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Biodiversity is in a state of global collapse. Among the main drivers of this crisis is habitat
degradation that destroys living spaces for animals, birds, and other species. Design
and provision of human-made replacements for natural habitat structures can alleviate
this situation. Can emerging knowledge in ecology, design, and artificial intelligence (AI)
help? Current strategies to resolve this issue include designing objects that reproduce
known features of natural forms. For instance, conservation practitioners seek to mimic
the function of rapidly disappearing large old trees by augmenting utility poles with perch
structures. Other approaches to restoring degraded ecosystems employ computational
tools to capture information about natural forms and use such data to monitor
remediation activities. At present, human-made replacements of habitat structures
cannot reproduce significant features of complex natural forms while supporting efficient
construction at large scales. We propose an AI agent that can synthesise simplified
but ecologically meaningful representations of 3D forms that we define as visual
abstractions. Previous research used AI to synthesise visual abstractions of 2D images.
However, current applications of such techniques neither extend to 3D data nor engage
with biological conservation or ecocentric design. This article investigates the potential
of AI to support the design of artificial habitat structures and expand the scope of
computation in this domain from data analysis to design synthesis. Our case study
considers possible replacements of natural trees. The application implements a novel AI
agent that designs by placing three-dimensional cubes – or voxels – in the digital space.
The AI agent autonomously assesses the quality of the resulting visual abstractions by
comparing them with three-dimensional representations of natural trees. We evaluate
the forms produced by the AI agent by measuring relative complexity and features
that are meaningful for arboreal wildlife. In conclusion, our study demonstrates that
AI can generate design suggestions that are aligned with the preferences of arboreal
wildlife and can support the development of artificial habitat structures. The bio-informed
approach presented in this article can be useful in many situations where incomplete
knowledge about complex natural forms can constrain the design and performance of
human-made artefacts.

Keywords: artificial intelligence, reinforcement learning, human-made habitat structures, visual abstraction,
computer-aided design, biological conservation, ecocentric design

Frontiers in Ecology and Evolution | www.frontiersin.org 1 March 2022 | Volume 10 | Article 806453

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2022.806453
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fevo.2022.806453
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2022.806453&domain=pdf&date_stamp=2022-03-17
https://www.frontiersin.org/articles/10.3389/fevo.2022.806453/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-806453 March 11, 2022 Time: 17:12 # 2

Mirra et al. AI Abstraction of Natural Forms

INTRODUCTION: ARTIFICIAL
INTELLIGENCE AND DESIGN OF
HABITAT STRUCTURES

This article aims to investigate whether and how artificial
intelligence can help in the urgent task of designing replacement
habitat structures. We seek to demonstrate that an artificial
intelligence agent can synthesise visual abstractions of natural
forms and support the design of artificial habitat structures.
The overarching purpose of our approach is to contribute to
ecocentric design or design that seeks to benefit all forms of life
and life-hosting abiotic environments.

Complex habitat structures are pervasive and tend to contain
more organisms and species than simple habitats (Torres-Pulliza
et al., 2020). Yet humans simplify habitats at an unprecedented
rate (Díaz et al., 2015). For instance, large old trees are
structurally complex organisms that provide critical habitats for
many animals. Many human practices routinely remove old
trees from urban and rural areas to satisfy economic, aesthetic
and safety concerns (Le Roux et al., 2014). It is difficult to
replace such organisms because large old trees take hundreds
of years to mature (Banks, 1997). Ecologists predict that a
massive reduction of the old-tree populations and the subsequent
simplification of their local ecosystems are unavoidable in the
near future worldwide, even if the planting of young trees
increases significantly (Lindenmayer et al., 2012; Manning et al.,
2012).

The global loss of large old trees and other complex natural
structures calls for a remedial action. Artificial coral reefs (Baine,
2001) and wetlands (Mitsch, 2014) are instances where human-
made habitat opportunities attempt to augment natural occurring
structures. In these conditions, it is important to understand
why complex natural habitat structures are more attractive to
fauna and design artificial replacements that reproduce their key
features. We do not aim to facilitate or be supportive of the
alarming loss of natural habitats, such as large old trees or coral
reefs. Preservation of such environments is the highest priority.
Our work aims to contribute to situations where degradation has
already occurred or is inevitable.

Restoration practitioners recognise that artificial structures
will never fully match the geometries and functions of
complex natural structures. Old trees that can live for many
centuries provide a telling example. Here, a combination of
growth processes and environmental factors occurring over
extended timespans make highly differentiated shapes that typical
construction methods cannot reproduce (Le Roux et al., 2015a)
and the contemporary scholarship does not fully understand
(Lindenmayer, 2017). As tens of millions of old trees will be
lost within the next 50 years in south-eastern Australia alone
(Fischer et al., 2009), designers seeking to replicate these complex
forms must also consider rapid construction at scale and under
conditions of uncertainty.

In such contexts, designers successfully use criteria such as
the ease of construction and cost to judge the quality of artificial
habitat structures. However, these approaches also introduce
biases that result in simplified systems that do not occur in

natural habitats. These biases include creating designs based on
widely used artefacts and ignoring relationships and scales that
are difficult to document. For instance, one emerging strategy for
woodland restoration augments tree plantings with constructions
including utility poles enriched with perch structures (Hannan
et al., 2019) and nestboxes (Mänd et al., 2009). These structures
can be successful in attracting wildlife. Yet their relatively
homogenous forms do not replicate the number and diversity of
naturally occurring branching structures of old trees. This means
they are considerably less effective than their natural precedents
(Le Roux et al., 2015a; Hannan et al., 2019). Therefore, designers
of surrogate habitat structures need novel methods and tools that
can emphasise, recognise, and replicate significant features of
trees for artificial reproduction at high volumes.

Researchers, conservation managers and arborists are among
human users who already use tools to sort, extract and visualise
data to understand tree forms. However, these approaches rely
on pre-existing parametrisation to describe and quantify tree
structures. For instance, ecologists describe trees by measuring
trunk diameters. This approach is simple but crude and can
be significantly misleading. For example, large diameter young
trees are not ecologically equivalent to old trees, in part
because they have more simple shapes (Lindenmayer, 2017).
Furthermore, there is no widely accepted definition or measure
of a tree structure (McElhinny et al., 2005; Ehbrecht et al., 2017).
Consequently, tree geometries do not easily reduce to discrete
attributes without significant artefacts and the loss of meaningful
information (Parker and Brown, 2000; Ehbrecht et al., 2017).

As an alternative to such parameter-based approaches, we
propose to achieve bio-informed designs through an AI-
driven synthesis of visual abstractions. This process reduces the
amount of information in visual data to produce simplified
representations that heighten semantically relevant features of
such data (for a review, see Arnheim, 2010; Viola et al., 2020).
For our objective, relevant data includes three-dimensional
scans of natural habitat structures. In this context, human
design objectives seek to express the needs and preferences of
nonhuman animals and other lifeforms (Roudavski, 2021). An
ability to express needs and preferences is particularly important
for nonhuman users such as arboreal fauna. These users have
needs that are not fully understood by humans. The process
of abstraction is beneficial in such cases because it can focus
on relevant features of a source object without the need to
pre-specify parameters or types.

We acknowledge an increasing interest in AI systems dealing
with visual information. These systems include applications
in medicine, geographical information systems, design and
other domains (Soffer et al., 2019; Reimers and Requena-
Mesa, 2020; Mirra and Pugnale, 2021). We propose that
such emerging techniques can significantly contribute to
environmental conservation and regeneration through the design
of artificial habitat structures. Exploiting this opportunity, we ask
whether and how an artificial intelligence agent can synthesise
simplified surrogates of natural forms. Consequently, this article
seeks to demonstrate the ability of AI to capture and reproduce
characteristic features of complex geometries.
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The article is structured as follows. Section “Materials
and Methods: An Autonomous Agent for Visual Abstraction
of Complex Natural Forms” discusses AI techniques for
visual information processing, including data generation,
reconstruction, and synthesis of visual abstractions. In this
section, we also introduce our AI agent, explain the use case,
describe the training procedures and discuss the evaluation
methods. Section “Results: Demonstration of Autonomous
Visual Abstraction and Verification” demonstrates the capability
of the AI agent to synthesise visual abstractions of tree forms. Our
output analysis indicates that the visual abstractions generated by
the AI agent are verifiable and meaningful. Section “Discussion:
Proposed Advancements and the Future Development of the
Artificial Intelligence Toolkit” compares our findings with
previous studies, highlighting our innovations in three areas:
AI for the synthesis of visual abstractions in 3D, resistance to
human biases, and design innovation. This section also presents
this work’s current limitations and prospects for future research.

