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Cryptorchidism is the failure of one or both testes to descend into the bottom of
the scrotum. This common congenital malformation in humans and domestic animals
is the best characterized risk factor for abnormal sperm functions and infertility.
However, current treatment approaches for cryptorchidism do not ensure paternity
in all cases. Some lineages of mammals (such as elephants and cetaceans) have
natural ascrotal testes (i.e., undescended or incompletely descended testes) and
normal sperm motility and fertility, providing an opportunity to understand the genetic
basis of cryptorchidism. In this study, we showed that genes associated with sperm
motility and competition/fertility in ascrotal mammals experienced frequent, strong
selective pressure. The fixation of specific amino acids and positive selection in ascrotal
mammals could affect the physicochemical properties and functions of fertilization-
related proteins. In a comparison between mammals with undescended testes and
incompletely descended testes, discrepancies in genes showing evidence for adaptive
evolution and in functional enrichment suggested that multiple molecular mechanisms
contribute to the maintenance of fertility in the challenging testicular environment. Our
findings revealed substantial heterogeneity in the divergence of fertilization-related genes
between natural scrotal and ascrotal mammals and provide insight into molecular
mechanisms underlying normal sperm motility and competition in natural ascrotal
mammals. We provide a detailed theoretical basis for understanding the pathology of
cryptorchidism from a molecular evolutionary perspective. This study may contribute to
the establishment of diagnostic and therapeutic targets for sperm motility and fertility
disorders due to congenital cryptorchidism in humans and domestic animals.

Keywords: cryptorchidism, ascrotal testis, sperm motility, fertilization, adaptive evolution

INTRODUCTION

Cryptorchidism is the failure of one or both testes to descend into the bottom of the scrotum
(Foresta et al., 2008). The cryptorchid testis is located in the intra-abdominal, inguinal, or high
scrotal position. In newborn males, cryptorchidism is one of the most common congenital
malformations, with a prevalence of 1.8–8.4% (Rodprasert et al., 2020). Moreover, cryptorchidism
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GRAPHICAL ABSTRACT | Evolution of fertilization-related genes provides insights into reproductive health in natural ascrotal mammals. The fixation of specific
amino acids and selection on sperm motility and competition-related genes contributed to normal fertility in ascrotal mammals. The silhouettes are reproduced from
FLATICON (https://www.flaticon.com/).

is common in domestic mammals (e.g., horses, dogs, cattle, and
sheep). For instance, it has been estimated that cryptorchidism
affects 5–8% of male foals (Murase et al., 2020).

It should be noted that cryptorchidism is a well-characterized
risk factor for abnormal sperm functions, poor semen quality,
infertility, and testicular germ cell tumors in men (Foresta et al.,
2008). A local high temperature in the testis and epididymis
is a major risk factor for cryptorchidism (Ahmad et al., 2012).
Heat stress damages the sperm chromatin structure, motility,
competence for fertilization, and other properties (Sailer et al.,
1997). In particular, as a common feature of spermatozoa,
motility after capacitation is essential for fertilization (Holt
and Van Look, 2004). The importance of sperm motility is
highlighted by the fact that the measurement of motility forms
an indispensable part of most semen or sperm evaluation
criteria (Mocé and Graham, 2008). Generally, sperm motility
parameters measured by the Computer-Assisted Semen Analysis
(CASA) system [including curvilinear velocity (VCL), average
path velocity (VAP), straight-line velocity (VSL), linearity (LIN),
amplitude of lateral head displacement (ALH), straightness
(STR), wobble (WOB), beat cross frequency (BCF), and total
motility] are used to assess sperm quality in an objective and
detailed manner. Investigating the biological relevance of CASA
parameters in the context of prediction of male fertility potential
has been important to understand fertilization and also for
diagnosis and treatment of male infertility (Larsen et al., 2000).

Functionally defective sperm is the most frequent single
defined cause of human infertility (Aitken and Curry, 2011;
Gonçalves et al., 2021). However, typical early treatment
of congenital cryptorchidism (i.e., hormonal and operative
treatment) in scrotal species (including humans) does not ensure
normal fertility and paternity or significantly reduce the risk of
testicular cancer (Hutson et al., 1992; Rodprasert et al., 2020).

