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Assessment of biodiversity, 
global distribution, and putative 
ecological niches of suessiacean 
dinoflagellates by DNA 
metabarcoding
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Dinoflagellates in the family Suessiaceae, so-called suessiacean dinoflagellates, 

play diverse roles in aquatic ecosystems, being distributed from tropical to 

polar waters and from marine to freshwater habitats and encompassing 

free-living forms, symbionts, and parasites. Despite their importance due 

to the variety of ecological roles and biodiversity, very few studies have 

characterized small suessiacean species. Recent advances in molecular 

techniques could provide insights into the yet unexplored ecological roles 

they play in aquatic environments. Using a global DNA metabarcoding 

dataset, this study elucidated the hidden biodiversity, global distribution, 

and ecological characteristics of suessiacean dinoflagellates. The results 

of this study indicated that the family Suessiaceae was the sixth highest in 

terms of read count and the ninth highest in terms of amplicon sequence 

variant (ASV) richness from a total of 42 categorized dinoflagellate families, 

suggesting that their global abundance has been greatly underestimated. 

Furthermore, metabarcodes of suessiacean dinoflagellates were found to 

be cosmopolitan in distribution, although the ecological niche of each taxon 

was distinctly different within the group based on their latitudinal and vertical 

distribution patterns. Moreover, phylogenetic analysis discovered at least five 

new phylogenetic groups and three new individual species within the family. 

Collectively, the findings of this study highlight the significance of suessiacean 

dinoflagellates in global aquatic ecosystems and reveal the importance of big 

data obtained from environmental DNA in exploring the ecological functions 

of understudied species.
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Introduction

Dinoflagellates (Alveolata: Dinophyceae) are among the most 
diverse and abundant groups of unicellular protists commonly 
found in aquatic environments. They are both evolutionarily and 
ecologically important since they form diverse lineages and have 
a variety of ecological roles such as primary producers, consumers, 
mutualists, and parasites; they can also cause harmful algal blooms 
(Coats, 1999; Jeong et al., 2010; Murray et al., 2016; Suggett et al., 
2017; Jang et al., 2022). The dinoflagellate group currently consists 
of 18 orders, including Suessiales, and more than 2,000 extant 
species have so far been described (Gómez, 2012; Guiry and 
Guiry, 2022).

The family Suessiaceae belongs to the order Suessiales, which 
was first described by Fensome et al. (1993). The order Suessiales 
originally contained two families: Suessiaceae (fossil dinosporin 
cysts) and Symbiodiniaceae (extant symbionts). Although both 
families were merged into Suessiaceae by Moestrup et al. (2009a), 
they were later separated again along with the rapidly increasing 
biodiversity found within the groups (LaJeunesse et al., 2018). 
Since the first report of an extant species in the family Suessiaceae 
in 1999, numerous extant species in the group have been 
discovered and described in aquatic environments around the 
world (e.g., Montresor et al., 1999; Moestrup et al., 2009a,b; Jang 
et al., 2017b; Sampedro et al., 2022). Suessiacean species have been 
known to take various life forms including typical free-living cells 
and parasitic and symbiotic cells, thereby playing a variety of 
complex ecological roles in aquatic ecosystems (Levy et al., 2007; 
Siano et al., 2010; Gómez, 2012; Jang et al., 2017a). Although they 
all belong to the same phylogenetic clade, suessiacean species are 
found in marine and freshwater ecosystems at all latitudes because 
of their highly diversified ecophysiological characteristics 
(Montresor et al., 1999; Takahashi et al., 2015; Sampedro et al., 
2022). There have been several records of blooms that were caused 
by members of this family and/or presumably suessiacean species 
based on morphological observations (e.g., Stoecker et al., 2000; 
Moestrup et al., 2009a; Moreira-González et al., 2021). However, 
understanding of these phenomena has been difficult due to the 
small size of the culprits (i.e., generally 7–15 μm in length) and the 
lack of effective species identification methods (Kang et al., 2019).

