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The Central Asian wolves form a cohort within the wolf-dog clade known as the wooly
wolf (Canis lupus chanco). These wolves are poorly studied and their current extent and
distribution remain unknown. Apex predators already existing at higher elevations like
wooly wolves can be severely affected by climate change because of the absence of
suitable refuge. Concomitantly, in the era of Anthropocene, the change in land use land
cover (LULC) is rapidly increasing. Even the most adaptable species occurring in human-
dominated landscapes may fail to survive under the combined impact of both climate
change and human pressure. We collected 3,776 presence locations of the wooly wolf
across its range from published literature and compiled 39 predictor variables for species
distribution modeling, which included anthropogenic factors, climatic, vegetation, and
topographic features. We predicted the change in their distribution under different
anthropogenic factors, climate change, and land-use land-cover change scenarios. Wolf
showed affinity toward areas with low to moderately warm temperatures and higher
precipitations. It showed negative relationships with forests and farmlands. Our future
projections showed an expansion of wolf distribution and habitat suitability under the
combined effects of future climate and LULC change. Myanmar and Russia had the
introduction of high and medium suitability areas for the wooly wolf in future scenarios.
Uzbekistan and Kazakhstan showed the consistent loss in high suitability areas while
Mongolia and Bhutan had the largest gain in high suitability areas. The study holds
great significance for the protection and management of this species and also provides
opportunities to explore the impact on associated species.

Keywords: Central Asia, future prediction, habitat suitability, predator, species distribution model, global warming

INTRODUCTION

Climate change triggers stark effects on species geographic ranges, leading to range shifts and
disruptions in the functioning of ecosystems (Colwell et al., 2008; Lenoir and Svenning, 2015;
Lenoir et al., 2017; Pecl et al., 2017). Climate change also causes regional weather fluctuations
with respect to precipitation, affecting resource distribution and availability and consequently
impacting habitat and ecological processes of faunal species (Parmesan, 2006; Chen et al., 2011;
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Schewe and Levermann, 2012; Jayasankar et al., 2015). Although
species are known to adapt both genetically and behaviorally
to circumstances, their adaptive responses are often insufficient
due to rapid changes in anthropogenic land-use patterns and
their synergistic effects with climate change (Brodie, 2016) thus,
threatening them to the verge of extinction (Jump and Penuelas,
2005; Bradshaw and Holzapfel, 2006; Radchuk et al., 2019).

The extinction of large carnivores may have cascading effects
on the functioning of an ecosystem in multiple ways (Terborgh
et al., 2010). However, when conserved, large carnivores can
recover and colonize even in human-dominated landscapes
(Chapron et al., 2014). Anthropogenic activities leading to change
in land use may also promote large carnivore populations in
the future (Milanesi et al., 2017). Studies from the Scandinavian
countries and the United States reported that wolves have not
only recovered but have also started exploring new habitats in
human-dominated landscapes (Mladenoff et al., 1995; Wabakken
et al., 2001; Gurarie et al., 2011; Carricondo-Sanchez et al., 2020).

Wolves are known as charismatic as well as umbrella species
that have been extensively studied in America and Europe (Mech
and Boitani, 2003) with only a few studies from Asia (Khan
et al., 2022). The Holarctic gray wolf is also known as Himalayan
or Tibetan wolf in the central and south-east Asian countries
continues to be an enigma concerning its nomenclature due to
the novel genetic insights from across its range (Sharma et al.,
2004; Aggarwal et al., 2007; Shrotriya et al., 2012; Fan et al.,
2016). Since different terms were used for these wolves according
to the different regions where they were found, the term wooly
wolf (Arnold, 2016; Joshi et al., 2020; Lyngdoh et al., 2020) was
first used by Pocock (1941) to address these wolves. They are
known for their hypoxic adaptations for surviving at extremely
high altitudes of the Tibetan Plateau, Himalaya, Mongolia, China,
and Manchuria (Zhang et al., 2014; Werhahn et al., 2018).
Recent genomic studies have suggested that the south Asian
region is an important center for the evolution of the gray wolf
and the Tibetan wolf is an ecologically significant unit (ESU)
(Hennelly et al., 2021).