MATERIALS AND METHODS: AN
AUTONOMOUS AGENT FOR VISUAL
ABSTRACTION OF COMPLEX NATURAL
FORMS

The steps we followed to answer the research question and test
the hypothesis include:

• Step 1: Select an AI model that can synthesise
visual abstractions of 3D forms. In our case, a
reinforcement learning agent.
• Step 2: Define an appropriate case study. We use

large old trees.
• Step 3: Adapt the AI model to the case study.
• Step 4: Develop measurement and analysis routines

to compare human-reduced artificial habitat structures,
trees represented as simplified 3D models, and AI-
synthesised forms.
• Step 5: Evaluate visual abstractions produced by the AI

agent.

Artificial Intelligence Model Selection
This section justifies our choice of an AI model to synthesise
visual abstractions and describes its main features. We aim to
use AI to extract visual features from complex natural forms that
are three-dimensional and synthesise visual abstractions of these
forms. We provide a brief overview existing AI techniques that
can be trained on 3D visual data to perform similar tasks and
describe their limitations. We focus on strategies to represent 3D
data and applications for 3D data generation and reconstruction.

Our overview includes applications of generative models for
3D data generation and explains their unsuitability for the case
study presented in this article, we then describe applications of AI
agents that interact with a modelling environment to reconstruct
forms. These agents can reduce the representation accuracy of
target 3D forms but are trained only to reconstruct samples
that are stored in the training dataset. Finally, we describe how

generative models and AI agents can be combined to synthesise
visual abstractions of habitat structures. We identify an existing
technique that can achieve this goal in 2D and outline our plan to
extend it for 3D applications.

Artificial Intelligence for 3D Data Generation
Artificial Intelligence comprises a broad range of techniques
that can simulate how humans process visual information,
including 2D images and 3D forms. Among these techniques,
Convolutional Neural Networks (CNNs) (Krizhevsky et al.,
2012) have become mainstream in AI due to their success in
image classification.

The convolution operation can extract features from spatially
organised data, such as a grid of pixels – i.e., images – which
the AI model combines into low-dimensional representations
useful for data classification. The reverse of the convolution
operation – named deconvolution can synthesise features from
low-dimensional representations. An AI model can be trained
to aggregate these features and generate or reconstruct data.
Convolution and deconvolutions natively process 2D data but
can work in 3D if the representation format of the 3D data is
discrete and regular.

Generative models, such as generative adversarial networks
(GAN) (Goodfellow et al., 2014) and variational autoencoders
(VAE) (Kingma and Welling, 2014), exploits deconvolutional
layers to synthesise images at high fidelities and resolutions
(Brock et al., 2019; Karras et al., 2019). They also can perform
a variety of image translation tasks, including translation from
photographs to sketches (Isola et al., 2017) and from low-
resolution to high-resolution images (Ledig et al., 2017).

Previous studies used generative models featuring 3D
deconvolutions for 3D data generation. AI researchers had to
develop strategies to represent 3D data in a format that complied
with the requirements of the deconvolution operations. The most
straightforward approach converts a 3D model into a voxel grid,
or occupancy grid, which is a data format originally proposed for
3D-model classification tasks (Maturana and Scherer, 2015; Wu
et al., 2015). AI researchers used voxel grids to train AI models
to generate new forms (Brock et al., 2016; Wu et al., 2016) and to
translate text or 2D sketches into 3D models (Chen et al., 2018;
Delanoy et al., 2018).

Alternative representation strategies developed for
classification tasks – including unordered point clouds (Qi
et al., 2017; Wang et al., 2019) or heterogeneous meshes (Feng
et al., 2019; Hanocka et al., 2019) – cannot work for data
generation tasks because the output of an AI model consists
of a finite and ordered set of numbers. One strategy that
extends the application of generative models beyond voxel grids
involves representing the 3D models that populate the dataset
as isomorphic meshes and training a model to synthesise new
topologically equivalent meshes (Tan et al., 2018). This approach
can also work with point clouds by ensuring one-to-one point
correspondences between every data sample (Gadelha et al.,
2017; Nash and Williams, 2017). Besides data generation, these
strategies proved effective for 3D data reconstruction from
partial 3D input (Litany et al., 2018) or 2D images (Yan et al.,
2016; Fan et al., 2017).
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These applications demonstrate that generative models can
effectively learn to synthesise 3D data, but not all representation
formats are suitable for this task. Furthermore, 3D deconvolution
operations produce very accurate data, making the AI-generated
forms too detailed to be considered visual abstractions. In
application to the design of habitat structures, this is not
helpful as preserving the complexity of existing structures is
not practicable.

Artificial Intelligence for Inverse Graphics
A different approach to the problem of 3D data generation
involves training an AI agent to perform modelling actions
within modelling software. This approach does not rely on
deconvolution operations to produce 3D forms and thus can
produce less detailed forms. Therefore, it has a greater potential
for synthesising visual abstractions of natural habitat structures.

The main differences with the generative models described in
section “Artificial Intelligence for 3D Data Generation” are that:

• The learning task is dynamic: the agent must learn to
perform a set of modelling actions rather than synthesising
a form in one shot.
• Forms can be generated through any external modelling

environment: The choice of a representation format that is
suitable for AI training is less relevant for the quality of the
generated forms because, after training, the 3D modelling
actions can be rendered by any modelling environment to
produce forms at high resolutions.

The application of this approach focused on inverse graphics,
i.e., the problem of predicting modelling actions necessary to
reconstruct 3D forms. Solving this problem involves: (1) deciding
on a representation that supports comparisons between target
and generated forms; (2) defining a similarity metric; and
(3) designing how the AI agent interacts with the modelling
environment, which includes defining the typology of modelling
actions and the effect of each action on the generated form.

Generally, inverse graphics aims to reconstruct an exact
replica of target forms. The modelling environment is not
constrained, and the agent can perform all the actions necessary
to reconstruct the form. For instance, Willis et al. (2021)
developed a reinforcement learning agent that selects modelling
actions such as extrude and Boolean union to reconstruct a target
CAD model procedurally. They used a domain-specific language
(DSL) to formalise sequences of actions in a symbolic way. Their
implementation represented 3D models as graphs, whereas the
agent assessed the quality of the reconstructions by measuring
the similarity between the actions necessary to produce the target
form and the actions performed by the agent. Sharma et al.
(2018) also used a DSL and trained an agent to reconstruct 3D
forms. Their agent performed comparisons in the voxel space and
assessed similarity by a set of geometric metrics, including the
chamfer distance.

Other studies used a constrained modelling environment,
such that the agent could only approximate the target form. Kim
et al. (2020) developed an agent that reconstructed 3D forms
through the aggregation of primitives. The model placed 3D
components in a voxel grid to reconstruct target geometries that

were also represented as voxels. Besides formal similarity, the
model considered the stability of generated forms by getting
feedback from a physics simulator. Liu et al. (2017) and Zou
et al. (2017) applied a similar approach to construct simplified
representations of target meshes through the aggregation of
multiple primitives.

Overall, approaches based on AI agents can either produce
an accurate reconstruction of target forms or simplified
representations of them. The representation accuracy of the
generated forms depends on how the agent interacts with
the modelling environment and assesses the similarity between
generated and target forms. However, most applications address
data reconstruction, which in our case study would preclude the
necessary innovation, for example, to support the production of
the AI-generated forms via artificial means and their adaptation
to novel ecosystems.