The etiology of cryptorchidism remains an enigma, and
the identification of additional diagnostic and prognostic
markers is needed.

Most adult male mammals have completely descended testes
(CDT) from the position of primitive gonad into the scrotum
(such as dogs, tigers, mice, and gorillas) (Kleisner et al., 2010;
Hafez, 2012). However, some lineages of mammals have natural
healthy ascrotal testes located in an intra-abdominal position or
inside the inguinal region (Hutson et al., 1992). For example,
monotremes (such as the platypus and echidna) and elephants
have intra-abdominal testes positioned close to the kidney,
called undescended testes (UDT). Cetaceans have incompletely
descended testes (IDT) located lateral to the bladder neck in
the inguinal region. It is the fact that ascrotal testes provide
ecological and physiological benefits for some mammals. For
example, as a consequence of axial style swimming in an aquatic
environment, testes and epididymides located in inguinal region
of male cetaceans and true seals benefits the streamlining body
shape and reduces the energetic costs (Boice et al., 1964; Arkowitz
and Rommel, 1985; Rommel et al., 2007). Notably, there are
few records of sperm dysfunction in natural ascrotal mammals.
Although the complex hormonal, anatomical, and environmental
factors leading to cryptorchidism have recently been described
(Barthold et al., 2008; Foresta et al., 2008; Chung and Brock,
2011), the molecular mechanisms underlying normal sperm
functions in natural ascrotal mammals remain unexplored.

In the present study, we investigated 264 protein-coding
sequences (CDSs) from four fertilization-related gene sets,
(1) capacitation/decapacitation, (2) sperm motility, (3) sperm
competition/fertilization, and (4) acrosomal reaction and zona
reaction, in 49 representative taxa covering 20 major mammalian
orders. We assessed the evolutionary trajectories of fertilization-
related genes in scrotal and natural healthy “cryptorchid”
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(UDT in the abdomen and IDT in the groin) mammals and
predicted the functional alterations resulting from fixed amino
acid mutations in cryptorchid species. Our results provide an
in-depth theoretical understanding of cryptorchidism in humans
and domestic animals, and more importantly, provide a basis
for the development of new therapeutic targets and strategies
(including gene therapy and stem cell therapy).

MATERIALS AND METHODS

Data Collection and Preparation
Capacitation, sperm motility, sperm competition, acrosomal
reaction and zona reaction are the most vital processes during
fertilization (Holt and Van Look, 2004; Doshi et al., 2012).
Fertilization-related genes were obtained from the AmiGO
database (Carbon et al., 2009)1 by searches with the keywords
(1) “capacitation” and “decapacitation,” (2) “sperm motility,”
(3) “sperm fertilization” and “sperm competition,” and (4)
“acrosomal reaction” and “zona reaction.” In total, 36, 101,
109, and 22 genes were obtained for each sperm function
(Supplementary Table 1).

Further, CDSs of these genes in 49 mammalian species
(including nine with UDT, 16 with IDT, and 24 with
CDT) (Supplementary Table 2) were obtained from the
Senckenberg Genome Browser2 (Hecker and Hiller, 2020)
using in-house Perl scripts. Among these 49 species, we
chose (1) at least one representative species for each main
mammalian order, (2) all the focused ascrotal (IDT + UDT)
mammals, and (3) species with higher quality genomes if
there were overrepresented CDT mammals in the same
order. The longest transcript was chosen for downstream
evolutionary analyses if more than one transcript was obtained
for a single locus. Codon-based nucleotide sequences were
aligned using MACSE with default parameters (Ranwez
et al., 2011). Poorly aligned regions and gaps were trimmed
using Gblocks setting “Gblocks −t = c-b4 = 5-b5 = h”
(Talavera and Castresana, 2007). Finally, 35, 97, 108, and
22 alignments were generated (excluding PAEP, HOATZ,
SEPTIN12, CFAP251, DNAAF6, and NOX5 owing to alignment
failures) (Supplementary Table 1).

Data on the testicular positions (i.e., CDT, IDT, and
UDT) of representative mammals included in the study were
obtained from the literature (Williams and Hutson, 1991;
Hutson et al., 1992; Foresta et al., 2008; Kleisner et al., 2010;
Lovegrove, 2014) and are provided in Supplementary Table 2.
The working trees used for evolutionary and phylogenetic
analyses were retrieved using TimeTree3 (Kumar et al., 2017;
Supplementary Figure 1).