With the advent of both electron microscopy and genetic 
validation methods in recent decades, a sophisticated taxonomic 
classification and identification system has been established for 
the members of this family (Moestrup et al., 2009a). Moreover, 
with the growing popularity of molecular techniques (e.g., DNA 
metabarcoding, which allows simultaneous identification of many 
taxa within the environmental samples through DNA barcoding), 
the prevalence and dominance of suessiacean dinoflagellates 
within diverse protistan assemblages is gradually being revealed 
(Smith et al., 2017; Kellogg et al., 2019; Liu et al., 2020; Salmaso 
et al., 2020). The number of published environmental sequencing 
datasets has rapidly increased in recent years. In the past, such 
datasets existed primarily in an unprocessed state and thus were 
not easily accessible. However, the recent creation of metaPR2, a 

platform containing large, standardized datasets of 18S 
environmental rRNA sequences for protist groups, has 
dramatically improved data accessibility (Vaulot et al., 2022). This 
platform combines samples obtained from small-scale expeditions 
and standardizes methodological differences (e.g., bioinformatic 
workflows), thereby enabling meaningful data comparison on a 
global scale.

The objective of the current study was to provide insights into 
the hidden biodiversity, global distribution, and putative 
ecological niches of suessiacean dinoflagellates using a DNA 
metabarcoding dataset. The obtained results contributed to the 
better understanding of the ecological importance of the 
suessiacean group and further reveal the ecological niches these 
organisms occupy within aquatic ecosystems worldwide.

Materials and methods

Defining taxonomic groups within 
suessiacean dinoflagellates

Nine genera (Ansanella, Asulcocephalium, Biecheleria, 
Biecheleriopsis, Leiocephalium, Pelagodinium, Piscinoodinium, 
Polarella, and Yihiella) have so far been assigned to the family 
Suessiaceae based on both morphology and molecular phylogeny 
(Table 1). In this study, all amplicon sequence variants (ASVs)—
which are single DNA sequences recovered from a high-
throughput marker-gene data analysis (Callahan et al., 2017)—
belonging to the family Suessiaceae were initially categorized at 
the genus level before further analyses were conducted. This is 
because many suessiacean species are belong to monospecific 
genera. Moreover, in some genera within the Suessiaceae group, 
the 18S rRNA gene does not have sufficient resolution (Jang et al., 
2017b; Raho et al., 2018; Jang et al., 2022). Due to the above, the 
data were classified as “Ansanella, Asulcocephalium, Biecheleria, 
Biecheleriopsis, Leiocephalium, Pelagodinium, Piscinoodinium, 
Polarella, and Yihiella,” and sequences that did not match these 
genera but belonged to the Suessiaceae family were categorized as 
“Unidentified.” The ASVs that had initially been incorrectly 
named “Protodinium,” were integrated into the “Biecheleriopsis” 
category according to the current taxonomic classification system 
(Takahashi et al., 2014; Jang et al., 2015). To date, no 18S gene 
sequence has been reported for true Protodinium (Lohmann) 
Kofoid & Swezy, although its ultrastructure had been investigated 
by Dodge (1974). Nevertheless, phylogenetic analysis was 
performed on all ASVs belonging to the “Protodinium” category, 
thereby confirming that all the ASVs belonged to the 
Biecheleriopsis clade (Supplementary Figure S1).

Dataset selection and processing

All of the Dinophyceae metabarcoding datasets gathered 
from worldwide sampling projects were obtained from the 

https://doi.org/10.3389/fevo.2022.1010854
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Jan
g

 
10

.3
3

8
9

/fevo
.2

0
2

2
.10

10
8

54

Fro
n

tie
rs in

 E
co

lo
g

y an
d

 E
vo

lu
tio

n
0

3
fro

n
tie

rsin
.o

rg

TABLE 1 Comparison of the taxonomic and ecophysiological characteristics and records of extant species presumably belonging the family Suessiaceae. 

Taxon Cell length 
(mean, μm)

