known to colonize both green (Chelonia mydas) and hawksbill (Eretmochelys
imbricata) sea turtles, C. testudinaria is >5 times more common on greens, while
C. caretta is >300 times more common on hawksbills. Two competing explanations
for this asymmetry in barnacle incidence are either that the species’ larvae are spatially
segregated in mutually exclusive host-encounter zones or their distributions overlap and
the larvae behaviorally select their hosts from a common pool. We indirectly tested the
latter by documenting the occurrence of adults of both barnacle species in two locations
(SE Florida and Nose Be, Madagascar) where both turtle species co-mingle. For green
and hawksbill turtles in both locations (Florida: n = 32 and n = 275, respectively;
Madagascar: n = 32 and n = 125, respectively), we found that C. testudinaria occurred
on green turtles only (percent occurrence – FL: 38.1%; MD: 6.3%), whereas the barnacle
C. caretta was exclusively found on hawksbill turtles (FL: 82.2%; MD: 27.5%). These
results support the hypothesis that the larvae of these barnacles differentially select host
species from a shared supply. Physio-biochemical differences in host shell material,
conspecific chemical cues, external microbial biofilms, and other surface signals may
be salient factors in larval selectivity. Alternatively, barnacle presence may vary by host
micro-environment. Dissimilarities in scute structure and shell growth between hawksbill
and green turtles may promote critical differences in attachment modes observed
between these barnacles. In understanding the co-evolution of barnacles and hosts it
is key to consider the ecologies of both hosts and epibionts in interpreting associations
of chance, choice, and dependence. Further studies are necessary to investigate the
population status and settlement spectrum of barnacles inhabiting sea turtles.

Keywords: turtle barnacle, epibiont, assortative epibiosis, substratum specificity, basibiont preference, carapace,
Madagascar, Florida (United States)
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INTRODUCTION

Barnacles in the family Chelonibiidae (superfamily
Coronuloidea) are common epibionts of sea turtles (Zardus,
2021). Their highly mobile hosts provide them with a substratum
that protects them from predators (Foster, 1987) while also aiding
their dispersal (Rawson et al., 2003) and supporting their reliance
on passive feeding (Lane et al., 2021). Chelonibiid barnacles
occupy multiple turtle and non-turtle host species (Zardus et al.,
2014) but there has been minimal characterization of differences
in their ecological niches and settlement preferences, limiting
our understanding of the association between barnacles and
hosts. While predominantly associating with marine turtles,
chelonibiids have also been observed on other aquatic reptiles
including the American alligator, diamondback terrapins, and
saltwater crocodilians (Monroe and Garrett, 1979; Seigel, 1983;
Nifong and Frick, 2011), as well as manatees (Zardus et al.,
2014) and various crabs and other arthropods (Ortiz et al., 2004;
Cheang et al., 2013; Ewers-Saucedo et al., 2017).

Barnacles in the genus Chelonibia have been evolving as
commensals of marine turtles since the late Miocene (Ross, 1963)
and several extinct forms illuminate their evolutionary history
with diverse hosts (Collareta and Newman, 2020; Collareta
et al., 2021). It has recently been recognized that there are
but two extant species in the genus, Chelonibia testudinaria
and Chelonibia caretta (Cheang et al., 2013; Zardus et al.,
2014), both occurring globally on marine turtles. Though
sometimes confused for each other, with informed examination
they can usually be readily distinguished. Along with several
morphological differences between the two (Monroe, 1981) are
distinctions in their attachment modes that leave diagnostic
marks on their hosts.

Typical of other acorn (balanomorph) barnacles,
C. testudinaria (and presumably C. caretta) develops through
multiple swimming larval stages in the plankton before being
able to find a host and becoming competent to attach and
metamorphose (Zardus and Hadfield, 2004). The terminal larval
stage, the cyprid, searches for a suitable substratum and attaches
by gluing down a pair of organs, the antennules, specialized for
surface adhesion though, surprisingly, not obviously specialized
for adhering to particular surface types (Dreyer et al., 2020).
Subsequent to attaching, metamorphosis follows within hours
which involves forming a calcareous shell cemented to the
substratum. Most barnacles are immovably fixed in place at
this point but C. testudinaria’s capability for slow movements
across the substratum allows it to modify its feeding position
throughout life (Chan et al., 2021). Paradoxically, despite its
mobility, this species is otherwise extremely passive, exhibiting
no active feeding behavior as an adult, probably as a consequence
of having evolved to live on mobile hosts (Lane et al., 2021). But
how the planktonic larvae of both of these barnacles optimize
a rendezvous with sea turtles and identify their itinerant hosts
remains enigmatic. Available evidence suggests the two likely
meet up along coastlines where larvae can become entrained in
harbors, embayments, and lagoons (Sloan et al., 2014; Lim et al.,
2021) where juvenile and adult sea turtles forage, as opposed to
open-ocean locations.