Information on sperm motility, including VCL, VAP, VSL,
LIN, ALH, STR, WOB, BCF, and total motility from CASA was
collected from a literature search (Supplementary Table 3).

1http://amigo.geneontology.org/amigo
2https://genome.senckenberg.de//
3http://www.timetree.org/

Comparison of Sperm Motility Among
Mammals With Different Testicular
Positions
To estimate differences in sperm motility among mammals
with UDT, IDT, and CDT, ANOVA accounting for phylogenetic
relationships was performed using the phylANOVA function
in the phytools package in R (Revell, 2012), with a p-
value cutoff of 0.05. The phylogenetic topology was obtained
using TimeTree (see text footnote 3) (Kumar et al., 2017;
Supplementary Figure 1).

Identification and Functional Prediction
of Specific Fixed Amino Acid
Substitutions in Ascrotal Mammals
FasParser (Sun, 2017) was used to identify fixed amino acid
changes in natural ascrotal mammals (UDT + IDT, UDT, and
IDT) compared with the sequences of scrotal counterparts.
Further, to verify the specificity of the identified ascrotal
mammal-specific fixed amino acid changes at a larger scale,
alignments were expanded to include 106–117 mammals (49
mammals in the evolutionary analyses and additional taxa)
(Supplementary Table 4).

Amino acid residues were classified by charge, polarity, and
polarity plus volume as described previously in Zhang (2000).
The impacts of fixed specific substitutions on function were
predicted using PolyPhen-24 (Adzhubei et al., 2010), HOPE5

(Venselaar et al., 2010), and SIFT6 (Sim et al., 2012). PolyPhen-
2 classifies amino acid substitutions as “benign,” “possibly
damaging,” or “probably damaging” based on straightforward
physical and comparative considerations. HOPE predicts the
structural effects of a mutation. SIFT predicts whether an amino
acid substitution affects protein function based on sequence
homology and the physical properties of amino acids (where a
SIFT score of less than 0.05 indicates a deleterious effect).

Detection of Rapidly Evolving and
Positively Selected Genes
The codeml tool in PAML (Yang, 2007) was employed to identify
rapidly evolving genes (REGs) and positively selected genes
(PSGs) in the lineages leading to UDT and IDT mammals.

First, a branch model was used to evaluate heterogeneity
in evolutionary rates [non-synonymous-to-synonymous (dN/dS)
ratio] between foreground branches (IDT and UDT lineages,
separately) and background branches (the remaining lineages)
(null model: model = 0; alternative model: model = 2). A gene
with a significantly higher dN/dS ratio on foreground branches
than on background branches was defined as a REG. Second,
a branch-site model was used to test PSGs, with a null model
in which the dN/dS ratio is fixed at 1 and an alternative model
in which the dN/dS ratio is free to vary and positive selection
is allowed (Yang, 1998) (null model: model = 2, NSsites = 2,
fix_omega = 0; alternative model: model = 2, NSsites = 2,

4http://genetics.bwh.harvard.edu/pph2/
5https://www3.cmbi.umcn.nl/hope/
6https://sift.bii.a-star.edu.sg/
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fix_omega = 1, omega = 1). Positively selected codons were
identified by Bayes empirical Bayes with p > 0.8.

We corrected for multiple testing by using the Benjamini-
Hochberg method for each gene within a set, with a cutoff of 0.05
(Benjamini and Hochberg, 1995).

To test whether the numbers of REGs in UDT and IDT
mammals were greater than expected based on the number of
fertilization-related genes in each set, gene overlap was evaluated
using the GeneOverlap package in R (Shen, 2014). Fisher’s exact
test was used to evaluate independence based on a contingency
table of gene counts in each set. The odds ratio was used to
determine the strength of the association between two gene lists,
where odds ratio >1 indicated a strong association and odds
ratio <1 implied no association.