Existing literature on the wooly wolf focuses majorly on
its genetics (Aggarwal et al., 2007; Werhahn et al., 2017), diet
(Chetri et al., 2017; Werhahn et al., 2019; Lyngdoh et al., 2020;
Reshamwala et al., 2021), public perception (Bhatia et al., 2017;
Kusi et al., 2020) and conflict with humans, habitat suitability,
and distribution in localized regions (Kabir et al., 2017; Subba
et al., 2017; Rana et al., 2018). However, its global geographical
extent and potential habitat remain unknown. In this study,
we explore two aspects of the wooly wolf distribution. First,
we evaluate the current available wooly wolf habitat across its
entire distribution. Further, we predict the changes in their
suitable habitat under future climatic and land-use change
scenarios. A protected area (PA) network plays an important
role in the conservation of species regionally. Therefore, we
also evaluated the extent and importance of the current PA
network for wolf conservation in the range countries. To the
best of our knowledge, this is the first study that shows the
global extent of wooly wolves and helps in finding key priority
areas that may be of management importance in the face of
climate change and other anthropogenic factors. Thus, this

study holds great conservation and management significance
for this species.

MATERIALS AND METHODS

Study Area
We considered all wolf-ranging regions from Central Asia,
Mongolia, Chinese Turkestan, and Tian Shan mountains to
the high-altitude plateaus of Tibet, Qinghai, Shensi, Szechwan,
Yunnan, and the Himalaya in this study. The topographical
features of these regions mainly consist of deserts, grasslands,
glaciers, mountains, and river basins. We delineated the
study area boundary by creating a polygon surrounding the
extreme extents of the above-mentioned regions in Google
Earth (Figure 1). Parts of the following countries were
included in the intensive study area—Afghanistan, Pakistan,
Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan, India, Nepal,
Bhutan, Myanmar, China, Mongolia, and Russia. The study area
comprised about 18.63 million km2. The broad habitat types of
the study area include alpine tundra, alpine steppe, wetlands,
open grasslands, sparse shrubs, and coniferous forests (Werhahn
et al., 2020). In addition to wooly wolves, other predator species
in the study area include snow leopard (Panthera uncia), red
fox (Vulpes vulpes), Tibetan fox (Vulpes ferrilata), Pallas’s cat
(Otocolobus manul), Eurasian lynx (Lynx lynx), and brown bear
(Ursus arctos). The major prey species of the study area are urial
(Ovis vignei), ibex (Capra ibex), kiang (Equus kiang), blue sheep
(Pseudois nayaur), Tibetan gazelle, Tibetan argali (Ovis ammon
hodgsoni), white-lipped deer (Cervus albirostris), Himalayan
marmot, wooly hare, several species of pika (Ochotona spp.),
and rodents. Livestock also adds a considerable amount to
the diet of predators in the study area (Lyngdoh et al., 2020;
Khan et al., 2022).

Wooly Wolf Location Data
Presence locations of wooly wolves (both direct and indirect
evidence) were obtained from published literature and publicly
available dissertations. We collected 3,776 presence locations
of woolly wolves (Figure 1 and Supplementary Table 1) for
Afghanistan, Pakistan, Kyrgyzstan, India, Nepal, Bhutan, China,
and Mongolia which included data from our telemetry study and
sightings on wooly wolves.

Preparation of Geospatial Layers
We gathered a total of 39 predictor variables from various
sources to develop species distribution model for wooly wolves
for current and future prediction (Supplementary Table 2). We
selected topographic, vegetation, and anthropogenic variables
that may govern the distribution of the wooly wolf. These
factors included climatic variables, aridity Index (AI), potential
evapotranspiration (PET), cloud cover, normalized difference
vegetation index (NDVI), digital elevation model (DEM), land
use land cover (LULC), slope, aspect, topographic position index,
terrain ruggedness, vector ruggedness, hill shade, distance to the
nearest water source, distance to nearest glaciers, distance to
nearest roads, human footprint, and population density. We did a
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FIGURE 1 | Map of the study area along with collated presence locations used for distribution modeling of the wooly wolf.