Artificial Intelligence-Driven Synthesis of Visual
Abstractions
Through the analysis of literature on AI, we found that there
are no models that are specifically designed to synthesise visual
abstractions in 3D. Despite this, existing models do show
some of the features that are necessary to perform this task.
For instance, the AI agent developed by Zou et al. (2017)
can generate simplified representations of target meshes by
assembling solid primitives. However, their AI agent could
not generate forms other than those contained in the training
dataset. Conversely, generative models like GANs can learn the
underlying distribution of a dataset of 3D forms and sample
new regions of such distribution to generate new data (Wu
et al., 2016). Yet, the GAN generator has infinite representation
capabilities. Consequently, a well-trained model can produce
synthetic forms that are very accurate. The generator does not
try to reduce the number or complexity of the extracted features
and, therefore, does not produce visual abstractions.

A model that can synthesise visual abstractions should be able
to extract visual features from a dataset of forms in the same way
GANs do. It should also be able to produce synthetic data through
interaction with a constrained modelling environment, which is
what an AI agent trained for inverse graphics does.

Computer scientists achieved these objectives for 2D
images applications by integrating an AI agent with a GAN
discriminator. Ganin et al. (2018) used this approach to train
an AI model named “Synthesising Programs for Images using
Reinforced Adversarial Learning” – SPIRAL – to generate visual
abstractions of 2D images. This application tasked the AI agent
with learning a set of drawing actions to reproduce the key
features of an image dataset within a drawing software.

Unlike previous applications of AI for inverse graphics (see
section “Artificial Intelligence for Inverse Graphics”), in SPIRAL,
humans do not supply the agent with information about human
drawings, and the agent must develop a strategy by trial and error.
An additional component – a GAN discriminator – produces a
similarity metric that informs the agent about the quality of the
synthesised images.

The SPIRAL model and its upgrade SPIRAL++ (Mellor
et al., 2019) demonstrated that the agent could learn to extract
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meaningful visual features from samples and reproduce such
features while drawing on an empty canvas, even without
examples of drawing actions. The implementation controlled the
accuracy of the synthesised images by (1) number of actions;
and (2) action typology. In this case, a lower number of actions
produced less realistic images but forced the agent to focus
more efficiently on the most relevant features. For instance, an
agent trained to generate human faces in 17 drawing actions
attempted to maximise the efficiency of the actions by exploiting a
single stroke to produce every facial feature. The action typology
affected the character of the representation. For instance, if the
agent had used straight lines instead of curves, it would have
produced abstract shapes that could only crudely approximate the
features of a human face. Yet, humans might still easily recognise
such arrangements as sketches of faces.

To date, studies applied SPIRAL and SPIRAL++ to generate
human faces, handwritten digits, and images representing 3D
scenes. There are no current implementations of SPIRAL for
3D data to our knowledge. Despite that, we selected this
SPIRAL model for further development because, unlike GANs,
it can autonomously decide the number and characteristics
of the features to reproduce in a synthetic visual abstraction.
Furthermore, unlike current applications for inverse graphics, it
does not require a dataset of drawing instructions and supports
fine control of the abstraction process through the specification
of constraints. Later in the article, we describe how our version
of SPIRAL can extract visual features from a 3D dataset of tree
forms and synthesise visual abstractions of such forms.

Use-Case Selection
Our second step defines a relevant use case for the AI agent that
defines a scenario where abstraction is possible and beneficial.

We first establish a domain of complex forms suitable for
simplification through a process of abstraction. We then select an
example known to contain relevant features. As described in the
introduction, we focus on characteristics of large old trees. Below,
we define four groups of characteristics, from general to specific,
and explain why trees can serve as a useful case study.

Large Old Trees Within Ecosystem Dynamics
Our first group relates to patterns of energy and material
flows. We acknowledge that recent research describes trees as
complex and highly social organisms. At the level of whole
landscapes, large old trees mediate critical physical, chemical,
and biological roles at varying spatial and temporal scales. They
regulate hydrological, nitrogen and carbon regimes; alter micro-
and meso-climatic conditions; act as key connectivity nodes in
modified landscapes such as paddocks and cities; contribute
to vertical and horizontal habitat heterogeneity; and serve as
local hotspots of biodiversity (Lindenmayer and Laurance, 2016).
Underground, systems of roots and mycorrhizal fungi form
communicatory networks that connect trees (Beiler et al., 2010).
In such networks, large old trees act as hub nodes with high
connectivity to other plants. Highly-connected large old trees
improve responsiveness to threats, maximise resource utilisation
and build forest resilience by sharing nutrients (Gorzelak et al.,
2015) and supporting long-term succession (Ibarra et al., 2020).

These characteristics provide ample scope for future work but
remain beyond the scope of this study.

Large Old Trees as Habitat Structures
Our second group narrows our focus to the composition and
arrangement of physical matter. In doing so, we consider the
trees’ capability to support dwelling. Ecologists describe large
old trees as keystone habitat structures because they support far
more reptiles, insects, birds and other taxa than other landscape
elements (Manning et al., 2006; Stagoll et al., 2012). Large
old trees support more diverse animal and plant communities
than smaller and younger trees because they have unique
structures with many different attributes. Hollows and cavities
afford breeding sites; foliage offers shelter; fissured bark offers
invertebrate food resources, and large complex canopies with an
abundance of diverse branches serve as sites for resting and social
activities (Lindenmayer and Laurance, 2016). These important
characteristics provide a broad selection of definable features for
potential artificial replication.

Large Old Trees as Structures Supporting Specific
Bird Activities
Our third group relates to bird sheltering and perching. To
demonstrate the potential for our AI agent to synthesise
visual abstractions of tree habitat structures, we select two
significant and interrelated activities supported by trees. Many
birds, including passerines – representing 60% of all bird
species – spend most of their time perching. Large tree crowns
provide a variety of sheltered and exposed perch sites, creating
opportunities for habitation (Hannan et al., 2019). For instance,
one study observed a quarter of all bird species exclusively
used perched in structures provided by large trees (Le Roux
et al., 2018). Canopies of large old trees have significantly more
branches and branch types and so support more birds than small
trees (Stagoll et al., 2012; Barth et al., 2015). We use existing
ecological evidence in combination with our own statistical
estimates of branch types to generate baselines for the artificial
replication of branch types and distributions.

Large Old Trees Through the Three-Dimensional
Distributions and Shapes of Perch Sites
Our fourth and final group relates to how the geometrical
characteristics of canopies affect bird preferences, wellbeing, and
survival. Birds rely on their physiological, sensory, and cognitive
abilities to make use of tree canopies. Tall old trees are visually
prominent and can serve as landmarks that link landscapes
(Fischer and Lindenmayer, 2002; Manning et al., 2009). In
the canopies of old trees, dieback creates vertical structural
heterogeneity (Lindenmayer and Laurance, 2016), resulting in
diverse and segmented branch distributions (Sillett et al., 2015).
These complex canopy shapes provide a broad range of geometric
conditions supporting birds, including significant quantities of
exposed and near-horizontal branches (Le Roux et al., 2018).
Studies of large old trees show that many individual birds and
bird species prefer to perch on horizontal branches and branches
lacking foliation (Le Roux et al., 2015a; Zielewska-Büttner et al.,
2018). The existence of such evidence makes it possible to
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consider geometric properties of branch distributions in isolation
from other essential characteristics of trees.

Despite having many key attributes and functions, these steps
show that it is possible to isolate important characteristics of
large old trees for use in our case study. We focus on branch
distributions within the canopy structure of old trees as a
test case for AI-driven visual abstraction of complex habitat
structures. Our approach can accommodate and layer additional
measurements for other characteristics.

The next step in our method establishes base datasets of
canopy structures for use within our AI model.