Trophic 
mode Life form Presence 

of pusule
Presence 
of cyst Habitat of isolates Temperature Salinity

Bloom-
forming 
record

Refs

1 Ansanella granifera 10–15 (12.6) Mixo FL O O M, Estuarine/coastal NA NA O a

2 Ansanella catalana 9.6–15.5 (12.5) Photo FL O O M, Coastal NA NA NA b

3 Ansanella natalensis 9.7–14.2 (12.3) Photo FL NA X M, Coastal/tidal pool NA NA O c

4 Asulcocephalium miricentonis 10–16 (13) Photo FL NA O Freshwater NA NA NA d

5 Aureodinium pigmentosum 10 Photo FL X O M, Coastal NA NA NA e

6 Biecheleria pseudopalustris 27–30 Photo FL NA O Freshwater NA NA O f

7 Biecheleria baltica 17–35 (26.9) Photo FL O O M, Brackish 0–6 3–30 O g

8 Biecheleria halophila 10–27 Photo FL NA O M, Brackish/hypersaline 5–30 Hypersaline to brackish NA h

9 Biecheleria cincta 9–15 (11.1) Mixo FL NA O M, Coastal NA NA NA i

10 Biecheleria brevisulcata 10.5–18 (13.9) Photo FL O O M, Coastal NA NA NA j

11 Biecheleria tirezensis 9–15 Photo FL NA O Hypersaline inland pond 5–25 2–56 NA k

12 Biecheleriopsis adriatica 12.5–15 (13.1) Photo FL O O M, Coastal NA NA O l

13 Leiocephalium pseudosanguineum 28–42 (33.7) Photo FL NA O Freshwater NA NA NA d

14 Pelagodinium bei 8.8–11.4 (10) Photo Sym X NA M, Coastal NA NA NA m

15 Piscinoodinium sp. NA Hetero Par O Freshwater NA NA O, Fish-kill n

16 Piscinoodinium pillulare 62–162 (102.7) Photo Par NA Freshwater NA NA O, Fish-kill o

17 Polarella glacialis 10–15 (10.9) Photo FL X O M, Sea ice NA NA O p

18 Protodinium simplex 7–9 Photo FL O NA M, Coastal NA NA NA q

19 Prosoaulax lacustris 8–14 Mixo FL O O Freshwater NA NA NA r

20 Prosoaulax multiplex 8–10 Mixo FL O NA Freshwater NA NA NA r

21 Prosoaulax viridis 12–14 Photo FL O NA Freshwater NA NA NA r

22 Yihiella yeosuensis 7.9–10.6 (9.6) Mixo FL O O M, Coastal 10–25 and <30 NA NA s

Trophic mode: Photo, phototroph; Mixo, mixotroph; Hetero, heterotroph. Life form: FL, free-living form; Sym, symbiont; Par, parasite. Habitat: M, marine. NA, not available. a, Jeong et al. (2014); Lee et al. (2014); Moreira-González et al. (2021); b, Sampedro 
et al. (2022); c, Dawut et al. (2018); d, Takahashi et al. (2015); e, Dodge (1967); f, Moestrup et al. (2009a); g, Kremp et al. (2005); h, Biecheler (1952); Moestrup et al. (2009a); I, Siano et al. (2009); Kang et al. (2011); j, Takahashi et al. (2014); k, Raho et al. (2018); l, 
Moestrup et al. (2009b); Benico et al. (2019); m, Siano et al. (2010); n, Levy et al. (2007); o, Lom and Schubert (1983), Martins et al. (2001); p, Montresor et al. (1999); Stoecker et al. (2000); q, Dodge (1974); r, Calado and Moestrup (2005); s, Jang et al. (2017a,b); 
Jang and Jeong (2020); Kang et al. (2020). Taxa names in bold indicate that the taxonomic classification has been verified by both morphological and molecular phylogenetic analysis. Temperature is the tested temperature range at which species showed positive 
growth. Salinity is the tested salinity range at which species showed positive growth.
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newly created metaPR2 v.1.0.3 database,1 which is a database of 
18S rRNA metabarcodes that have been reprocessed with a 
pipeline based on the dada2 R package (Callahan et al., 2016). 
Taxonomic classifications were assigned using the Protist 
Ribosomal Reference database (PR2; Guillou et al., 2012). The 
detailed bioinformatic workflow is described by Vaulot 
et al. (2022).