Habitat characteristics for epibionts of marine turtles
potentially vary due to differences in host species’ behavior
and carapace growth and composition. With the exception of
leatherback turtles, sea turtle shells are covered with a varying
number of enlarged, keratinous epithelial scales known as
“scutes,” which are known to provide suitable substratum for
attachment of a variety of epibionts (Frazier et al., 1991; Scharer,
2001; Frick et al., 2004). However, differences in both scute
development and carapace grooming behavior among sea turtle
species may influence the type, placement, and persistence of
epibiotic growth found on each. In contrast to green turtle scutes
that maintain smooth seams along their edges as they expand,
the anterior edge of each hawksbill scute subducts the one in
front of it, producing the characteristic “imbrication” of the
scutes unique to hawksbill turtles (Palaniappan, 2007). Though
very little is known of ecdysis in sea turtles, in contrast to green
turtles, hawksbills appear not to shed outer layers of their scutes,
which consequently thicken over time, making them famous for
their particular and unfortunate suitability in the international
tortoiseshell trade (Mrosovsky, 2000; Pederson, 2021).

Hawksbill (Eretmochelys imbricata) and green sea turtles
(Chelonia mydas) are globally distributed marine turtles currently
listed by the IUCN as “Critically Endangered” and “Endangered,”
respectively, throughout their ranges (Seminoff, 2004; Mortimer
and Donnelly, 2008). Though hawksbills typically prefer coral
reef/hard bottom habitats, while green turtles prefer seagrass
pastures, the often-close proximity of these habitat types to
one another can result in overlapping ranges between the two
turtle species (Bjorndal and Bolten, 2010, Wood pers. obs.). Co-
occurring populations of green turtles and hawksbills have been
documented in the same coastal reef habitats, e.g., south Florida,
Turks and Caicos, and Northwestern Indian Ocean (Bourjea
et al., 2006; Makowski et al., 2006; Taquet et al., 2006; Wood
et al., 2013; Bechhofer and Henderson, 2018). As juveniles and
subadults, both hawksbill and green turtles frequently remain in
relatively small home ranges for extended periods (10 years+)
prior to embarking on reproductive migrations (Berube et al.,
2012; Hazel et al., 2013; Wood et al., 2017). The swimming
behaviors of adult hawksbills and green turtles are similar,
using their foreflippers to propel themselves through the water
column and hind flippers for directional movement (Wyneken,
1996). Green turtles are known to actively groom their carapaces
with their flippers and/or by rubbing on underwater surfaces,
which could strongly influence patterns of epibiotic recruitment
(Heithaus et al., 2002, Wood pers. obs.). Symbiosis through
mutualistic behaviors exhibited by reef fishes foraging on marine
turtle epibionts is another factor that may preclude barnacles
from successful settlement (Sazima et al., 2010). Hawksbill
individuals have been observed displaying postures that signal
fishes to clean their exterior (Grossman et al., 2006) and cleaner
fishes have been recorded cleaning the carapace and skin of
green turtles as well (Losey et al., 1994; Sazima et al., 2010).
Booth and Peters (1972) reported a barnacle removal behavior in
moon wrasse, Thalassoma lunare, in which individuals targeted
skin barnacles for consumption. Further stomach analysis of
moon wrasses confirmed the presence of barnacle material
as a dietary item. The active removal of epibiota by green
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turtle self-cleaning behaviors and symbiotic fishes presents
major limitations to the settlement success of various epibiota.
As Chelonibia barnacles are obligate associates of sea turtles,
it is imperative to examine the abundance, distribution, and
settlement preferences of these co-evolved symbionts to properly
assess their conservation status, particularity in relation to the
conservation status of the host sea turtle species. Identifying
key host-commensal species relationships is a first step in
properly determining turtle barnacle population abundances
and distributions.