Data Collection and Training Dataset
Preparation
We establish base datasets (Dataset 1: Natural habitat-structures
and Dataset 2: Artificial habitat-structures) representing the tree
canopy features identified previously as our focus (Figure 1).
These datasets allow our AI agent to be exposed to branch
features and distributions occurring in natural trees. They also
enable us to evaluate the resulting AI-generated forms. We
briefly outline these datasets below. For technical details about
the workflow and the equipment and software used, refer to
Appendix D: Habitat Structure Dataset Construction.

To create an appropriate training dataset of branch features
(Dataset 1: Natural habitat-structures), we first acquired
geometries of three natural trees in a format that captures
large volumes of structural information in three dimensions.
Given the technical constraints of the modelling environment
discussed below, we selected younger trees to test our approach.
Although these trees have simpler canopy shapes than the
canopy of older trees, they still represent a significant increase
in structural complexity and perch diversity relative to current
artificial habitat structures (refer to section “Measurement and
Comparison” for a comparison between the artificial habitat
structures and tree samples in our datasets).

We use LiDAR (Light Detecting and Ranging), as it does
not require pre-existing categorisation of geometrical features.
Instead, this technology creates 3D points representing locations
where the tree surfaces reflect the laser beams (Atkins et al., 2018).
We then isolate points representing branches from the resulting
point clouds, and fit geometric primitives that approximate
individual branches. From this, we extract the 3D centroids and
radii of all branches in each sample tree. Refer to Appendix
D: Habitat Structure Dataset Construction for technical details
of the workflow.

To enable an evaluation of the forms synthesised by our
AI agent in comparison to existing artificial habitat structures
(Dataset 2: Artificial habitat structures), we select a range
of artefacts representing existing artificial habitat structures
of increasing geometric complexity. These structures provided
benchmark states of complexity for comparison with our AI-
synthesised forms. They also represented meaningful reductions
of complexity performed by humans with existing conservation
techniques for artificial habitat construction (Hannan et al.,
2019). This set of sample structures includes – from simple
to more structurally complex – a non-habitat vertical structure

representing a non-enriched utility pole (I), a two (T) and three
(Y) prong habitat-structure representing utility poles enriched
with perches, and a more complex 9-prong artificial structure
(X) analogous to a translocated dead snag with major tree limbs
retained (Figure 2).

We then pre-processed our dataset to make it suitable for
AI training. Current technical constraints require AI to work
with input data at relatively coarse resolutions. We describe in
detail the modelling environment that we constructed for the AI
agent in the next section. Here, we briefly outline how we create
a simplified dataset of tree forms appropriate for the limited
resolution of the modelling environment.

Figure 3 shows the data preparation process. To simplify the
tree representations, we first discard all branch centroids with
a radius smaller than 5 cm. We then convert these centroids
into 32 × 32 × 32 voxel representations to comply with the
maximum resolution set for the 3D modelling environment.
To do so, we assign zeros to the voxels that contain one or
more branch centroid points. We then normalise the data by
centring and scaling the voxel representations so that their largest
dimension does not exceed the size of the voxel grid. These
measures discourage AI agents from differentiation based on
size at the expense of more relevant characteristics such as
branching structures.

This process results in a set of 32 × 32 × 32 voxel grids
representing natural trees (Dataset 1: Natural habitat structures).
We apply a similar strategy to represent current artificial habitat
structures as voxel grids (Dataset 2: Artificial habitat structures).

The steps outlined in this section establish a useable case
for training and testing our AI agent. Despite simplifications,
this case is characteristic of many habitat structures and their
geometries. The proposed technique supports future scaling
and customisation.

Model and Environment
This step of the process implements an artificial agent that can
ingest and learn from the dataset described above, making it
suitable for the use case.

The application presented in this article required several
adaptations of the SPIRAL architecture. We use the
implementation by Mellor et al. (2019) – SPIRAL++ – as a
baseline because it features upgrades that stabilise training
and simplify the learning task for the agent. In the article, we
use the acronym SPIRAL to refer to both implementations by
Ganin et al. (2018) and Mellor et al. (2019), as the agent’s policy
architecture is the same.

Our model had to be able to observe 3D representations
of trees described in the previous section and synthesise visual
abstractions of such trees within a 3D modelling environment.
Currently, SPIRAL works with 2D images. Although Ganin
et al. describe an application for 3D modelling, the agent
always observes 2D projections, and the existing design limits
its actions to translations of geometric primitives already placed
in the 3D canvas.

Following previous applications of AI for 3D data generation
(Wu et al., 2016), we define the observation, or the visual input
for the model, as a 3D array of numbers that we represent as a
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FIGURE 1 | Natural and artificial habitat structures of differing complexity: an old tree; a translocated dead tree (complex artificial habitat structure); an enriched utility
pole (simple artificial habitat structure).

FIGURE 2 | Artificial habitat-structure dataset. Voxel representations of current artificial structures (Dataset 2): a non-habitat utility pole (I), two forms of utility poles
enriched with perches (T and Y), and a 9-prong artificial structure analogous to a translocated dead tree (X).

voxel grid. We set the size of the grid to be 32 × 32 × 32, due to
hardware constraints, and assign each location of the grid values
of 0 or 1. According to this definition, a 3D form is a discrete
array of binary values, where 0 corresponds to the coordinate of
each point and 1 to the empty space.

We prepare a 3D modelling environment to allow the
SPIRAL agent to perform observable actions in three dimensions.
In Ganin et al. (2018), the agent interacts with an external
drawing software that allows a wide variety of drawing actions,
including the selection of brushes, pressure, and colour. Our
implementation runs in a custom 3D modelling environment
with a limited number of actions but has future potential to

integrate with common CAD software and exploit a full range
of modelling actions.

The environment consists of a 3D canvas, which initialises
as empty space – a 32 × 32 × 32 array of ones – and
a set of modelling actions. The agent can interact with the
environment by moving the cursor within a sub-voxel grid of
size 16 × 16 × 16 contained in the main 32 × 32 × 32 voxel
grid. The cursor can switch the state of one or multiple voxels.
The environment renders the actions performed by the agent as
groups of visible voxels.

Since we aim to train AI agents to emphasise features of a
tree canopy structure without copying its geometry, we limited
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FIGURE 3 | Conversion of the 3D scans of existing trees into 32 × 32 × 32 normalised voxel representations to create the natural habitat-structure dataset.

the action space to the placement of lines in the 3D modelling
environment. We choose lines because existing state-of-the-art
ecological research uses lines to define cylinders that describe
three-dimensional branching structures of trees (Malhi et al.,
2018). Spatial configurations of lines can also readily translate
into full-scale construction techniques.

Our custom agent places lines by specifying start and
end points. The modelling environment renders such lines as
sequences of voxels with a value of 0. Formally, we describe the
placement of a line as a modelling action defined by two elements:
end point (P′′) and placement flag (f ). Given an initial start point
(P′), the agent decides the location of the endpoint within the
voxel grid boundaries. Then, it controls the variable f to either
place a line between P′ and P′′ or jump directly to P′′ without
placing any object in the canvas. P′′ becomes the start point for
the next modelling iteration.

It is worth mentioning that we could provide 3D visual input
in any other format, including point clouds and meshes. As
discussed in section “Artificial Intelligence Model Selection”,
many AI techniques can process such formats with limited
computational power. We opt for voxel representations because
the translation of the 2D convolutional layers of the SPIRAL
architecture to 3D convolutional layers – necessary to extract
visual features from 3D data – is straightforward and does
not require extensive fine-tuning of network parameters other
than layers sizes. Moreover, since the agent is trained to

perform sequences of 3D modelling actions – by selecting voxel
coordinates within a discrete 3D grid – our implementation
generates forms that can be rendered in any CAD software and
at any resolution. For these reasons, we considered the use of
voxel representations as the best approach to test the hypothesis
of this research work.

