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Colonche is a traditional beverage produced in Mexico by the fermentation of fruits
of several cacti species. In the Meridional Central Plateau region of Mexico, where
this study was conducted, it is mainly produced with fruits of Opuntia streptacantha;
there, the producers perform spontaneous fermentation and/or fermentations through
inoculums. Several factors can change the microbial community structure and dynamics
through the fermentation process, but little attention has been directed to evaluate
what type and extent of change the human practices have over the microbial
communities. This study aims to assess the microbiota under spontaneous and
inoculated fermentation techniques, the microorganisms present in the inoculums and
containers, and the changes of microbiota during the process of producing colonche
with different techniques. We used next-generation sequencing of the V3-V4 regions
of the 16S rRNA gene and the ITS2, to characterize bacterial and fungal diversity
associated with the different fermentation techniques. We identified 701 bacterial
and 203 fungal amplicon sequence variants (ASVs) belonging to 173 bacterial and
187 fungal genera. The alpha and beta diversity analysis confirmed that both types
of fermentation practices displayed differences in richness, diversity, and community
structure. Richness of bacteria in spontaneous fermentation (0D = 136 ± 0.433) was
higher than in the inoculated samples (0D = 128 ± 0.929), while fungal richness in
the inoculated samples (0D = 32 ± 0.539) was higher than in spontaneous samples
(0D = 19 ± 0.917). We identified bacterial groups like Lactobacillus, Leuconostoc,
Pediococcus and the Saccharomyces yeast shared in ferments managed with different
practices; these organisms are commonly related to the quality of the fermentation
process. We identified that clay pots, where spontaneous fermentation is carried out,
have an outstanding diversity of fungal and bacterial richness involved in fermentation,
being valuable reservoirs of microorganisms for future fermentations. The inoculums
displayed the lowest richness and diversity of bacterial and fungal communities
suggesting unconscious selection on specific microbial consortia. The beta diversity
analysis identified an overlap in microbial communities for both types of fermentation
practices, which might reflect a shared composition of microorganisms occurring
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in the Opuntia streptacantha substrate. The variation in the spontaneous bacterial
community is consistent with alpha diversity data, while fungal communities showed
less differences among treatments, probably due to the high abundance and dominance
of Saccharomyces. This information illustrates how traditional management guides
selection and may drive changes in the microbial consortia to produce unique fermented
beverages through specific fermentation practices. Although further studies are needed
to analyze more specifically the advantages of each fermentation type over the quality
of the product, our current analysis supports the role of traditional knowledge driving it
and the relevance of plans for its conservation.

Keywords: microbiota, management, ferments, ethnozymology, colonche, landscape domestication

INTRODUCTION

Throughout history, human societies have developed knowledge
and techniques to use a plethora of species of plants, animals,
fungi and other organisms from different ecosystems to satisfy
nutritional needs (Campbell-Platt, 1994; Tamang et al., 2016,
2020, 2021). Interactions between people and nature commonly
include a high diversity of management practices through
which people adequate organisms and other components of
ecosystems to secure their livelihoods; these practices are context-
dependent on local conditions, outstandingly human culture
and environment (Jones et al., 1997; Odling-Smee et al., 2003;
Anderson, 2005). Traditional or local knowledge commonly
includes complex bodies of information on the ecological context,
relationships and behavior of the elements used as food, extensive
repertoires of preparation procedures, as well as about their
relationships with customs, taboos, rituals, and other cultural
aspects (Nabhan, 2010; Tamang, 2010; Ratcliffe et al., 2019). All
these biocultural facets can be visualized through the diversity
of food products and practices related to it, and provide basic
notions about what is edible, where and when edible elements
are available, the way these should be harvested, and how they
can be improved by cooking, roasting, fermenting, or making it
harmless (Lévi-Strauss, 2012; Ratcliffe et al., 2019; Tamang et al.,
2020, 2021; Tsafrakidou et al., 2020; Fernández-Llamazares et al.,
2021; Gadaga et al., 2021; Kennedy et al., 2021).