Association Between Molecular
Evolution and Testicular Position by
Phylogenetic Generalized Least Squares
Regression
To assess the relationship between the rate of molecular evolution
and testicular position, Phylogenetic Generalized Least Squares
(PGLS) regression, which accounts for the phylogeny, was
employed (Muntané et al., 2018). The root-to-tip dN/dS value
was calculated for each gene and representative species and the
association with the testicular position was evaluated based on
a three-category classification (i.e., UDT, IDT, and CDT) and a
two-category classification (ascrotal and scrotal testes).

Functional and Pathway Enrichment
Analyses
Genes were evaluated by functional and signaling pathway
enrichment analyses to explore the potential biological
mechanisms underlying normal reproduction in ascrotal
mammals. Pathways and Gene Ontology (GO) gene sets from
Metascape7 (Zhou et al., 2019) were used, taking Homo sapiens
as both input and analysis species. GO enrichment was evaluated
in the three general categories, molecular functions, biological
processes, cellular components. Pathway enrichment was
evaluated based on databases (including GO biological processes,
reactome gene sets, Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway, WikiPathways, canonical pathways, and
hallmark gene sets) built in Metascape.

RESULTS

Sperm Motility Traits Are Similar in
Ascrotal and Scrotal Mammals
We compared sperm motility parameters between ascrotal (UDT
and IDT groups) and scrotal mammals. Of the nine parameters
(i.e., VCL, VAP, VSL, LIN, ALH, STR, WOB, BCF, and total
motility), eight parameters (VCL, VAP, VSL, LIN, ALH, WOB,
BCF, and total motility) did not differ significantly between UDT,
IDT and CDT mammals. STR was significantly higher in UDT

7http://metascape.org

and CDT mammals than in IDT counterparts (adjusted p = 0.030
and 0.015, respectively) (Figure 1).

Fixed Amino Acid Substitutions in
Fertilization-Related Proteins of
Undescended Testes Mammals Affect
Protein Properties
None of the genes associated with fertilization evaluated in
the present study showed fixed amino acid changes specific
to all ascrotal (UDT + IDT) mammals. We identified three
UDT mammal-specific substitutions in three proteins (Figure 2):
CFAP65 V1599S, CFAP157 A34D, and FSIP2 D785H. These three
substitutions resulted in radical changes in protein properties;
CFAP65 V1599S changed a non-polar valine to a polar serine,
a neutral and non-polar alanine was replaced with a negative
and polar aspartic acid in CFAP157 A34D, and a negative and
relatively small aspartic acid was replaced with a positive and
relatively large histidine in FSIP2 D785H. Using an expanded
dataset including 106–117 mammals, the specificity of the three
fixed substitutions in UDT mammals was generally supported,
with some exceptions (Supplementary Figure 2).

In silico analyses showed that some of the UDT mammal-
specific changes were predicted to alter protein functions as
well as additional physicochemical properties (Figure 3). For
example, all three amino acid changes could affect the volume of
proteins; the mutant serine in CFAP65 V1599S and aspartic acid
in CFAP157 A34D would make proteins less hydrophobic and
affect the conformation or secondary structure of proteins.

Rapidly Evolving Genes and Positively
Selected Genes in Ascrotal Mammals
Contribute to Sperm Motility and
Competition or Fertilization
Two genes in the capacitation set, five genes in the sperm
motility set, nine genes in the sperm competition/fertilization
set, and four genes in the acrosomal reaction/zona reaction set
were identified as REGs in UDT mammals. For comparison,
three genes were associated with capacitation, 11 genes were
associated with sperm motility, 11 genes were associated
with sperm competition/fertilization, and two were associated
with acrosomal reaction/zona reaction in IDT mammals
(Supplementary Table 5). Additionally, we used a gene overlap
analysis to assess whether the number of REGs was greater than
expected based on the numbers in each set of fertilization-related
genes. The number of REGs identified in each gene set was
significantly greater than expected by chance (Supplementary
Figure 3); most REGs were associated with sperm motility and
competition/fertilization. Moreover, of these REGs, DNAH11,
and FSIP2 related to sperm motility and SPAM1 related to
sperm competition/fertilization overlapped in UDT and IDT
mammals (Figure 4A).