For the current analysis, 38 datasets including 3,284 samples 
collected from oceanic, coastal, and freshwater lakes and rivers 
(terrestrial ecosystems were excluded) were investigated out of 41 
datasets available from the metaPR2 v.1.0.3 database. The data 
analyzed in this study are summarized in Supplementary Table S1. 
Both the V4 and V9 regions of the 18S ribosomal sequences 
containing at least 100 total reads per ASV were selected for the 
analysis (Supplementary Figure S2). The total read number per 
sample was normalized to 100 so that the value displayed in the 
different panels corresponded to the percentage of total protist 
reads (i.e., the number of reads for each ASV in a given sample 
was divided by the total number of reads in the sample and then 
multiplied by 100). The sample types included in the analysis were 
water, ice, epibiota, and sediment, and the data were retrieved 
without a specific screen for cell size fractions. Taxa selection was 
performed according to the classification criterion of the metaPR2 
database: “Alveolata” for Supergroup, “Dinoflagellata” for Division, 
“Dinophyceae” for Class, “Suessiales” for Order, and “Suessiaceae” 
for Family. The physical and chemical environmental conditions 
during sampling and other available metadata associated with 
samples were obtained from the metaPR2 website and are 
summarized in Supplementary Table S2. For further statistical 
verification, the read distributions of different genera associated 
with various factors (i.e., water temperature, salinity, latitude, and 
depth) were compared using Chi-squared homogeneity tests of 
contingency tables, which use observed vs. expected values 
(generated according to standard formulas) to calculate the 
Chi-squared statistics (Sokal and Rohlf, 1987).

Multiple sequence alignment and 
phylogenetic analysis of 18S rRNA genes

18S rRNA sequences belonging to the family Suessiaceae 
were downloaded from the PR2 database to construct a 
phylogenetic tree. The database includes sequences of strains in 
which taxonomic identification was verified along with numerous 
environmental sequences. Only sequences of the 18S rRNA 
region that were longer than 800 bp were selected from the 
database, while sequences from new species that had not been 
registered in the database (e.g., Ansanella natalensis and 
A. catalana) were added manually. Additionally, five sequences 
belonging to a different family but within order Suessiales were 
selected as an outgroup. A total of 234 sequences were aligned 

1 https://shiny.metapr2.org

using the ClustalW algorithm implemented in MEGA v.11 
(Tamura et  al., 2021), of which 146 were uncultured 
environmental sequences while the other 88 were from cultured 
strains. The final alignment contained 1,680 aligned nucleotide 
positions of 18S rRNA gene.

The aligned dataset was used to construct a phylogenetic tree 
via the maximum-likelihood (ML) statistical method. The dataset 
was tested for the best-fitting substitution model in MEGA v.11 
(Tamura et al., 2021), with the model indicated by the Akaike 
Information Criterion (AIC) as the best-fitting one (the TN93 + G 
model) being chosen (Tamura et al., 2021). The tree was visualized 
and edited using iTOL v.6 (Letunic and Bork, 2021).

Results and discussion

Taxonomic composition and relative 
abundance based on metabarcoding 
data

Most of the ASVs were taxonomically assigned to one of the 
41 taxa at the family level, with the remaining sequences assigned 
to the “Unidentified” category (Figure  1A). The family 
Gymnodiniaceae contained the highest read abundances in the 
Dinophyceae metabarcoding dataset, which was consistent with 
previous findings, as Gymnodiniaceae is one of the most common 
families worldwide, both in terms of frequency of occurrence and 
abundance (Kudela and Gobler, 2012; Thessen et  al., 2012; 
Kodama et al., 2021). Of the 42 family groups of dinoflagellates, 
Suessiaceae was the sixth highest in terms of read abundance and 
the ninth highest in terms of ASV richness 
(Supplementary Table S3). The amount of DNA in dinoflagellates 
is known to be directly correlated with cell size (LaJeunesse et al., 
2005; Murray et al., 2016; Liu et al., 2021). Although suessiacean 
species are among the smallest cells in the dinoflagellate group, the 
high read abundances observed in this study suggest that their 
abundance in nature may have been heavily underestimated.

In the metabarcoding datasets of the family Suessiaceae, the 
highest read abundances were found for Biecheleria and 
Biecheleriopsis (=Protodinium; Figure  1B). Although relatively 
recently Moestrup et al. (2009a,b) re-established the two genera 
based on both ultrastructure and phylogenetic relationships, some 
species in those genera have been reported as Gymnodinium for 
approximately half a century, with several records of blooms 
(Biecheler, 1952; Moestrup et al., 2009a).

When compared with the high read abundance in the genus 
Polarella, ASV richness was surprisingly low, suggesting that 
Polarella might have evolved to dominate certain environments 
instead of increasing species diversity to survive in multiple 
environments (Figure 1B). In contrast, the genus Pelagodinium 
had a higher ASV richness and lower read abundance, which may 
have resulted from symbiosis and diverse genetic pools being 
created through relationships with its host organisms (Spero, 
1987; Siano et al., 2010). Additionally, the large number of both 
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reads and ASVs in the “Unidentified” category suggests that the 
biodiversity of the family Suessiaceae remains largely unexplored. 
A further analysis of 20 ASVs belonging to the “Unidentified” 
category showed that only two of them contributed greatly to the 
total read abundance those ASVs belonged to phylogenetically 
unknown groups (Supplementary Figure S3).