Fermentation practices are part of the local knowledge and
food systems, directed to procure and improve human health and
wellbeing, but fermented products have changed the human food
supply worldwide (Harris et al., 1989; Kuhnlein and Receveur,
1996; Steinkraus, 1996; Harris, 1998; Quave and Pieroni, 2014;
Svanberg, 2015; Sõukand et al., 2015; Flachs and Orkin, 2019;
He et al., 2019). Fermentation can contribute to construct
sustainable food systems, diversify food production, and procure
safety, security and sovereignty in human communities around
the world (Johns and Sthapit, 2004; Marshall and Mejia, 2011;
Ojeda-Linares et al., 2021). It allows preserving and improving
nutritional value of food and conferring desirable properties to
the final products such as textures and sensorial properties, which
are completely unlike to those of the starting materials (Smid and
Hugenholtz, 2010; Smid and Kleerebezem, 2014). The microbial
communities of bacteria, yeasts, and molds play a key role

determining the quality of the fermented products, influencing
their acidity, flavor, texture, nutritional value and other health
benefits (Forssten et al., 2011; Todorov and Holzapfel, 2015;
Gutiérrez-Uribe et al., 2017; El Sheikha and Hu, 2020). Changes
in the microbial composition may be caused by variation in
environmental factors, thus organoleptic and physicochemical
characteristics of a fermented product could be modified and
driven by managing fermentation environments through human
practices (Escalante et al., 2016; Rebollar et al., 2017). The persons
that perform and drive changes and follow the fermentation
process in traditional contexts are recognized as traditional
fermentation managers (Nabhan, 2010; Flachs and Orkin, 2019;
Ojeda-Linares et al., 2020).

A common practice used to produce traditional ferments is
the “spontaneous” fermentation, which involves microorganisms
occurring in a local environment and is influenced by
temperature, substrate type, techniques and tools employed, and
other cultural factors that shape the composition and dynamics
of the microbiota (De Vuyst and Vancanneyt, 2007; Vogelmann
et al., 2009; Chaves-López et al., 2020). Due to the influence
of all these factors, this type of fermentation is commonly
assumed to be unpredictable, producing outcomes of inconsistent
attributes; local people commonly have knowledge about how
environmental and technological factors may influence the
product and carry out practices to manage them, looking for
decreasing the unpredictability of the resulting product. The
other general practice is the use of starter cultures, which
are characteristic for numerous fermented products around
the world. Inoculation refreshment favors a periodically stable
microbial community which provides an easy way to achieve
optimal fermentations and desirable products (De Vuyst and
Vancanneyt, 2007; De Vuyst et al., 2009; Brandt, 2014; Harth
et al., 2016; Mukisa et al., 2017). Therefore, it is thought that this
type of practice is associated with a set of selective forces favoring
a specific community of microorganisms, guiding the dynamics
and structure of the microbiota through the fermentation process
(Vogelmann et al., 2009; Vogelmann and Hertel, 2011; Gibbons
and Rinker, 2015; Liu et al., 2021).

The influence of human management over composition,
structure and dynamics of microbial communities has been
insufficiently analyzed, even when humans historically have
developed numerous management techniques to direct, diversify
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and innovate the quality or to prevent the spoilage of fermented
products around the world (Tamang and Fleet, 2009; Tamang
et al., 2016). Ethnozymological studies have documented a wide
range of activities that producers perform to adequate fermented
products to their purposes; for instance, boiling the substrates,
adding salt, plant, or animal products with antiseptic or flavoring
roles are common practices (Quave and Pieroni, 2014; Hong
et al., 2015; Sõukand et al., 2015; Pieroni et al., 2017; Álvarez-
Ríos et al., 2020; Ojeda-Linares et al., 2021). Documenting the
known-how of the management over the microbial communities
in fermented products has high importance to understand the
implications of human practices on the structure and dynamics of
microbial communities during fermentation and to recover old
human experience for innovation. In addition, this information
provides elements to analyze possible processes of domestication
at species and/or community levels.