As for PSGs, in UDT mammals, we detected the signature of
positive selection in 5, 8, and 13 genes in the capacitation, sperm
motility, and sperm competition/fertilization sets, respectively.
By contrast, only two genes in the sperm motility set and six genes
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Figure 1 | Comparison of parameters related to sperm motility in mammals with different testicular positions. Nine sperm motility parameters [curvilinear velocity
(VCL), average path velocity (VAP), straight-line velocity (VSL), linearity (LIN), amplitude of lateral head displacement (ALH), straightness (STR), wobble (WOB), beat
cross frequency (BCF), total motility] analyzed by phylANOVA in mammalian lineages with undescended testes (UDT), incompletely descended testes (IDT), and
completely descended testes (CDT). Adjusted p-values greater than 0.05 are not shown.

in the sperm competition/fertilization set underwent positive
selection in IDT mammals (Supplementary Table 5). ADAM32
and GLIPR1L2 related to sperm competition/fertilization were
shared REGs in UDT and IDT mammals (Figure 4B).

Combining results for REGs and PSGs, 31 genes were
subjected to adaptive evolution in UDT mammals and
25 genes underwent adaptive evolution in IDT mammals
(Supplementary Table 5). Enrichment analyses revealed that
although several enriched terms and pathways were shared
between UDT and IDT groups (e.g., single fertilization,
acrosomal vesicle, and cellular process involved in reproduction
in multicellular organism), the 31 and 25 genes experiencing
adaptive evolution were enriched in clusters of distinct terms
and pathways. In particular, enriched GO categories for the
31 genes in UDT mammals included acrosome reaction,
fusion of sperm to egg plasma membrane and epithelial cilium
movement involved in extracellular fluid movement; the 25

genes under adaptive evolution in IDT were additionally
enriched for sperm midpiece, hexosaminidase activity, and
regulation of cilium movement (Figure 5 and Supplementary
Tables 6, 7).

Fertilization-Related Gene Evolution Was
Associated With Mammalian Testicular
Position
By PGLS regression, we identified 22 and 9 genes associated
with the three-category and two-category classifications of
mammalian testicular position, respectively (Table 1). Of
these genes, the evolution of ACRBP and NPHP4 related
to sperm motility and LY6K and SORD related to sperm
competition/fertilization was associated with mammalian
testicular position based on both the three-category and
two-category classification.
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Figure 2 | Specific fixed specific amino substitutions in UDT mammals. UDT mammals are highlighted in red, IDT mammals are shown in blue, and CDT mammals
are shown in black.

DISCUSSION

Comparable Sperm Motility in Ascrotal
and Scrotal Mammals
Humans and domestic animals with cryptorchidism (or
undescended testes) have an elevated risk of infertility. The
incidences of azoospermia are 13 and 89% in unilateral and

untreated bilateral cryptorchidism, respectively (Hadziselimovic
and Herzog, 2001). Although early hormonal and surgical
interventions can be performed at appropriate time points, the
overall success rate varies and individuals remain at elevated risks
of male sterility and testicular cancer (Chung and Brock, 2011).
It has been reported that ∼10% of patients with infertility have a
history of cryptorchidism and orchidopexy (Grasso et al., 1991).
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Figure 3 | Functional and structural predictions for three UDT-specific amino acid substitutions. N.A., not available. *SIFT prediction for FSIP2 D785H failed owing to
a lack of sufficient sequences identified in the search.

Figure 4 | Overlapping rapidly evolving and positively selected genes in UDT and IDT mammals. (A) Rapidly evolving genes DNAH11 and FSIP2 involved in sperm
motility and SPAM1 involved in sperm competition/fertilization were shared in UDT and IDT mammals. (B) Positively selected genes ADAM32 and GLIPR1L2 involved
in sperm competition/fertilization overlapped in UDT and IDT mammals.

However, reports on the decreased motility of sperm or
infertility in natural ascrotal mammals are rare relative to
studies of scrotal mammals. In the present study, to estimate
sperm motility in UDT, IDT, and CDT mammals, we first
compared various parameters related to sperm motility. From
a data perspective, we confirmed that sperm mobility was not
significantly different between ascrotal and scrotal mammals, as
reported in previous studies (Figure 1).