Global distribution and habitat

Members of the family Suessiaceae have been identified in 
both marine and freshwater environments (Table 1). According to 
the metabarcoding analysis results, reads of all genera in 
Suessiaceae were found in marine environmental samples, 

A

B

FIGURE 1

Treemaps displaying taxonomic composition and relative abundance of dinoflagellates based on 18S rRNA gene metabarcoding at (A) the family 
level and (B) the genus level within the family Suessiaceae. The left side represents the number of reads while the right side is the number of 
amplicon sequence variants (ASVs). The taxon Suessiaceae in (A) is marked with a blue box. Detailed data on the taxa and values used in this 
analysis are separately provided in Supplementary Table S3.
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whereas the majority of reads collected in freshwater ecosystems 
were limited to Asulcocephalium, Biecheleria, and Biecheleriopsis 
(Figures 2A,B). The two monospecific genera Asulcocephalium 
and Leiocephalium were established based on isolates from 
freshwater samples, while the genus Biecheleria has been reported 
to contain both marine and freshwater species (Moestrup et al., 
2009a; Takahashi et al., 2015). However, the discovery of large 
numbers of reads belonging to Biecheleriopsis in freshwater 
samples suggests a hidden ecophysiological diversity of the species 
within this genus.

A few dinoflagellate groups that have colonised freshwater 
habitats play a key role in understanding the evolution of microbial 
lineages (Logares et  al., 2007). Despite the overall lack of 
knowledge regarding the marine-freshwater transition, scientists 

have provided phylogenetic data supporting these relationships 
(Logares et al., 2007; Annenkova et al., 2015). Salinity is a key 
factor in determining the distribution of the marine-freshwater 
boundary. Thus, the fact that many suessiacean species possess 
osmoregulatory organelles (e.g., pusular systems) may explain the 
frequent marine-freshwater transitions among lineages within this 
family (Table 1; Dodge, 1972). It is also worth noting that most 
suessiacean species have a known cyst stage, which may further 
facilitate the evolutionary transition.

The five samples with the highest abundance of the Polarella 
genus were all taken from the Arctic region (Figure  2C). 
Specifically, the reads of Polarella accounted for 25–65% of the 
total eukaryotic reads in these five samples, indicating that this 
genus may be a common bloom-forming taxon in polar regions. 

A

C

B

FIGURE 2

Number of reads in the metaPR2 dataset annotated to each genus (family Suessiaceae) among the samples collected from (A) marine (oceanic and 
coastal) and (B) freshwater (lakes and rivers) ecosystems. (C) Distribution map showing the five samples with the highest abundance of each genus 
among the surveyed samples. The diameter of each circle (based on the scale bars) represents the percentage (%) of reads belonging to each 
genus within the entire protist community.

https://doi.org/10.3389/fevo.2022.1010854
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Jang 10.3389/fevo.2022.1010854

Frontiers in Ecology and Evolution 07 frontiersin.org

Unlike Polarella, the genus Biecheleria tends to predominate in a 
wide range of aquatic environments without clear environmental 
restrictions. Biecheleria baltica is known to live in cold waters, 
whereas other Biecheleria species are mainly found in temperate 
waters (Kremp et al., 2005; Siano et al., 2009; Takahashi et al., 
2014; Raho et al., 2018). For example, most isolates of Biecheleria 
cincta were collected from temperate waters (Siano et al., 2009; 
Kang et al., 2011; Luo et al., 2013). However, the morphology of a 
cold-water dwelling strain of B. cincta, RCC2013, perfectly 
matched that of the type strains of other temperate strains, while 
its 18S and 28S rRNA sequences were identical to those of its 
warmer water counterparts (Siano et  al., 2009; Balzano et  al., 
2012). On the other hand, the highly variable internal transcribed 
spacer (ITS) region exhibited a faster rate of evolution among 
strains of B. cincta, suggesting that this species has evolved ability 
to rapidly adapt to new environments (Luo et al., 2013).