To process the voxel grids and let the agent perform actions in
the 3D modelling environment, we reimplemented the SPIRAL
model using the Tensorflow open-source machine learning
platform (v 2.6.0). We modified the architectures of the agent’s
policy and the discriminator as follows:

• We turned all the 2D convolutional and deconvolutional
layers of policy and discriminator into 3D convolutional
and deconvolutional layers. We preserved all original kernel
and stride sizes but halved the number of filters for the
residual blocks and kept the same for the remaining layers.
• We upscaled the embedding layer by 2, due to the increased

size of the action-space locations.
• We included a new term in the conditioning vector

to account for the extra dimension in the action space
locations.

We provide additional details of our reimplementation of the
SPIRAL architecture in Appendix B: Network Architecture, and
a description of our training procedure in Appendix A: Training
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FIGURE 4 | Segmentation of 32 × 32 × 32 voxel representations. (Left) Select branch types in a large old tree. (Right) 3D segmentation of the sample tree dataset.

Procedure and Hyperparameters. To validate the adaptations
described above, we tested the model on a benchmark, which we
describe in detail in Appendix C: Model Calibration.

Measurement and Comparison
Having prepared a training dataset and developed an AI
agent trained to produce 3D forms, we evaluate the outcomes.
These steps aim to confirm that resulting AI-synthesised visual
abstractions of natural structures are verifiable, meaningful and
can serve as a base for future scaling.

For this purpose, we developed a measurement and
assessment routine that can compare trees represented as
voxels (Dataset 1), human-reduced sets of habitat structures
(Dataset 2), and AI-synthesised forms. Since our focus is on the
branch distributions of old trees as outlined in section “Use-Case
Selection”, we base our assessment on two quantitative indexes:

• Complexity index: Our first measure is an overall estimation
of geometric complexity. We focus on complexity as a
measure of the geometry-habitat relationship based on
the evidence that it positively correlates with biodiversity.
More diverse geometries of branches in a tree canopy allow
species to use a greater number of structures as their habitat.
• Perch index: Our second measure quantifies specific

geometric features we identified as relevant for birds for
perching. These features are branches that are elevated,
horizontal and exposed. Such branch conditions represent

perch sites chosen by birds to rest for periods of time and
have relatively unobstructed views with clear access.

This two-prong assessment strategy combines a broad but
generic measure (the complexity index) with a measure that
focuses on an important but narrow activity of a key habitat user
(the perch index). For further justification of each measure, refer
to Appendix E: Measurement Supporting Information.

There is also an additional, implicit measure that is
automatically learnt by the AI discriminator during the training
process: the similarity index. We do not use the similarity
index to compare forms. Instead, the AI agent uses this
measure to evaluate how many features of the voxelised trees
observed during the training process are preserved in the visual
abstractions it generates. This internal similarity index ensures
that the voxel forms evaluated by our comparison routine are not
random aggregations but are already statistically congruent to the
source data of voxelised trees.

To generate the complexity index, we use the fractal
dimension, which is a ratio that measures how the detail of
geometry changes at different scales (Godin et al., 2005). We
used box-counting in three-dimensional arrays (Chatzigeorgiou
Group, 2019) as the method for our measurement,
which is a standard procedure for calculating the fractal
dimension of 3D objects.

To generate the perch index, we developed an automatic
procedure that finds all horizontal and exposed branches in
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FIGURE 5 | Validation of measurement workflow through a comparison of the assessment routine outcomes and field observations of bird response to the same
structural types.

FIGURE 6 | Trend of the reward achieved by the 10-action and 20-action agents over consecutive training iterations.
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the voxelised forms. To find these branches, we first segment
the voxel representations according to three classes of branch
conditions. Our branch classes are exposed horizontal branches
(red), exposed non-horizontal branches (blue), and non-exposed
branches (grey) (Figure 4).

Our branch classification procedure works as follows. We first
define a branch as a 3 × 3 × 3 window centred at the voxel
location. For every voxel, we assign a label to the voxels included
in the window by verifying the occurrence of the following
geometric conditions:

• If the number of voxels within the window exceeds a
threshold T, we label the voxels as a non-exposed branch.
• If the number of voxels within the window is less

than or equal to T, we label the voxels as a non-
horizontal exposed branch.
• If the number of voxels within the window is less or equal

than T and either the top or the bottom plane of the window
is empty, we label the voxels as a horizontal exposed branch.

Finally, to convert this segmentation routine into a perch
index, we sum the z co- ordinate of all voxels classified as
horizontal- exposed.

Following a set of experiments, we defined a value of 5
for the threshold T. The legend in Figure 4, bottom right,
visualises the results obtained by segmenting randomly populated
3× 3× 3 windows.

We validated our routines by segmenting the voxel
representations of the training dataset and visually inspecting
the quality of the resulting segmentations (Figure 4, right).
The analysis revealed that, despite the coarse resolution, the
routine could extract semantic information that matches the
three branch categories.

As a final step, we also validated our measurement
workflow by comparing the assessment of structures in our
training and comparison datasets with empirical observations
of bird behaviour.

The 2D graph in Figure 5 shows the comparison space defined
by our measurements. We define the assessment space by our
complexity and perch indexes and plot voxel representations of
natural trees (red) and artificial habitat structures (grey) in this
space. Bubbles represent the three types of habitat structures
in our datasets that have also been experimentally observed for
their bird species response: enriched habitat pole (T and Y),
translocated dead snag (X) and remnant trees (T1, T2, and T3).

The contours under this assessment space represent the
observed mean native species gain when a structure type is
installed compared to a site with no habitat structures. Contour
levels include bird response values for enriched utility poles (blue,
with the lowest species response), translocated dead trees (green)
and natural trees (yellow, with the highest species response).

We use data collected by Hannan et al. (2019) to populate our
species response contours. Compared to a site with no habitat
structures, Hannan et al. (2019) found that enriched utility poles,
translocated dead trees and living natural trees increased native
bird species richness by multiples of 1.8, 3.2, and 3.8, respectively
(Figure 5, blue, green and yellow contours).

We found that the positions of the structural types in our
assessment space align with the species response multipliers
derived from bird observations. Furthermore, Hannan et al.
(2019) observed that 38% of all bird species only visit natural
trees. The diagonal line (Figure 5, black) shows that we can
express this gap in bird response between trees (red) and artificial
structures (grey) in our assessment space.

These validation processes show that the assessment space
defined by our complexity and perch indexes expresses aspects of
birds’ response to structures even if other important features are
not quantified. This space also suggests that, even when old trees
are excluded, it is possible to design artificial habitat structures
to better match birds’ preferences. Finally, this assessment space
shows that there is still a significant gap between best-in-class
artificial habitat structures and the performance of natural trees.

The outcome of this step is a set of validated metrics for
assessing spatial complexity and features of forms generated
by the AI agent.

RESULTS: DEMONSTRATION OF
AUTONOMOUS VISUAL ABSTRACTION
AND VERIFICATION

Our results show that an AI agent can synthesise visual
abstractions of complex natural shapes. In particular, they
show that: (1) the agent can use the incoming data in 3D to
learn design strategies; and (2) the resulting abstractions are
verifiable and meaningful.

We first illustrate how the AI agent can synthesise artificial
forms by learning design strategies that simplify the structures
of natural trees.

The Effectiveness of the Training
Procedure
We tested the ability of the agent to synthesise visual abstractions
of tree forms through two applications: (1) synthesis of forms
with 10 actions; and (2) 20 actions.

We select 20 actions for two reasons. First, in the original
SPIRAL implementation (Ganin et al., 2018), the agent could
only be trained to perform sequences of 20 actions. Although
in SPIRAL++ Mellor et al. (2019) were able to increase the
number of actions to 1,000 – in which case the agents could
reproduce very detailed features of the given image dataset –
they also managed to generate recognisable visual abstractions of
human faces with 20 actions. Second, in our 3D implementation,
a number of actions higher than 20 would increase the computing
time and cause out-of-memory issues. Therefore, we chose 20
actions as the upper bound. We also describe a second application
where the agent can perform 10 actions. This version aims to
assess the abstraction capabilities of our model further.