Molecular Evolution of Sperm Motility-
and Competition-Related Genes Benefits
to Male Fertility in Natural “Cryptorchid”
Mammals
A series of evolutionary analyses of fertilization-related
genes revealed distinct evolutionary trajectories in scrotal

and ascrotal groups, providing insight into the molecular
mechanisms underlying normal sperm motility and fertility
in natural “cryptorchid” mammals. We found that genes
related to fertilization showed ascrotal mammal-specific
evolutionary signals (including rapid evolution and positive
selection, fixed amino acid substitutions, and significant
associations with testicular position) (Figures 2, 4, Table 1,
and Supplementary Table 5), implying the importance
of all general functions (i.e., capacitation, sperm motility,
sperm competition, and acrosomal reaction/zona reaction)
in fertilization in ascrotal mammals. Genes with ascrotal
mammal-specific evolutionary signals were disproportionately
related to sperm motility and sperm competition/fertilization,
suggesting that these two sperm functions underwent stronger
selection to recover normal reproductive functions under the
“cryptorchid” condition.
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Figure 5 | Enrichment analyses of positively selected genes in UDT and IDT mammals. (A) GO enrichment analysis of 31 and 25 genes under adaptive evolution in
UDT and IDT taxa, respectively. (B) Pathway enrichment analysis of 31 and 25 genes under adaptive evolution in UDT and IDT taxa, respectively.

We found that the sperm motility-related genes DNAH11
and FSIP2 and sperm competition/fertilization-related genes
SPAM1, ADAM32, and GLIPR1L2 underwent adaptive evolution
in both the UDT and IDT lineages (Figure 4), providing
evidence for convergent evolution as well as the necessity of
these genes in natural “cryptorchid” mammals. A Disintegrin
And Metalloproteinase Domain 32 (ADAM32) is a member of
the ADAM family, expressed predominantly in the testis (Choi
et al., 2003). ADAM32 has a potential role in sperm fertilization,
with evidence for positive selection across mammals (Civetta,
2003; Glassey and Civetta, 2004). In the present study, amino
acid residue 397 of ADAM32 was identified as a positively
selected site in both UDT and IDT mammals (Supplementary
Table 5). Importantly, this site is located in a disintegrin
domain with a known egg integrin ligand involved in sperm-
egg adhesion leading to fusion (Yuan et al., 1997). Positive
selection on ADAM32 397 within the disintegrin domain in all
ascrotal mammals might increase sperm fertilization via sperm-
egg fusion.

Fibrous Sheath Interacting Protein 2 (FSIP2) is a rapidly
evolving gene in ascrotal mammals and harbored a UDT
mammal-specific amino acid substitution (D785H) (Figure 2).
The protein encoded by FSIP2 is associated with the formation
of the sperm fibrous sheath. Patients with mutant FSIP2 have
been diagnosed with multiple morphological abnormalities of

the sperm flagella (MMAF), causing sperm motility disorders
and male infertility (Liu et al., 2021). Although FSIP2 D785H is
not within any known functional domains, our results suggest
that the mutation has a functional effect in ascrotal mammals.
Further functional assays and studies of the mechanism by which
FSIP2 D785H contributes to the regulation of sperm motility and
reproduction in ascrotal mammals are needed.

Two fixed specific amino acid substitutions (CFAP65 V1599S
and CFAP157 A34D) in UDT mammals were involved in
sperm motility (Figure 2). CFAP65 and CFAP157 are members
of the cilia and flagella associated protein family, and both
are specifically required during spermatogenesis for flagellum
morphogenesis and sperm motility. In humans and Cfap65-
mutated mice, biallelic mutations in CFAP65 (p.Arg1619∗ and
p.Leu1757∗) cause MMAF and impair sperm motility (Li et al.,
2020). The UDT-specific amino acid change CFAP65 V1599S
identified in the present study was near the known mutations
linked to sperm motility, indicating a potential contribution to
normal sperm motility in ascrotal mammals.

In humans, initial testicular position is considered a risk factor
for infertility in individuals with a history of cryptorchidism
(Simoni and Huhtaniemi, 2017). It has been suggested that
testes that are initially located beyond the inguinal canal are
favorable for fertility. Patients with cryptorchidism with palpable
testes (i.e., testes placed in the superficial inguinal pouch) have a
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TABLE 1 | Fertilization-related genes associated with mammalian testicular position.