Pearson’s correlation test between the 39 variables prior to species
distribution modeling and eliminated highly correlated variables
(>0.6). Thus, we finalized 18 variables for final analyses in the
current and future scenarios (Supplementary Table 2). We then
extracted the values of all the variables according to the intensive
study area boundary. We overlaid boundaries of PAs pertaining
to the intensive study area which was available from https://www.
protectedplanet.net/en/thematic-areas/wdpa to understand the
suitable habitat of the wooly wolf inside and outside PAs. Though
this is the only database available of comprehensive information
for PAs across the globe, we want to point out that the above data
have certain discrepancies regarding the coverage of all PAs of the
countries included in the study. We acquired an updated PA layer
for India from https://indiabiodiversity.org/map and merged it
with the existing information. However, for other countries, such
updated information was not available.

Analysis
Modeling Current Distribution
We used MaxEnt (version 3.4.1k) for developing species
distribution models for the wooly wolf. MaxEnt is based on
occurrence/presence records (locations where the species has
been found) together with environmental variables or constraints

for the surrounding study area (Phillips et al., 2006; Phillips
and Dudík, 2008) and is one of the recent approaches which
can be used (Hernandez et al., 2006; Wisz et al., 2008). We
developed six MaxEnt models using the default settings, except
for the feature classes, to check for initial model fitting using
all locations for different grid divisions within the study area.
We used linear, quadratic, and hinge feature classes, best suited
for small sample sizes (Morales et al., 2017) for our models to
help smooth the variable responses and reduce the noise (Elith
et al., 2011; Merow et al., 2013; Morales et al., 2017). Hinge
features provide at least as much flexibility in the fitted response
to predictor variables as threshold features, while tending to
reduce overfitting to the training data. To account for sampling
bias, we applied the bias correction method by creating bias
grid files that can be fed into the MaxEnt software (Dudík
et al., 2005; Phillips et al., 2009). In a biased file, the cell
values reflect the sampling effort and give a weight to random
background data used for modeling (Fourcade et al., 2014).
We produced these sampling probability surfaces by deriving
the Gaussian Kernel Density of sampling localities (Elith et al.,
2010). Previous studies have shown that correcting sampling
bias has yielded improved model fitting especially with smaller
sample sizes (Fourcade et al., 2014). The spatial distance used
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to quantify the region of spatial bias was kept at 50 and
100 km, respectively.

To avoid clustering of presence locations, we divided the entire
study area into grids of 1× 1 km, 2× 2 km, 3× 3 km, 5× 5 km,
7 × 7 km, and 10 × 10 km and selected one random point
location falling in each grid using R software (R Core Team). For
each grid size, separate analyses were performed. Such divisions
were selected to incorporate all possible scales and values of
variable contributions for analysis. Accordingly, we finalized 774,
486, 357, 254, 206, and 162 presence locations, respectively, for
further analysis. We conducted the analyses with all the divisions
using both 50 and 100 km bias files (12 models). Concurrence
between model accuracy and output decreased with an increased
grid size (Seo et al., 2009). The models with increased grid sizes
selected more area as potential distribution range. We assume
that the small grid size combination incorporated all possible
fine-scale values of variables used and provide a significant spatial
distribution output. Otherwise, an overestimated predicted range
might lead to inappropriate selection of conservation priority
areas (Seo et al., 2009). Moreover, the analysis was conducted with
a small sample size over a large study area, it was important to
include all possible fine-scale information available for a robust
output. Hence, we used results for only 1 × 1 km grid size
with 100 km bias.