The two tasks involved extracting visual features from voxel
representations of trees from Dataset 1: Natural Trees. We
considered the representations in the dataset as a distribution
of trees. In practice, such a limited number of 3D models
is insufficient to represent the properties of tree populations.
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FIGURE 7 | Visual abstractions produced by the 10-actions agent and the 20-actions agent during the last training iterations.

Furthermore, a dataset that contains only three samples has high
variance, which causes instability during the training process.

To alleviate these issues, we implemented a strategy based
on data augmentation. We augmented the dataset using rigid
transformations to ensure that the agent focused on the structural
features of the trees. Similar to Maturana and Scherer (2015), we
rotated every 3D form about the z-axis located at the centre of
the ground plane by consecutive intervals of 10◦. We populated
the resulting dataset with 35 extra samples per tree structure
for a total of 108 voxel representations. This data augmentation
strategy produced a distribution of samples characterised by an
independent variable of rotation.

To simplify the learning task in both applications, we set the
starting location of the cursor at the centre of the ground plane.
This forced the agent to start modelling forms from a location
aligned with the base of the dataset samples.

Figure 6 shows the results of the training process for the
two applications. The graphs represent the trends of the reward
collected by the agents over consecutive training iterations. We
smoothed the curves using an exponential moving average with
0.8 as the smoothing factor.

We observed that the rewards fluctuated erratically
throughout the process, as visible in the graph spikes. These
fluctuations, which do not appear in the reward curves described
by Mellor et al. (2019), are due to the increased difficulty of

exploring a 3D environment. The agents must select the end
point of a line among a grid of 163 locations and an extra value
for the placement flag for every time step. This results in a
2 × 163 × 10 number of permutations for the 10-action agent
and 2× 163 × 20 for the 20-action agent.

To guarantee appropriate exploration of the action space,
we increased the weight of the entropy loss term – which
is a term included in the learning function to prevent early
convergence – by a factor of 10. Furthermore, since every
observation consists in an array of 323 numbers, the specification
of an appropriate batch size was computationally impractical.
We used batch sizes of 32 and 16 – instead of 64, as
recommended by Ganin et al. (2018) – to train the 10-action
agent and the 20-action agent, respectively. Appendix A: Training
Procedure and Hyperparameters provides further details on the
hyperparameters used to train the two agents.

Although these modifications were a major source of
instability of the training processes, we found that each spike
corresponded to a tentative local convergence. The agents could
successfully find a design strategy to trick the discriminator
several times, but due to the increased entropy cost, they had to
resort to a random exploration of other actions to find a different
design strategy. Because of the peculiarity of the training curves –
which share similarities with conventional GAN training – we
stopped the training processes once they reached a time limit,

Frontiers in Ecology and Evolution | www.frontiersin.org 12 March 2022 | Volume 10 | Article 806453

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-806453 March 11, 2022 Time: 17:12 # 13

Mirra et al. AI Abstraction of Natural Forms

FIGURE 8 | Segmentation of the visual abstraction produced by the 10-action agent and the 20-action agent during the last training iterations.

rather than checking for convergence. In the following sections,
we validate the success of the training process by analysing the
forms produced by the agents.

Qualitative Analysis: Demonstrating That
Abstraction Is Possible
We extracted 20 forms generated by the two agents during the
last training iterations to assess the success of the training process
qualitatively. Our results confirm that we can describe the AI-
synthesised forms in terms of the characteristics of trees and
human-simplified artificial structures.

Figure 7 shows the selected forms sorted per training
iterations. Through inspection, we found that the agents learnt
different design strategies. In the 10-action agent, these were:

• Trunk solutions: forms with clear canopy-trunk
segmentation (e.g., samples 5, 9, 10, 11, 12, and 17).
• Non-trunk solutions: forms without a clear trunk (e.g.,

samples 2, 3, 14, 16, and 16).

Within each of these broader categories, we also identified:

• Single cluster solutions: forms with a single elevated
aggregation of lines resembling an intact tree canopy (e.g.,
samples 12, 17, and 20 in the trunk category; and 6 in the
no-trunk category).
• Many cluster solutions: forms characterised by multiple

sub-clusters. Such distributions resemble vertically
heterogenous trees with multiple sub-canopies (e.g.,
samples 9 and 10 in the trunk category, samples 2 and 3 in
the no-trunk category).

Clearly defined canopy structures occurred most often in
conditions where agents had a scarce supply of lines, as in the

10-action agent. This suggested that confining the number of
lines forced agents to place lines that maximised the reward for
each line, resulting in a design strategy that produced forms most
closely resembling trees.

The 20-action agent had to search within a larger space of
possibilities. This agent exploited the larger number of actions
to place as many horizontal lines as possible to approximate
the input tree branches. This resulted in more erratic forms.
However, it also resulted in an additional strategy that we did not
see in the 10-action agent. This category was:

• Multi-node solutions: synthesised forms attached to the ground
plane with multiple points (e.g., samples 10, 13, and 20).

Our qualitative analysis confirmed that the AI agents were able
to simplify tree structures in a way that created forms that had
relevant features (understood as many cluster solutions). They
also produced forms that were different to trees and tree-like
artificial habitat structures (understood as multi-nodal solutions).

The next step is to verify that the AI-synthesised visual
abstractions were meaningful. We ensured that by comparing
their performance with natural trees and human-made
structures. We discuss the performance of these AI-generated
forms in our previously established evaluation space below.

Quantitative Analysis: Verification of
Abstraction and Comparison to Other
Structures
To confirm that AI-driven synthesis of visual abstractions is
possible and verifiable, we performed a quantitative analysis that
compared the synthesised forms with natural trees and human-
made structures.
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FIGURE 9 | Comparison between 3D representations of natural trees (red), human-defined simplified trees (grey), and forms synthesised by the 10-action agent
(blue) and 20-action agent (green).

Using the comparison space described in section
“Measurement and Comparison,” we compared the AI-
synthesised forms with the voxel representations of
human-defined structures and natural trees. Figure 8 visualises
the outputs of the segmentation process that identifies exposed
horizontal branches (red).

The 2D graph in Figure 9 visualises the forms as bubbles in
the comparison space. The x and y axes correspond to the perch
and complexity indexes. We also considered a third metric –
material cost – which we computed as the sum of the visible
voxels. This cost maps to the scale and colour transparency of
the bubbles. We colour coded the bubbles according to our four
dataset types: voxel representations of human-defined habitat
structures (black), voxel representations of natural trees (red),
forms synthesised by the 20-actions agent (green) and forms
synthesised by the 10-actions agent (blue).

We first examined the location of the representations of
natural trees. The three samples showed a high complexity index
and occurred at the centre of the perch index axis. High geometric
complexity indicated a level of diversity of branch distributions

that representations of human-defined artificial structures did
not have. We assumed that natural physical constraints, such as
the maximum number and length of horizontal elements that a
tree can have, limited the maximum perch index of these samples.

Overall, we observed a correlation between the perch index
and the size of the blobs, which represented the material cost.
Generally, canopy structures represented by many voxels –
and a greater material cost – also had a higher number of
horizontal exposed voxels.

By observing the distributions of the four dataset types, we
found a clear separation between representations of human-
defined habitat structures and the AI-synthesised forms. Our
samples of human-defined structures were distributed evenly
along the complexity index axis and had a low perch index.
In contrast, the AI-synthesised forms were distributed across
the graph and concentrated around our voxel representation
of natural trees. We found that the distribution of the AI-
synthesised forms defined two main “bands” of complexity. These
two bands partially overlapped along the perch index dimension
and expanded from left to right. Occurring in the topmost
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band were the forms synthesised by the 20-action agent, which
achieved the highest complexity.

We analysed the graph more deeply by describing and
comparing the samples from the different datasets grouped into
five distinct clusters: A, B, C1, C2, and D. We acknowledge that
these clusters are not derived statistically. Instead, we defined
them by delimiting regions in the graph we deemed relevant to
the design challenge.