Ecophysiological diversity and 
differentiated ecological niches

This study investigated the relative read abundance of each 
genus within the family Suessiaceae in relation to water 
temperature and salinity (Figures  3A,B). Similar to the 
temperature dependence of the growth rates of common 
dinoflagellate species (Paerl, 2014), for many genera, high 
proportions of read counts were distributed between water 
temperatures of 15 to 30°C (Figure 3A). However, reads attributed 
to the genus Leiocephalium generally occupied high-temperature 
intervals, with a significant proportion of the reads occupying the 
30–35°C interval (Chi-square homogeneity test, p < 0.01). This 
suggests that the taxon was likely a warm-water species. The read 
distribution of Polarella indicated that the members of this genus 
were cold-water species, which is consistent with the observed 
field data (Stoecker et al., 2000). Moreover, given that Yihiella 
showed positive growth rates at 10–30°C in lab-based experiments 
(Kang et al., 2020), the fact that more than 97% of Yihiella reads 
were distributed precisely within a 10–30°C temperature interval 
demonstrates that combining metabarcoding data sets provides a 
promising means of understanding taxon-specific ecophysiology. 
When the reads of each genus were classified by salinity, 
considerable proportions of the reads attributed to the genera 
Asulcocephalium, Biecheleriopsis, and Polarella were observed at a 
0–5 psu interval, including freshwater samples (Chi-square 
homogeneity test, p < 0.01; Figure  3B). Polarella is commonly 
distributed in and around ice samples, and its cyst stage might 
improve osmotic resistance. Considering the above, it is proposed 
that metabarcoding analyses may provide novel insights into the 
ecophysiological diversity of genera whose distributions have 
previously been recorded exclusively in either freshwater or 
marine environments. For example, through the current analysis 
it was possible to detect the probable existence of marine-dwelling 
species in the genera Asulcocephalium and Leiocephalium and 
freshwater species in the genus Biecheleriopsis.

To understand the ecological niches of suessiacean species in 
the context of their known ecophysiological characteristics, the 
distribution of each genus within its natural environment was 
classified by horizontal and vertical criteria (i.e., latitude and 
water depth; Figures 3C,D). The read distributions of genera in 
accordance with latitude and water depth were significantly 
different, as supported by the Chi-square test for homogeneity 
(both p < 0.01). Polarella and Biecheleria comprised most of the 
suessiacean species in Arctic and Antarctic waters (Figure 3C). 
Unlike other genera, the read abundances of Ansanella and 
Yihiella were low in tropical waters. The ecological niches of the 
suessiacean genera according to water depth showed a more 
pronounced difference (Figure  3D). The reads of genus 
Pelagodinium and “Unidentified” category dominated the deep-
water layers (i.e., mesopelagic and bathypelagic). The vertical 
distribution of Pelagodinium, which is only 10 μm in long, could 
reach the deep-water layer because these microorganisms live as 
symbionts in several hosts such as foraminifera (Siano et  al., 
2010). Moreover, the high number of “Unidentified” reads in the 
mesopelagic zone suggests that this environment may 
be inhabited by a yet unexplored diversity of Suessiaceae. Two 
ASVs, 536fcef820 and caffe54124, accounted for a high 
proportion of the “Unidentified” category in the mesopelagic 
group (236–562 m) collected from various regions in the Arctic 
and Antarctic (Supplementary Table S4). Information about their 
taxonomy could be obtained through phylogenetic study (See 
next section for details).

Biodiversity estimations based on 
phylogenetic analysis

A phylogenetic analysis based on the 18S rRNA sequences 
obtained from the PR2 database was performed to estimate the 
phylogenetic biodiversity of the family Suessiaceae (Figure  4). 
Although there were slight variations in the phylogenetic position 
depending on the method the trees were analyzed, at least five new 
phylogenetic groups and three phylogenetically novel sequences 
were commonly identified among the analyzed phylogenetic trees 
(Figure 4; Supplementary Figures S3B, S4). The 18S rRNA sequences 
belonging to Group A differed by up to 4% from those of the 
Asulcocephalium genus. Considering the level of differences in the 
18S rRNA sequence among different genera in family Suessiaceae 
(i.e., 1.2–5.3%), this group is now believed to be a new genus (Jeong 
et  al., 2014; Jang et  al., 2017b). The environmental sequences 
belonging to Unknown Group B differed by approximately 1–3% 
from those of Asulcocephalium miricentonis, suggesting that these 
sequences may belong to new species within the genus. The 
sequences in this group were globally distributed, being found in 
lakes in Luxembourg and France, as well as in the Columbia River 
estuary in the United States (Lefranc et al., 2005; Kahn et al., 2014). 
Group C contained a variety of sub-clades with sequence differences 
ranging from 2 to 4% relative to other known species, suggesting 
that this group have a high species diversity. The sequences 
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belonging to Group D were collected from colder regions such as 
the North Pole and Sweden (Bachy et al., 2011; Majaneva et al., 
2012), and the members of this clade are therefore expected to share 
similar ecophysiological features with Polarella glacialis. However, 
in addition to a 1–2% sequence difference between the two groups, 
morphological analyses are necessary in order to confirm that 
Group D represents a new species. Moreover, the sequences in 