The objective of the present study was to provide
insight into the host preferences of Chelonibia barnacles
when access to multiple host species was available in the
wild. The overlap of habitat use between hawksbills and
green turtle in southeast Florida and Nosy Be, Madagascar
provided an opportunity for assessing biases in the presence
of C. testudinaria and C. caretta among these two host
turtle species. We also related the attachment modes of
C. caretta and C. testudinaria (cementation and down-
cutting, respectively) to what is known of scute growth
and host behavior in these two turtle species to explore the

possibility that one or both of these barnacles is specialized for a
particular host.

MATERIALS AND METHODS

Between 2007 and 2020, juvenile and subadult green and
hawksbill turtles were captured from co-occurring populations
in the nearshore waters of SE Florida United States (Palm
Beach through Monroe Counties) (Figure 1), and the islands
of Nosy Sakatia, Nosy Tanikely, and Nosy Komba, which are
part of the Nosy Be Island complex located in the northwest
region of Madagascar (Figure 1). In Florida, the hawksbills were
encountered in 2–26 m of water along the Southeast Florida
Continental Reef Tract, a relatively high-latitude reef system with
varied community structure that includes reef-building Acropora
corals in the southern portion (FL Keys), gradually transitioning
to algae/sponge/octocoral-dominated habitats near its northern
terminus in Palm Beach County (Jaap and Hallock, 1990; Banks
et al., 2008). This highly variable, non-uniform seascape is in close
proximity to the Florida Current, a branch of the Gulf Stream that

FIGURE 1 | Map of study sites in southeast Florida (A) and Nosy Be, Madagascar (B).
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carries warm tropical water northward along the SE Florida Coast
from the Gulf of Mexico and Caribbean. The green turtles were
encountered in 1–3 m of water in Palm Beach County Florida
at Lake Worth Lagoon (West Palm Beach, FL) and Jupiter Inlet
(Jupiter, FL), two well-flushed seagrass-dominated tidal lagoons
with open-ocean access via nearby major navigable inlets.

In Madagascar, green turtles were observed at a shallow,
seagrass shoal with surrounding fringing reefs on the coast of
Nosy Sakatia with a tidal range depth of approximately 0–4 m
(McKenna and Allen, 2003). Juvenile and adult male and female
green turtles forage and rest at this site (Sagar, 2001). Adult and
sub-adult hawksbill turtles were encountered between 2 and 8 m
of water in shallow coastal coral reef systems off the coasts of
Nosy Tanikely and Nosy Komba. Fringing reefs in these areas
are dominated by Acropora corals; however, live coral coverage
has decreased around 20% since 1998 with significant changes
every 4 of 5 years due to isolated coral bleaching events (Webster
and McMahon, 2002; McKenna and Allen, 2003; Obura, 2012;
Obura et al., 2017). In the northwest of Madagascar predominant
currents move in a northward direction toward Mozambique in
a counterclockwise direction (McKenna and Allen, 2003). While
captured at different locals within the Nosy Be Island complex,
sea turtle species were found to co-occur within each island,
particularly at Nosy Sakatia and Nosy Komba, most likely due to
the nearshore seagrass beds that are more extensive at these two
islands (Knauer pers. obs.).

Depending on water depth, turtles were either dip-netted
from a boat or hand-captured with the use of snorkel or
SCUBA gear, with hand-capture via snorkeling being the only
method of capture for Madagascar turtles. Turtles were brought
up onto the boat and the incidence of two barnacle species
(C. testudinaria and C. caretta) on the carapaces of green and
hawksbill turtles were quantified and recorded from photographs
taken directly above each subject (Figure 2). Photos were
analyzed to enumerate barnacle abundance. Data was analyzed
in Excel and RStudio. The abundance of C. caretta on hawksbill
carapaces and C. testudinaria on green turtle carapaces between
the two study sites were compared using a Welch’s two-sample
t-test (α = 0.05).