Management includes a broad spectrum of practices that
favor phenotypic attributes of organisms like size, flavors,
colors, nutritional values, attributes to satisfy customs, rituals,
ornamental, and other cultural purposes (Anderson, 2005;
Casas et al., 2007). Through time, management has determined
differences between wild and managed populations, the latter
having higher frequencies of human-favored phenotypes. Such
processes have been especially assessed in plant and animal
populations where specific visible phenotypes are favored (Casas
et al., 2007; Blancas et al., 2010). At ecosystem level, management
practices may be directed to change species richness, diversity,
and structure of communities and this is also an expression
of domestication, the landscape domestication (Casas et al.,
1997; Smith, 2007; Albuquerque et al., 2019; Clement et al.,
2020, 2021; Franco-Moraes et al., 2021). But, although the
processes involved in ecosystem management are common and
widespread throughout the world, these have been less studied
than domestication at species populations level and even fewer
are studies documenting management and domestication at
micro-landscape level.

In this study we explored the general hypothesis that
the composition and structure of the microbiota involved in
fermentation would differ according to management practices.
We expected to find a higher microbial diversity in techniques
involving spontaneous fermentation than in those using
inoculums, which would be favoring reduced consortiums of
microorganisms due to continuous human selection. Such
differences would also influence the dynamics of change
through the fermentation of communities with higher and lower
diversity toward less and more predictable products, respectively.
Characterizing and analyzing the type and extent of change of
microbial communities according to management practices are
conceptually relevant to construct and test hypotheses about
how these processes and techniques lead to domestication of
microorganism consortiums and, probably, of specific lineages.
Also, to design innovative strategies to improve food quality.
Understanding how certain management practices do help to
predict how diversity, composition, and richness of microbiota
can be and change, would support principles of selection and
management programs of microbial communities to obtain
desirable products.

Such hypothesis has been narrowly explored, particularly
because testing it requires methods and study systems able to
compare and measure across confidently. A traditional fermented
product prepared with the same substrate and different
management practices represents an optimal study system for
such purpose, while using High Throughput Sequencing (HTS)
techniques allow detecting or rejecting associations between
microbial composition and management practices. Currently,
HTS allow glimpsing the composition and structure of microbial
communities in different ecosystems (Metzker, 2010; Caporaso
et al., 2011) and fermenting landscapes are not the exception
(Foligné and Pot, 2013; De Filippis et al., 2017; Sha et al., 2018;
Astudillo-Melgar et al., 2019).

To address our hypothesis, we selected the traditional
fermented beverage called colonche. Colonche is a group of
traditional Mexican beverages prepared since pre-Columbian
times by the fermentation of fruits of several cactus species,
including several species of Opuntia prickly pears and columnar
cacti (Ojeda-Linares et al., 2020). We conducted our study in
the Meridional Central Plateau region of Mexico, where the
main substrate for colonche production is Opuntia streptacantha
fruit. For its production, prickly pear fruits are gathered in wild
and cultivated populations and stored in plastic trays almost
every day from August to October, when fruits are available.
Local people carry out different fermentation practices, based
on spontaneous or inoculated procedures. To produce colonche
through spontaneous fermentation, they harvest and peel the
Opuntia fruits in situ, and then place them inside a clay pot where
fermentation occurs for about 12 h. In this area the colonche
production is mainly performed by old men (60 ± 5 years old).
The inoculated fermentation is performed by firstly boiling the
fruits to concentrate their juice; then, the producers add the
starter cultures from previous batches and store the fermenting
juice in plastic containers for 4 h (Ojeda-Linares et al., 2020).
The production of inoculated colonche in the area is mainly
performed by young women (32 ± 4 years old), and the
production represents a recent recovery of this beverage by the
younglings. Therefore, an analysis of the microbiota associated
with this fermented beverage prepared with the same substrate
under different fermentation practices is possible and would
allow documenting how management over the fermentation
process influences the microbial communities.