We then developed five different models with combinations
of regularization multipliers (0.25, 0.5, 1, 1.5, and 2) and
selected the most significant combination based on the area
under the receiver operating characteristic curve (AUC) value.
Regularization multiplier is a modifiable parameter that adds
new constraints to the model and is thus used to evaluate the
best potential combination of parameters teaming up with the
feature classes (Morales et al., 2017). This is used to prevent
the over-fitting of the model by controlling the intensity of the
chosen feature classes (Elith et al., 2010). Previous studies have
shown that for small sample sizes it is best to use intermediate
regularization multipliers for better model fitting (Radosavljevic
and Anderson, 2014; Morales et al., 2017). We assessed the
model performance by the mean AUC value (Hosmer et al.,
2000) and visual inspection of the identified suitable area of
the output maps for each model. We finalized regularization
multiplier 2 to be the most significant for further analysis as
the AUC graph and the output map coincided in showing
meaningful representations in concurrence to the species’ ecology
(Radosavljevic and Anderson, 2014). We then partitioned our
presence locations randomly into 5 sets of training and testing
samples. All the training sets included rare locations from the
far-off regions such as Mongolia. We opted for this approach
to train the models with a wider set of information. We
developed models with the above sets of training and testing
samples (5 models) and the model performance was assessed
by the AUC values. We calculated mean variable response
curves and Jackknife of regularized training gain test to evaluate
the importance of each predictor and percent contribution
and permutation importance (Supplementary Figure 1). We
applied a 10-percentile training presence logistic threshold
to generate the species distribution maps. We calculated the
average of the 5 distribution models to predict the current

distribution of wooly wolves. The final layer was classified into
equal intervals (0–33%, 33–66%, 66–100% suitability) of three
suitability areas—low, medium, and high and tabulated the area
for each class.

Projecting Future Distributions
We used two future scenario settings to assess the likely changes
in suitable habitats for wooly wolves for climatic variables and
LULC for RCP4.5 and RCP8.5. We used the A1B scenario of
the future LULC layer as this scenario had data balanced across
all resources (Li et al., 2017). We used the same environmental
layers for both the current and future distribution models.
We used the MICROC 5 model of the Global Climatic Model
(GCM) for the future climate scenarios as the warmest future
change is obtained through this model (Wazneh et al., 2020).
We used 29 models of various combinations to generate the
future projections (Supplementary Table 3). Similar to the
analysis for current distribution (see section “Modeling Current
Distribution”), we generated the average model for each scenario,
classified them into suitability areas, and tabulated the areas
for each class. We projected the future distributions for two
timelines—2050 and 2070. We developed a total of 63 MaxEnt
models (Supplementary Table 3) using 774 locations and 18
environmental variables to predict the potentially suitable habitat
for wooly wolves.

RESULTS

The MaxEnt model used for wooly wolf distribution was reliable
as statistical estimation of averaged accuracy for five models
was 94.8% ± 0.54 SD and 94.5% ± 0.50 SD for training and
test AUC, respectively. Regularization multiplier 2 was the most
suitable for the wooly wolf to avoid overfitting of the models.
Of the total study area, 5.31% was inside PA and 94.69% was
outside PA.

Current Distribution
Among the variables used to predict the current distribution –
DEM, vector ruggedness measure (VRM), mean diurnal
temperature (Bio2), precipitation of coldest quarter (Bio19),
precipitation of driest month (Bio14), and LULC were the
most important factors driving the habitat suitability in the
study area (Figure 2). Wolf showed a positive relation toward
higher elevation, but the peak dropped after 5,000 m which
is consistent with wolf ecology. However, the distribution did
not show any variation with ruggedness indicating wolves’
preferences toward all kinds of terrain. Wolf showed affinity
toward areas with lower to moderately warm temperatures
and higher precipitations. It showed negative relations with
forests and farmlands, reflecting its affinity more toward open
barren areas. Only ∼12% of the study area corresponded to
suitable area (Medium + High) for wooly wolf (Figure 3) of
which only ∼1% is under PA and the rest outside PA. Among
the countries, the most suitable habitat for wooly wolves was
in China followed by Kyrgyzstan, India, Tajikistan, Pakistan,
and Afghanistan.
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FIGURE 2 | MaxEnt model response area curves of the predictor variables influencing wooly wolf distribution: elevation; vertical ruggedness; mean diurnal range
(Bio2); precipitation of coldest quarter (Bio19); precipitation of driest month (Bio 14) and land use land cover.
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FIGURE 3 | Wooly wolf distribution model showing current and future trends of suitable habitat for the species for two future climate scenarios (RCP 4.5 and 8.5) for
the year 2050 with the countries and protected areas boundary within the intensive study area.