RESULTS

Discriminating Chelonibia testudinaria from C. caretta was
possible from photographs because in the former, wall sutures
widen upward and the parieties become splayed at their tips
with radii extended in between; whereas, in the latter species
the seams between the parieties remain pressed close together
with no radii visible but with alae visibly underlapping the
parities at their apex (Figure 3). Chelonibia testudinaria attaches
via adhesive cementation of its basal membrane which spreads
underneath an even, supporting platform made of numerous

FIGURE 2 | Representative photographs of hawksbill sea turtle (left) and green sea turtle (right) from the present study with presence of barnacle species (C. caretta
and C. testudinaria, respectively).
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FIGURE 3 | The scute-attaching turtle barnacles: Chelonibia testudinaria collected from a green sea turtle in Japan (specimen courtesy of Hiroyuki Suganuma),
apical view (A) and basal view (B); and C. caretta collected from a hawksbill sea turtle in Barbados (specimen courtesy of Marina Fastigi), apical view (C) and basal
view (D). Scale bars = 2 cm.

septal wall termini (Figure 3B). Its adhesion is impermanent
which, uniquely among barnacles, facilitates slow movement
by this species across its substratum (Moriarity et al., 2008;
Chan et al., 2021). Chelonibia caretta on the other hand,
though also attaching by cementation and possessing a similar
construction with membranous base, has a less expansive basal
platform that has sharp marginal edges (Figure 3D) that down-
cut into the carapace for permanent, entrenched attachment.
Attachment by Chelonibia barnacles can leave marks on host
scutes that also distinguish the species. Chelonibia testudinaria,
which cements superficially to the surface and is facultatively
mobile, sometimes leaves behind harmless “skid” marks or traces
of trailing adhesive on the surface (Figure 4) while C. caretta,
which has a more invasive form of attachment, can leave behind
physical indentations or incisions, even cutting entirely through
the scutes at times (Figure 5).

In both study sites of mixed turtle species, the barnacle
C. caretta occurred only on hawksbills. Its incidence was highest
in Florida where it was hosted by 82.2% of hawksbills (n = 275)
compared to 27.5% in Madagascar (n = 120) (Figure 6). The other
species of barnacle, C. testudinaria, in both localities occurred
exclusively on green turtles where its percent occurrence on
green turtles was 38.1% in Florida (n = 21) compared to 6.3%
in Madagascar (n = 32) (Figure 6). The abundance of C. caretta
on hawksbills in Madagascar ranged from 0 to 15 barnacles
per turtle with an average of 0.98 ± 0.21 (SE) (Figure 7A). In
Florida, barnacle abundance ranged from 0 to 65 barnacles per
hawksbill with an average of 12.01± 0.81 (SE). The results of the

Welch’s two sample t-test between the abundance of C. caretta
on hawksbill carapaces in the two study sites was significantly
different (t310 = −13.23, p = <0.0001). The abundance of
C. testudinaria on green turtles in Madagascar ranged from 0
to 1 individuals per turtle with an average of 0.08 ± 0.05 (SE)
barnacles (Figure 7B). In Florida, the range was from 0 to 6 with
an average of 0.86 ± 0.33 (SE) barnacles. The difference in mean
abundance of C. testudinaria on green turtle carapaces in the two
study sites was not significant (t35 = 0.29, p = 0.77).

DISCUSSION

In the mixed stocks of green and hawksbill sea turtles in
this study, the epizoic barnacles C. caretta and C. testudinaria
exhibited strongly contrasting biases in host occupancy. This
follows a general pattern described by Zardus (2021) globally
in which both species of barnacles have been reported on both
species of turtles, but C. caretta is almost always more abundant
on hawksbills and infrequent on greens or other sea turtles, while
C. testudinaria is common on most other sea turtles but less
so on hawksbills.

Though exact drivers remain unknown, differences in host
utilization by these barnacle species may be due to preferences at
larval settlement, to various post-settlement selection pressures,
or some combination of the two. If larvae of these barnacles
preferentially select their substratum, this raises the question
of what in the surface features or surface environments of
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FIGURE 4 | Traces of adhesive cement left by the barnacle Chelonibia testudinaria on the thin carapacial scutes of a green sea turtle, demonstrating the
non-destructive attachment and movements of this mobile barnacle (photo made possible by the South Carolina Aquarium, United States).