Cluster A included the most performing forms synthesised by
the 20-action agent as per our comparison space. These canopy
structures were defined by patterns of lines that filled a large
portion of the voxel grid and did not resemble trees. Form 14
returned the highest fractal dimension and perch index. However,
unlike forms 16 and 17, this structure was short: it did not include
enough vertical elements. Consequently, we considered form 14
a poor candidate for further design iterations.

Cluster B included AI-generated forms distributed at the
centre of the graph. We highlighted these representations
as they achieved a perch index comparable to natural
forms while maintaining a moderate level of complexity
and cost. The forms synthesised by the 10-action agent
occupied the lowest part of the cluster and were all less
complex than the simplest natural form (2, red). These
forms had a distinct trunk and several horizontal lines
that maximised space-filling while creating large voids.
The cluster also included two forms synthesised by the 20-
action agent, which shared similar features but had a higher
fractal dimension.

Clusters C1 and C2 included AI-synthesised forms that were
closer to the highest scoring natural form (3, red) and the lowest
scoring one (2, red). By analysing these clusters, we found an
alignment between the similarity metric considered by the agents
and the metrics used for this evaluation. We used the 20-action
agent to synthesise the forms in cluster C1. Forms 13 and 5 were
tree-looking structures with multiple lines. Form 8 included a
horizontal ring that increased the perch index. We used the 10-
action agent to synthesise the forms in cluster C2. These forms
consisted of simple looped and branched distributions.

Cluster D included representations of human-defined habitat
structures and the AI-generated forms that had a low perch
index. We chose this cluster so we could analyse features that
characterised AI-synthesised forms that were closer to examples
of current artificial habitat structures. Forms 2 and 10 were
branched structures synthesised by the 10-action agent. These
forms had a higher complexity index than the human-defined
artificial habitat structures. This was due to the increased
thickness of the branches containing multiple overlapping lines.
These overlapping lines create a varied surface. In contrast,
the representations of artificial structures were modelled to
mimic simple poles. The more pronounced local diversity
within individual branch shapes of the synthesised forms meant
the AI solutions had a higher structural complexity than the
human-defined artificial habitat structures, even if their overall
appearance was similar. We note that, in reality, the translocated
dead snag would also have a varied surface – and thus score
higher on our complexity index – on its surface than Sample X,
which is its voxelised representation.

In summary, our analysis demonstrates that – within the
limits of the chosen voxel representation format – the AI
agents produced forms that were more similar to the natural
canopy structures than the examples of human-defined canopy
structures used for the comparison. We assessed this similarity
by combining a visual inspection and interpretation strategy
with our comparison space. The analysis also showed that the
agents produced a varied set of forms with differing levels of
complexity and perch indexes. Many of the solutions contained
diverse and relevant canopy shapes and branch distributions.
We identified in the AI-synthesised forms a subset that balanced
geometric complexity with material cost and perch index. This
subset corresponds to Cluster B and includes the best candidates
for future exploration.

DISCUSSION: PROPOSED
ADVANCEMENTS AND THE FUTURE
DEVELOPMENT OF THE ARTIFICIAL
INTELLIGENCE TOOLKIT

Benefits for the Design of Artificial
Habitat Structures
We see the results presented in this article as the first step
toward AI-supported design of artificial habitat structures. In this
approach, AI can support human designers from idea generation
to decision-making. Our results improve on previous studies in
three areas, as described in Table 1.

Extending “Synthesising Programs for Images Using
Reinforced Adversarial Learning” to 3D on a
Domain-Specific Challenge
Our first improvement relates to meaning extraction.
Ecologists struggle to define large old trees because they
represent ecosystem-specific phenomena that have many
important ecosystem roles. We responded to this challenge by
conceptualising large old trees as layers of characteristics from
ecosystem dynamics to specific branch distributions. For further
details, see section “Use-Case Selection”.

This study focused on branch distributions within tree
canopies. These characteristics present a non-trivial challenge
for meaning extraction. Branching structures in trees form
highly heterogenous patterns and tightly packed patterns.
Many of their features are unknown (Ozanne et al., 2003;
Lindenmayer and Laurance, 2016) and remain difficult to
quantify (Parker and Brown, 2000).

To tackle this challenge, we extended previous applications
of SPIRAL by making it operational in 3D. Our implementation
demonstrates that the two AI agents can reduce the complexity
of branch distributions and synthesise their visual abstractions.
Although the agents had no information about features
meaningful to tree-dwelling organisms or artificial habitat
designs, they produced forms that retained ecologically
meaningful features suggesting their usefulness for the design of
artificial habitat structures. Our segmentation and comparison
procedures showed that even in relatively simple modelling
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TABLE 1 | Results overview, meaning, and potential.

Challenges State-of-the-art Proposed advancements

Capability. Develop tools to work with 3D
complex natural structures and their surrogates

Current AI applications for the synthesis of
visual abstractions, such as SPIRAL, work with
two-dimensional data

Meaning extraction. Our AI agent works on three-dimensional data
about tree canopies and branches. Future work can extend this to
other characteristics such as hollows, peeling parks, clusters of
trees, and other complex habitat structures

Accountability. Intervene in complex situations
characterised by the conditions of uncertainty
and incomplete knowledge

Current designs produce forms of low-fidelity,
such as utility poles and pre-determined
parametrisation of incompletely understood
natural habitat structures

Bias Identification. Our process considers how trees work for birds.
It resists biases of pre-existing parametrisations and designs. This
approach allows us to assess the retention of relevant features in
possible designs

Innovation. Produce practical designs that work
for wildlife as well as for human procurement
and production systems

Existing designs of habitat structures either do
not look like trees and do not perform well, or
look like trees, but are prohibitively difficult,
slow, and expensive to produce

Abstraction and reproduction. Our designs can retain ecologically
relevant features of trees while being more amenable for fabrication,
installation, maintenance, and multi-purpose use

environments, these agents could synthesise features that are
relevant to arboreal organisms.

We briefly describe one extraction process that focused
on elevated perches. Reflecting the input dataset of trees, the
two agents adopted a strategy of concentrating lines at higher
Z coordinates. Using this approach, the agents synthesised
structures with a limited number of vertical elements closer to
the ground and more lines higher up, mimicking an elevated
canopy. The availability of such structures is important to
tree-dwelling organisms who need to perch above certain
heights. This means that artificial perch structures close to
the ground will not be suitable. The process demonstrates
that autonomous visual abstraction is possible in 3D, and a
particular use case with complex geometries that escape typical
description methods.

The AI agents discussed in this article learn from
3D coordinates of tree branches to construct visual
abstractions. Future implementations can aim to consume
other spatial data representing other layers of information
within our conceptualisation of trees. Data about these
structures and their users can be integrated in our training
datasets as voxel representations. We also expect that
non-spatial information, such as statistical information
about bird behaviour, can further guide the agent in
extracting features that are functionally relevant to the
wildlife inhabitants.

Explicitly Identifying Biases
We are not yet ready to claim that the agents can produce
suitable habitat designs. Instead, the benefit from our approach
emerges from a combination of (1) developing forms by
automatically synthesising natural structures described above;
and (2) providing a numeric comparison between natural,
existing artificial, and synthesised forms. Through (1) and (2), we
created an approach that explicitly defines the biases in current
designing strategies.

Identifying biases is crucial for improved designs because
structures such as enriched habitat poles and translocated dead
trees are reductions or abstractions of complex natural structures.
In many instances, humans perform this abstraction with a
limited understanding of the biases they can bring to the process.
Such biases include a tendency to:

• Create designs based on widely used existing artefacts, such as
utility poles, given that the final structures often result from
efforts by domain experts who are not designers by profession.
• Focus on simplified forms that could be built using common

structural systems, such as regularly spaced slats, or on discrete
habitat features that are easy to identify, such as perches.
• Ignore scales and relationships that are difficult to document,

such as representing complex and differentiated branching.

Our synthesised forms resist conditioning by existing
examples of artificial habitats. Our comparison space showed that
there is a large gap between the complexity of existing designs
for artificial habitat structures and the unexplored design space
indicated by natural structures and possible synthetic forms.
This gap shows the clear need for bio-informed construction,
manufacturing and design technologies that can better engage
with non-standard and highly differentiated shapes.