Future Projections
The future climate scenarios RCP 4.5 and 8.5 both predict an
increase in global temperature for the years 2050 and 2070.
Our future projections showed an expansion of wolf distribution
and habitat suitability under the combined effects of future
climate and LULC (Figure 3). The results for both the scenarios
for both timelines showed expansion of range in medium and
high suitability classes (Table 1). Most expansions occurred in
the southern and south western parts of the study area. This
indicates that wooly wolf distribution was mainly affected by
the change in future climatic conditions which in turn governed
the changes in future land-use scenario. It was interesting to
find that Myanmar and Russia had the introduction of high and
medium suitable areas for wooly wolves in the future scenarios
(Figure 4). Uzbekistan and Kazakhstan showed consistent loss in
high suitable area while Mongolia and Bhutan had the highest
gain in suitable area (Figure 4). Kyrgyzstan and Tajikistan had
increase of suitable areas inside PA and decrease outside PA
(Supplementary Table 4).

For the current scenario, we calculated the low, medium, and
high habitat suitability of wooly wolves. The result showed that
the maximum areas of PA in Nepal, India, China, and Mongolia
were highly suitable for wooly wolves. Moreover, the highly

suitable areas for wooly wolves were found more outside PAs
in Uzbekistan, Afghanistan, Pakistan, Kazakhstan, Tajikistan, and
Bhutan (Table 2).

DISCUSSION

This study provided a probabilistic current distribution and
predicted the likely changes in the suitable habitats for wooly
wolves across 15 countries in Central Asia under climate change.
The study shows an increase in habitat suitability of wooly wolves
within its probable distribution range under the combined effects
of climate and land-use changes in the future. The primary
reason behind this could be the increase in the availability of
barren areas and agricultural lands due to the melting of glaciers
under rising temperatures. Both RCP 4.5 and RCP 8.5 emissions
scenarios predict a rise in temperature in the years 2050 and 2070.
The future land-use change for the year 2050 predicts increase
in agricultural land use, high pressure on forest resources, and
expansion of plantation forestry (Sleeter et al., 2012). Studies
have shown that climate change due to rising temperature and
expansion of agriculture along altitudinal gradient synergistically
affect the niches of mammals (Brodie, 2016). Wolves could be

Frontiers in Ecology and Evolution | www.frontiersin.org 6 April 2022 | Volume 10 | Article 815621

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-815621 April 11, 2022 Time: 15:27 # 7

Reshamwala et al. Distribution of Woolly Wolf

TABLE 1 | Results showing patterns of current and future suitability areas for wooly wolves under different suitability classes.

Suitability classes Current in km2 (% of
suitable area)

RCP 4.5_2050 in km2

(%of suitable area)
RCP 8.5_2050 in km2

(%of suitable area)
RCP 4.5_2070 in km2

(%of suitable area)
RCP 8.5_2070 in km2

(%of suitable area)

Low 16,433,200
(88.18%)

15,904,179
(85.34%)

15,749,894
(84.52%)

15,886,401
(85.25%)

15,618,637
(83.81%)

Medium 1,716,970
(9.21%)

2,006,435
(10.77%)

2,133,739
(11.45%)

2,031,728
(10.90%)

2,178,296
(11.69%)

High 485,389
(2.60%)

725,001
(3.89%)

751,979
(4.04%)

717,487
(3.85%)

838,640
(4.5%)

affected by these factors and lead to changes in the distribution
and behavioral patterns of the species. Our distribution model
shows a strong negative relationship with forests than with
agriculture and a positive relation with barren areas (Figure 2).
This was further supported by the distribution of wooly wolf
suitable habitats outside PAs in future scenarios (Table 1) and
the introduction of suitable habitats in Myanmar and Russia.
Our results show wooly wolves prefer moderately warmer and
contiguous wet areas. It is known that warmer and wetter
conditions may favor certain species expansion (Hof et al.,
2012). We believe that such conditions could lead to land-use
changes, especially the expansion of agriculture. It has been
found that land-use changes (agriculture, plantations, etc.) can
increase the structural, functional, and temporal connectivity
to generalist species by providing refugia during less favorable
climatic conditions facilitating range expansions (Auffret et al.,
2015; Elmhagen et al., 2015).