green and hawksbill turtles differs and what cues do Chelonibia
barnacles detect at attachment? Settlement signals for larval
barnacles, though intensively studied, are not exhaustively
defined. Seemingly tuned less to the material composition of a
substratum (Pomerat and Weiss, 1946; Lohse, 1993), barnacles
are generally more responsive to physical properties such as
texture, hydrophobicity, and surface flow (Crisp, 1955; Wethey,
1986; Mullineaux and Butman, 1991; Di Fino et al., 2014), and
especially to chemical cues, either from other attached barnacles
(Gabbott and Larman, 1987; Matsumura et al., 1998; Ferrier et al.,
2016) or from microbial biofilms (Neal and Yule, 1994; Lau
et al., 2005; Dreanno et al., 2006; Bacchetti de Gregoris et al.,
2012; Siddik and Satheesh, 2019). It is highly conceivable that
Chelonibia barnacles are able to detect and discriminate between
hosts chemically. However, host detection by chemoreception in
barnacles has rarely been demonstrated and is not known for
Chelonibia. In the few studies demonstrating this phenomenon,
Pasternak et al. (2004a,b) have confirmed that the cyprids of
barnacles commensal with corals and parasitic with crabs can
track host chemical plumes in flow and Nogata and Matsumura
(2006) have shown that whale-barnacle cyprids successfully
metamorphose in petri dishes supplied with bits of whale skin
over dishes of plain seawater.

Alternatively for Chelonibia, host selectivity at the larval stage,
though certainly operating at least at the level of choosing a
turtle, may be subordinate to survivorship at the adult stage.
Turtle behavior, where and how they forage, and whether
they self-groom or not, may have the greater influence on
barnacle distribution patterns. Green turtles are known for
actively swiping their carapaces with their flippers and rubbing
against reefs and rock ledges to remove epibiota (Parrish,
1958; Limpus, 1980; Heithaus et al., 2002), while hawksbills
typically do not engage in such behavior. The lower aspect,
domed shell of C. testudinaria, and its temporary, peripatetic
attachment may better suit it to host-grooming activities whereas
the higher aspect, immobile C. caretta may survive better on
a non-grooming host. Additionally, post-settlement pressures
on barnacle survival may include diet. As suspension feeders,
these barnacles may acquire some or much of their nutrition
from their hosts’ foraging spillover, either obtaining food items
from turtles directly or indirectly from material resuspended by
host feeding activities. Thus, the diet and/or foraging habitat
of each host turtle may differentially influence the sustenance
of their barnacle epibionts. Despite these factors, it does
seem improbable that post-settlement selection would result in
absolute removal of only particular barnacles from both hosts.
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FIGURE 5 | Empty shells of the barnacle Chelonibia caretta entrenched in the thick carapacial scutes of a deceased hawksbill sea turtle, demonstrating the
destructive downward cutting action of the barnacle shell margin (photo courtesy of Nicolas Winkler).

Rather, the remarkable, mutually exclusive pattern of barnacle
occurrence we observed suggests that larval selectivity is the
primary cause of this pattern. Because we did not observe any
small barnacles (i.e., recently settled individuals), perhaps due
to limitations of photographic analysis, we did not compare
patterns relative to barnacle size; which, if such individuals had
been present might have provided further insight. Timing of
larval development and recruitment for Chelonibia likely varies
with latitude but is imprecisely known. In Charleston, South
Carolina, United States, latitude 32.8◦ N, recruitment has been
recorded for C. testudinaria in early spring (Sloan et al., 2014). In
tropical locales reproduction may occur year-round but at Mabul
Island, Malaysia, 4.3◦ N, barnacle size classes for C. testudinaria
were larger in May than November, suggesting recruitment
periodicity (Lim et al., 2021). Barnacles can also settle on the
plastron of turtles (Hayashi and Tsuji, 2008), and in several cases
have been found to do so more abundantly there than on the
carapace (Ling and Palaniappan, 2011; Razaghian et al., 2019;
Loghmannia et al., 2021). But, limited to photographing just
the carapace in this study, we were unable to assess occurrence
on the entirety of each host which could conceivably alter
observed patterns.