Meaning Abstraction and Reproduction
The ambition of our process is to consider how artificial
habitat-structures appear and work for birds. For this task, the
third benefit of our approach relates to meaning abstraction
and reproduction.

In our use case, traditional artificial habitat designs do not
show the perch diversity and distributions observed in trees
and do not perform well (Le Roux et al., 2015a; Lindenmayer,
2017). Recognising these limitations, recent ecological work
has investigated the use of translocated dead snags as artificial
habitats (Hannan et al., 2019). It has also studied the deliberate
damaging of young trees to make them resemble old trees with
their hollowing trunks and branches (Rueegger, 2017). There
have been some notable improvements in performance through
the use of these strategies (Hannan et al., 2019). However, the
resulting structures closely resemble trees. This means they suffer
from many of the same drawbacks as trees: they are heavy,
require significant preparations, including footings and grading
of terrain, and are difficult to implement at scale.

Our agents produced forms with perch distributions that
are similar to trees. However, they also developed solutions
that were distinct from the structures as typical trees with
their central stems and radial branch distributions. We could
discount a high degree of these non-tree forms, including those
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with many vertically oriented lines or those with many lines
close to the ground plane. Our agents also learnt more useful
strategies. For example, the multi-nodal forms created by the
20-action agent was an instance of load being distributed over
multiple points rather than being concentrated in one trunk.
Such strategies are useful in many restoration projects that
occur in environments where large footings are impossible
or destructive. Even though our agents had no knowledge of
structural systems, their incentive to minimally describe the
training dataset created a useful alternative structural strategy:
maximising space-filling by distributing elements throughout 3D
space using strategies not available to most tree species. These
strategies suggest possibilities for expanding design options using
AI-generated visual abstraction and will need to be further tested
in future research.

Limitations and Future Development of
the Artificial Intelligence Agent
In this section, we discuss the limitations of this work in
relation to three themes: ecological knowledge, design, and
artificial intelligence.

Limitations given by the state of ecological knowledge include
its incompleteness. This applies to all aspects, from the number
of known and described species to species behaviour. Field
observation can be resource-intensive at large sites or with many
individuals, difficult in the case of cryptic species, and slow when
it must follow breeding cycles that take years.

These constraints impact potential human-made designs
because they misalign with project-based work, brief periods of
project-related research and the reliance on human expertise. In
response to these limitations, this project aimed to take steps
toward design processes that can accrue knowledge over time
and be of use in the conditions of incomplete understandings of
ecological interactions.

In regard to artificial intelligence, we recognise that future
work will have to address several issues to improve the quality
of the forms synthesised by the AI agent and turn the procedure
into a useable design strategy.

First, we observed that the model was difficult to train. We
related this to the complexity of the task in 3D. This task
became more difficult because of the need to resort to a low-
resolution voxel representation. Alternative strategies for 3D data
representation are possible, and we shall test them in future work.

Second, our training dataset included only three samples.
Training AI models on such a limited number of samples
is a well-known issue, as the dataset does not represent an
actual distribution and is characterised by high variance. All this
causes instability in the training process. We partially addressed
the problem by artificially expanding the dataset using a data
augmentation strategy (section “The Effectiveness of the Training
Procedure”). However, we consider developing larger datasets to
be a priority to improve the model’s capabilities.

Third, following the original SPIRAL implementation, we
defined the learning task as maximising the similarity between
the synthesised forms and the dataset samples with a limited
number of modelling actions. The agent did that by maximising

a reward computed from the similarity score. In future work,
we will augment this reward definition with other metrics, such
as structural stability, to synthesise forms that satisfy additional
performance requirements.

Fourth, the SPIRAL agent learned to perform sequences of
actions: at each step, the agent observed a partially designed
form, got a partial reward, and decided what to design next. This
feature opens several possibilities in terms of human-machine
interaction that we did not explore in this article. For instance,
the designer can provide SPIRAL with any partially defined form
and ask the agent to complete the design based on its acquired
experience. We plan to integrate this feature in a Graphical
User Interface (GUI) to explore the implications of a human-AI
partnership in the design of artificial habitat structures.

Last, we limited the action space to the placement of lines
in the canvas, making the agent produce forms with limited
variations. We will include other modelling actions to increase
the expressive capabilities of the agent and synthesise more
diverse, and potentially more performative forms for artificial
habitat structures.

As we already mentioned in section “Extending Synthesising
Programs for Images Using Reinforced Adversarial Learning
to 3D on a Domain-Specific Challenge,” this work serves as a
basis for future scaling for trees. It also has the potential to be
extended toward other domains of complex natural structures,
such as rock formations or coral reefs. We expect further
experimentation in this domain to continue in parallel with
increasing computing power. Future input datasets can be rich,
with multiple layers of information. It is already possible to
create high resolution, feature-rich classifications for training
in many instances. To give one example, Figure 10 illustrates
an extended version of our tree sample data. This dataset
has multiple layers of information, including branch centroids
(bubbles), key habitat structures (colours), predictions of faunal
use (colour intensity) and species richness (size of bubble).
We have included this figure in the manuscript to show that
such datasets already exist and represent key targets for our
future research on AI.

Our AI-synthesised forms are not better than human-made
artificial habitat structures or natural trees. Our approach instead
complements other innovations in artificial habitat design.
Wildlife response to novel artificial habitat structures such as
translocated dead trees is encouraging. However, stakeholders
for this infrastructure, including birds, bats, insects, and other
life forms, have preferences only partially known to human
ecologists, conservation managers, and designers.

More generally, the work on artificial intelligence and
ecocentric design can contribute to ecological research by
supplying requirements for data acquisition, novel analytical
techniques for numerical analysis, and generative procedures
for field testing. Future implementations of AI agents can work
with additional meaningful constraints and targets, including
constructability, thermal performance, materiality, modularity,
and species-related requirements. These AI agents can suggest
unexpected solutions that will be combinable with other design
approaches such as expert-driven development or performance-
oriented modelling.
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FIGURE 10 | Two large old trees from the full version of our dataset.

CONCLUSION: TOWARD ARTIFICIAL
INTELLIGENCE-ASSISTED DESIGN

In this study, we demonstrate that an artificial intelligence
agent can synthesise simplified surrogates of natural forms
through a process of abstraction. We show that the forms
generated by the agent can be ecologically meaningful and
thus contribute to the design of artificial habitat structures.
Human-driven degradation of natural habitats makes such work
necessary and urgent. The process of habitat simplification
accelerates extinctions and loss of health because less diverse
habitats can support fewer forms of life. It is difficult to
create suitable artificial habitat designs because the reproduction
of key features of natural habitat structures is complex and
resource-intensive. In response, our study extends existing work
in ecological restoration and AI. We interpret the design of
artificial habitat structures as a bio-informed process that relates
to the cognitive mechanism of abstraction. Our innovative
AI agent can synthesise visual abstraction of 3D forms by
recombining features extracted from datasets of natural forms,
such as trees. The assessment routines that compared geometries
of natural trees, artificial habitat structures and synthesised
objects confirmed that the outcomes of the process preserve
meaningful features.

Our design strategy offers novel methods for reconstructing
trees and other complex natural structures as they are seen
by nonhuman habitat users, such as birds and other wildlife.
The forms produced by our agent can be beneficial because

they avoid biases common to existing strategies for artificial
habitat design. Strategies developed by our AI agent can
produce structures that resemble trees but can also deviate
from natural structural forms, while preserving some of their
meaning. This research creates an opportunity for future work
that can include objectives to satisfy additional criteria in
habitat provision, such as material use and constructability, to
apply our approach to other sites and species and implement
the outcomes at large scales and numbers. This work will
depend on further development and – in particular – on
the construction and field-testing of physical prototypes. To
conclude, this work offers innovative applications in ecology,
design and computer science, demonstrating the potential for
AI-assisted design that seeks to benefit all forms of life and
life-hosting environments.
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