We found that protected areas hardly provide suitable areas
for wooly wolves throughout their distribution range. The future
scenario is also similar except that the suitable area increased
more inside the PAs in Kyrgyzstan and Tajikistan. Although our
calculations of the PA network could be an underestimation due
to the unavailability of recently updated datasets for all countries,
the overall trend is unlikely to be affected by such errors.
Therefore, the wolf conservation should be pivoted to community
conservation areas outside the PA network. Large-ranging species
require landscape-level planning and management, which are
difficult to achieve through the existing PA network system.
Our distribution modeling for wooly wolf further has potential
drawbacks due to the lack of presence data from North and
Eastern parts of its range. Almost no literature is available from
the central Asia countries and much of the Chinese part. To avoid
overprediction or underestimation of its habitat, we ensured to
use all locations from these understudied regions for training in
all our model datasets. However, more presence locations from
these regions would aid in robust modeling and predictions.

Species that are generalist in nature with the ability to move
far can colonize new areas and track their shifting areas according
to climatic suitability (Colwell et al., 2008). Arctic and sub-arctic
generalist mammal species have been known to expand their
ranges due to the impact of climate change (Hof et al., 2012). It
has been suggested in previous studies that species can make
large elevational shifts over short linear distances in areas with
steep topography. This is because contiguous habitats are found
along elevational gradients (Colwell et al., 2008; Brodie, 2016).

There are evidence of upslope range shifts due to climate
change by snow leopards and Ethiopian wolves (Trouwborst and
Blackmore, 2020). Our results showed major habitat suitability
changes in the south and south-western parts of the study area
that had the most variations in altitudes due to the presence of
several mountain ranges.

Gray wolves are known to act as buffers in climate change
by mediating and facilitating other animal species (Wilmers
and Getz, 2005). Range expansion may lead to intra-guild as
well as interspecific competition and predation as suggested by
Pamperin et al. (2006) in their study on red foxes (Vulpes vulpes),
which underwent range expansion in the higher altitudes leading
to incidences of killing of arctic foxes (Alopex lagopus). The

TABLE 2 | Country-wise suitable habitat of wooly wolf suitable within (PA) and
outside protected areas (OPA) in current scenarios.

Countries System Low Medium High

Uzbekistan PA 0.34 0.43 0.00

OPA 99.66 99.57 100.00

Mongolia PA 14.04 33.23 87.04

OPA 85.96 66.77 12.96

Myanmar PA 0.00 1.59 NA

OPA 100.00 98.41 NA

Afghanistan PA 2.78 15.23 4.70

OPA 97.22 84.77 95.30

Pakistan PA 1.46 1.07 0.59

OPA 98.54 98.93 99.41

Russia PA 3.70 10.84 0.00

OPA 96.30 89.16 100.00

Kazakhstan PA 28.42 6.59 0.00

OPA 71.58 93.41 100.00

China PA 72.08 46.85 78.07

OPA 27.92 53.15 21.93

Kyrgystan PA 0.03 0.38 0.45

OPA 99.97 99.62 99.55

Tajikistan PA 10.48 25.14 19.26

OPA 89.52 74.86 80.74

Bhutan PA 3.91 1.05 0.00

OPA 96.09 98.95 100.00

Nepal PA 0.80 16.50 100.00

OPA 99.20 83.50 0.00

India PA 50.49 80.49 99.72

OPA 49.51 19.51 0.28
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FIGURE 4 | Country-wise gain/loss of wooly wolf suitable habitat in four future scenarios with respect to current suitable habitat in three suitability classes.

increase in habitat suitability of wooly wolves in the future can
lead to habitat sharing or usurping of species of more or less
similar guilds or niches such as snow leopards, brown bears, red
foxes, and lynx. Both gray wolves and brown bears are reported
to expand their ranges under the influence of climate change
(Hof et al., 2012; Falcucci et al., 2013). Such range changes of top
predators like wolves may affect prey populations due to limiting
effects on other predator species.