If these barnacles are indeed adapted for particular hosts as
we suspect, at least in the case of C. caretta with hawksbills,
regardless of selection occurring either at the larval or adult
stage, what advantage does host specificity provide them? The
simplest answer is that each is optimized for retaining their
attachment on their respective hosts. The thick, enduring scutes
of hawksbill turtles and the thinner, deciduous scutes of green
and other sea turtles may have been the primary selective
agent in shaping the attachment modes of these barnacles.
In general, barnacles secrete a very strong adhesive cement
(Liang et al., 2019) which makes them suited to turtle shell
and keeps them well-secured to their substratum. Thick scutes
in hawksbills may have influenced entrenched attachment (and
possibly greater longevity) in C. caretta, while intermittent
shedding of relatively thin scute layers by green sea turtles
may have promoted temporary adhesion and mobility in
C. testudinaria. The dynamics and periodicity of scute shedding
in sea turtles generally is an understudied aspect of their biology
that requires further understanding. Apart from attachment,
niche specialization in these barnacles may also be advantageous
by reducing interspecific competition for space and food while
also improving access for mating. Typically hermaphroditic,
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FIGURE 6 | Percent occurrence of Chelonibia barnacles per host species per geographic location, for hawksbill (Ei) and green turtles (Cm) in Florida (FL) and
Madagascar (MD). At both locations, hawksbill turtles hosted the barnacle C. caretta only and green turtles only C. testudinaria.

acorn barnacles are not self-fertile and must cross-copulate
with neighboring individuals for reproduction (Anderson, 1994).
Eliminating other species as a physical barrier could increase
chances for mating. Surprisingly, the species with mobility,
C. testudinaria, has the most versatile mating system comprised
of tiny complemental males, sometimes many in number, that
attach to and ride around with larger hermaphrodites (Zardus
and Hadfield, 2004). Chelonibia caretta on the other hand is not
known for complemental males, but we have observed it is more
commonly found in aggregations of multiple hermaphrodites
with shell plates fused together.

For future investigation, it would be valuable to know how
feeding and growth vary between these species of barnacles.
Chelonibia caretta does not become as large as C. testudinaria
and perhaps entrenched attachment is a factor that limits its size.
Not growing as wide as C. testudinaria either, it does, however,
grow as tall or taller. Along these lines, it would be interesting
to know how it expands its base while also growing entrenched.
Life expectancies may also vary between these species. Chelonibia
testudinaria lives approximately 2 years (Doell et al., 2017) but
ages for C. caretta are not known, yet by being a hawksbill
specialist, C. caretta may have a significantly longer lifespan and
perhaps slower growth rate than its congener. In addition to
growth, identifying the reproductive period of each species in
areas where they co-occur would help in knowing if their larval
stages develop simultaneously. Even better would be to identify

their larval distribution in the plankton, perhaps by molecular
genetic methods (Chen et al., 2013).

Investigating epibiont occurrence within co-occurring
populations of multiple turtle species is a valuable but uncommon
approach to understanding selectivity of epibionts (Robinson
et al., 2017). Examining larger spatial scopes and different
assemblages of hosts would help provide a more complete
perspective of barnacle epibiosis of marine turtles. Expanding
the area of study beyond exclusively the carapace would
provide a more holistic understanding of barnacle settlement
on sea turtle individuals. Indeed, differences in settlement
abundance on the carapace, plastron and facial scales has
been documented for barnacles on some turtles (Hayashi and
Tsuji, 2008; Ling and Palaniappan, 2011; Razaghian et al.,
2019; Chan et al., 2021; Loghmannia et al., 2021), though
the meaning of these patterns remains elusive. Loggerhead
sea turtles are another species known to host a diverse array
of marine epibionts, including C. testudinaria and C. caretta
(Caine, 1986; Zardus, 2021). Cross comparisons of barnacle
assemblages in sites where green, loggerhead, and hawksbills
are all present would be a valuable contribution. But settlement
choice experiments in the laboratory would address the question
of larval selectivity more directly and potentially provide the
most definitive answers.

Because larval distribution of these epizoic barnacles is
presumably limited to the ranges and source populations of
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FIGURE 7 | Quantity of respective barnacles present on (A) hawksbill and (B) green turtles in Madagascar and Florida.
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their sea turtle hosts, declines of hawksbill and green sea
turtles may be of consequence to them, particularly C. caretta
whose hawksbill host populations have diminished by over 80
percent over the last several hundred years (Mortimer and
Donnelly, 2008). Chelonibia testudinaria, which associates with
all sea turtle species (Zardus, 2021) and even some non-turtle
hosts (Zardus et al., 2014), has greater substratum choice and
widespread occurrence and may be at less peril. Intra-oceanic
host migrations undoubtedly assist in genetically diversifying
their associated epibiota across widely dispersed populations,
and further understanding the degree of population connectivity
of the epibionts of sea turtles is crucial to evaluating their
conservation status.
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