Group E are presumed to be those of freshwater species, as they 
originated from high mountain lakes (Triadó-Margarit and 
Casamayor, 2012). However, this clade did not appear to belong to 
any other genus based on its phylogenetic position. In addition, 
three individual sequences (GQ483664, HQ438122, and EU087256) 
that do not form clades but diverged from the near groups could 
also represent new species. Finally, although the resolution of the 

A

C

D

B

FIGURE 3

Relative read abundance of each genus (family Suessiaceae) according to (A) water temperature and (B) salinity of the surveyed samples. The color 
scheme represents the water temperature (-5–35°C) and salinity (0–100 psu). Relative read abundance of each genus classified by (C) horizontal 
(i.e., latitude) and (D) vertical (i.e., water depth) criteria.
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18S rRNA gene for intrageneric classification of the genus Biecheleria 
was too low, the high number of environmental sequences obtained 
from various aquatic waters suggests that the genus Biecheleria may 
have diverse ecological roles in global aquatic ecosystems.

Metabarcoding approach for suessiacean 
dinoflagellate species

Because the average cell length of species in the family 
Suessiaceae is only 14.5 μm (except for Piscinoodinium species, 
which vary in length depending on their life cycle; Table  1), 
metabarcoding approach is essential for distribution and 

ecophysiological studies of these small species in the field. By using 
the recent and well-established taxonomic classification system of 
suessiacean dinoflagellates, the metabarcoding data is beginning to 
reveal the ecology and diversity of individual species. As an 
example, two environmental sequences (JQ516748 and EF526743) 
with high homologies to the genus Yihiella were found in the coral 
microbiome and anoxic water in fjords, respectively, allowing 
assumption of the potential ecological niches of Yihiella-like 
species (Behnke et al., 2010; Kimes et al., 2013). In addition, the 
metabarcoding analysis is also expected to provide more 
information about blooms caused by small suessiacean species. The 
results of this study have also confirmed that the metabarcoding 
approach could be used as a tool to provide new information to 

FIGURE 4

Maximum-likelihood phylogenetic tree based on 234 partial 18S rRNA gene sequences within the family Suessiaceae. The potential new 
taxonomic groups and sole sequences are denoted as A–E, and red asterisks (*), respectively. The strains sequenced based on the isolates are 
indicated in bold, and the others are environmental sequences. The colored ranges represent each genus. Bootstrap support values over 70% (0.7) 
are shown as dots on the interior nodes.
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other multidisciplinary studies of the family Suessiaceae. For access 
to a variety of species, however, genetic information about species 
that have not yet been barcoded, such as Aureodinium and 
Prosoaulax, should be revealed in the future.

Conclusion

This study is the first to reveal the global species diversity, 
distribution, and ecological niches of the family Suessiaceae in 
aquatic ecosystems through the analysis of a large metabarcoding 
dataset. Out of the 42 family groups of dinoflagellates, Suessiaceae 
were the sixth in terms of read abundance and the ninth in terms 
of ASV richness, suggesting that their abundance in the natural 
environment has been significantly underestimated. Furthermore, 
at least five new phylogenetic groups and three individual novel 
sequences within the family were discovered based on 18S rRNA 
environmental sequences. These sequences are likely to indicate the 
presence of new species. Metabarcodes and associated 
environmental information from the surveyed samples provided 
novel insights into the ecophysiological characteristics of individual 
taxa, and even their putative ecological niches. The findings of this 
study highlight the importance of suessiacean dinoflagellates in 
aquatic ecosystems worldwide and demonstrate that big data 
obtained from environmental DNA constitute a promising tool for 
characterizing the ecological functions of understudied species.
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