Testicular position classification* Sperm function** Gene Lambda Coefficient r2 p-value

Three-category (3) KCNU1 1 0.93647 0.26310 0.00012

Three-category (2) CFAP157 1 2.61071 0.17420 0.00167

Three-category (3) LY6K 1 2.37623 0.16720 0.00207

Three-category (2, 3) APOB 1 1.29652 0.16040 0.00254

Three-category (3) SORD 1 2.48876 0.10470 0.01334

Three-category (2) ENKUR 1 1.43330 0.09880 0.01587

Three-category (2) ACRBP 1 2.95155 0.09526 0.01761

Three-category (3, 4) AKAP3 1 1.23231 0.09383 0.01836

Three-category (2) NPHP4 1 1.84430 0.08897 0.02234

Three-category (2, 3) SMCP 1 2.11964 0.08404 0.02446

Three-category (2) INPP5B 1 1.61370 0.07873 0.02858

Three-category (3) FOLR2 1 2.45664 0.07401 0.03282

Three-category (2) LRRC6 1 3.41978 0.07254 0.03427

Three-category (2) TACR2 1 2.64913 0.07190 0.03491

Three-category (1) PEBP1 1 1.18871 0.06405 0.04398

Three-category (2) TAC4 1 2.35563 0.06396 0.04409

Three-category (1) SPA17 1 1.62510 0.06104 0.04805

Three-category (1, 2) INTS13 1 2.37408 0.06093 0.04820

Two-category (3) LY6K 1 1.81224 0.14100 0.00455

Two-category (1, 3) ELSPBP1 1 1.65716 0.10600 0.01283

Two-category (2) ACRBP 1 2.30480 0.08743 0.02215

Two-category (3) SORD 1 1.89300 0.08615 0.02299

Two-category (1, 2) EFCAB9 1 0.89938 0.08233 0.02571

Two-category (2) CELF3 1 2.18172 0.06808 0.03907

Two-category (2) NPHP4 1 1.54985 0.06236 0.04804

*Three-category classification of the testicular position: UDT, IDT, and CDT; two-category classification of the testicular position: ascrotal and scrotal testes.
**(1) capacitation and decapacitation; (2) sperm motility; (3) sperm fertilization and sperm competition; (4) acrosomal reaction and zona reaction.

higher maximal sperm density, a large testicular size, and higher
paternity rate than those of intracanalicular or abdominal cases
(Puri and Sparnon, 1990; Cortes and Thorup, 1991; Mayr et al.,
1996).

In analogy with different degrees of testicular descent in
cryptorchidism, different testicular positions between natural
IDT and UDT mammals might challenge reproductive health
by varying degrees. Evolutionarily, natural UDT mammals
likely faced many serious challenges from a physiological
perspective due to the undescended testis (high cryptorchidism).
Therefore, more fertilization-related genes may undergo adaptive
evolution and accumulated modifications. We observed more
genes exhibiting the signature of adaptive evolution (REGs
and PSGs) in UDT mammals than in IDT mammals (31
and 25 genes, respectively). These two sets of genes were
enriched for different clusters of functional terms and signaling
pathways (Supplementary Tables 5–7). Although these genes
collectively contributed to final fertility, the evolutionary patterns
of individual fertilization-related genes differed among mammals
with various testicular positions.

CONCLUSION

In summary, we provide the first demonstration that sperm
motility does not differ significantly among mammals

with different testicular positions. Additionally, we detected
heterogeneous evolutionary patterns of hundreds of fertilization-
related genes between natural ascrotal and scrotal mammals.
Combined with lineage-specific fixation and positive selection on
certain amino acids in ascrotal mammals, our results suggested
that genes and processes associated with sperm motility and
sperm competition/fertility in natural “cryptorchid” mammals,
especially in UDT species, experienced more frequent and
stronger selective pressure. These observations suggest that
UDT mammals have a more challenging physiological testicular
environment and unique genetic solutions. These findings
provide insight into the molecular mechanisms underlying
normal sperm motility and fertilization in natural ascrotal
mammals and improve our general understanding of the
pathology of cryptorchidism from a molecular evolutionary
perspective. Finally, our results may be helpful in establishing a
genetic diagnosis for dysfunctions in fertility and sperm motility
due to congenital cryptorchidism and provide candidate target
loci for genetic counseling and infertility treatment in humans
and other domestic animals.
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