Unfavorable weather conditions may affect ranges of certain
animals in a positive or negative interaction with wolves affecting
their distribution and range expansion. Again, land use changes
might indirectly favor predator species such as wolves, and
increase predation pressure and conflict (Festa-Bianchet et al.,
2011; Elmhagen et al., 2015). Thus, the response of prey in
range expansion of wolf would be an important aspect to be
focused on in future because if prey does not respond in the same
manner, it can lead to enhanced conflict or even mass extinction.
Studies have shown that wild ungulates would become more
susceptible to disease in the future due to climate change, habitat
shrinking, increased concentration and movement of human,
livestock within shared habitats of wild animals introducing
various pathogens and vectors (Hu and Jiang, 2011). Prey species
in Central Asia such as Przewalski’s gazelle (Procapra przewalskii),
Mongolian gazelle (Procapra gutturosa), Siberian ibex (Capra
sibirica) and goitered gazelle (Gazella subgutturosa), and saiga
antelopes (Saiga tatarica) are prone to disease outbreaks due to

the increasing temperature as well as shared rangelands with
livestock (Pruvot et al., 2020; Khanyari et al., 2021). Due to
climate change, such responses of prey species might lead to a
decline in their population and the spread of disease amongst
predators like wolves.

This study across different countries showed that Bhutan,
Mongolia, Kyrgyzstan, Nepal, China, and India had increased
suitable habitat, mostly outside PAs. These countries already
have existing conflict issues with wolves (Watanabe et al., 2010;
Alexander et al., 2015; Karimov et al., 2018; Din et al., 2019).
Synergistic positive effects of climate and land-use change can
favor invasive species and expansion of temperate species to
higher altitudes (Bellard et al., 2013; Elmhagen et al., 2015). Our
results suggested that the elevation plays an important role in
wooly wolf distribution in current and future scenarios without
change in the preferred range of 2,500–5,000 m, which aligns with
a similar previous study (Habib et al., 2013). We also predict the
range expansion of wolves in Myanmar and Russia where there
was low habitat suitability for wolf distribution before. This might
lead to the colonization of a new predator species, disrupting
the current prey-predator guild and the sudden rise of conflict
with humans. Thus, this study shows the importance of predictive
modeling, which could help in management planning for such
scenarios priorly.

Our results indicate Kazakhstan to have decreased wooly wolf
habitat suitability area in the future. Earlier studies have shown
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that the wolf population in this country has been declining
due to a reduction in saiga population and hunting (Leontiev,
2018). Gray wolves, which were once the most widespread
land carnivore (Paquet and Carbyn, 2003), have now vanished
from 26% of their geographical extent (Wolf and Ripple, 2017).
Similarly, the wooly wolf is subjected to human persecution and
conflict for centuries, a consequence of thriving in a resource-
scarce habitat (Lyngdoh et al., 2020). The main reasons for
conflict with humans across their distribution range are due to
livestock depredation and retaliation by humans (Mishra, 1997;
Namgail et al., 2007; Jamtsho and Katel, 2019). We propose
that changes in wolf distribution may aggravate the conflict
situation across various wolf-ranging countries in the future,
mainly because of their increasing presence in human-dominated
landscapes. This study paves the way for future administrative
mechanisms for wolf management in these countries.

CONCLUSION

Studies have shown that climate change has affected mammal
species in the northern hemisphere more due to the combined
effect of different drivers such as land-use change, anthropogenic
food subsidies, and hunting. This study provides baseline
information on how the distribution of a generalist top predator
species would alter under the combined effects of climate
and land-use change. Holistic spatial information about local
populations of predators is important because of the knowledge
gaps from lesser-known areas. While this study does not support
the complete range shift for wooly wolves, we predict an
increase in suitability area across their distribution range. This
study provides insights regarding the gain or loss of suitable
habitat in wolf range countries within and outside PAs. Based
on such projections, conscious management decisions need
to be taken regarding the conservation of this species in a
country-specific manner. Hotspot areas where future conflict
with humans could arise due to increased livestock numbers
resulting in depredation should be considered priority areas for
management. Understanding the spatial distribution of wooly
wolves across its range is necessary to plan monitoring and
management strategies. Lack of this understanding may also
hinder our conservation efforts and mitigation strategies under
climate change scenarios. Similar information on future trends

of prey species and co-predators should be at hand to have
overall information of the landscape ecosystem. Transboundary
protocols based on such future trends are the need of the hour
for the conservation of the wooly wolf.
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