Nowadays, there is a worrying erosion of local food systems,
causing the disappearance of traditional food products worldwide
(Pingali, 2007; Turner and Turner, 2007; Johns et al., 2013; Albert
et al., 2015; Hernández-Santana and Narchi, 2018; Akinola et al.,
2020). Fermented products have been poorly considered in the
analysis of erosion of local food systems, even when some of
them have almost disappeared. Nonetheless, a renewed interest in
their production has motivated studies and actions to guarantee
its permanence (Madej et al., 2014; Svanberg, 2015; Cano and
Suárez, 2020; Ojeda-Linares et al., 2020, 2021). In México, it has
been recorded the loss of some traditional fermented beverages,
even though the main substrates are available in the nearby,
but the transmission of knowledge has been lost (Ojeda-Linares
et al., 2021). The vanishing of fermented products not only favors
disappearing fragments of foodscapes, but also the traditional

Frontiers in Ecology and Evolution | www.frontiersin.org 3 February 2022 | Volume 10 | Article 821268

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-821268 February 4, 2022 Time: 15:29 # 4

Ojeda-Linares et al. Managing Microenvironments in Ferments

ecological knowledge over fermentation practices, and therefore
the efforts that humans have historically engineered to shape
microbial communities and the evolutionary processes involved
in making unique products.

This study aims to describe the microbial community of
colonche under different management practices and highlights
the relevance of traditional knowledge to construct the micro-
landscapes and, in general, to preserve unique products that
are part of a local food systems. We aspire to contribute to
a deeper understanding of the processes that can be involved
in the selection and domestication of microbial consortia and
specific lineages of the microbiota. We also aspire to contribute
to the conservation of traditional knowledge over fermentation
practices and the establishment of a microbial panel helpful to
determine the geographical origin of the product and supports
the relevance and the way of its conservation.

MATERIALS AND METHODS

Study Area and Sampling
We studied colonche samples prepared by the fermentation
of O. streptacantha fruits. We collected nine samples from
spontaneous fermentations in the village of Laguna de Guadalupe
(LG) in the state of Guanajuato, México from three different
producers that performs similar practices. Also, nine samples of
inoculated colonche produced by three producers in Mexquitic
de Carmona (MC) in the neighboring state of San Luis Potosi
(Figures 1A,E). We in addition collected samples of residuals
from two clay pots one day before producers began spontaneous
colonche fermentation. These clay pots have been used for
almost 80 years for colonche production and are stored indoors
when fruits of O. streptacantha are not available. Before the
fermentation starts, the producers clean them only with water
(no soap is added since according to people it changes the
flavor of the product; Figure 1B). In addition, we collected and
analyzed two samples of the inoculum, which were saved from
the last production season, stored in a fridge and ready to use
in the following batches (Figure 1C) and two samples of the
cooked cactus prickly pear fruit juice before fermentation in the
inoculated treatment (Figure 1D). The cooked samples represent
a treatment that producers of the locality of Mexquitic performed
because it is presumed to give a longer shelf life to colonche, since
it can be stored in this way before the inoculum is added.

DNA Extraction and Sequencing
Genomic DNA was extracted for all the samples with the ZR
Soil Microbe DNA MiniPrep kit (Zymo Research) following
the manufacturer’s protocol. DNA was quantified using Qubit
Fluorometric Quantitation (Thermo Fisher Scientific) and its
quality was assessed on a 1% agarose gel. The obtained high-
quality DNA samples were stored at −20◦C util the library
preparation. The libraries and targeted metagenomic sequencing
were performed at ZymmoBIOMICS Service (Irvine, CA).
Libraries of 16S rDNA and ITS amplicons were sequenced on
the Illumina R© MiSeqTM platform 2 × 300 bp paired end. For
bacteria, the V3-V4 regions of the 16S rRNA were amplified as

has been reported in previous works (Caporaso et al., 2011; Li
and Yue, 2016). For fungi, the internal transcribed spacer (ITS)
was amplified using the ITS2 primers (Yao et al., 2010; Badotti
et al., 2017; Baldrian et al., 2021).

Microbiome Analysis in the Colonche
Samples
The 16S rRNA and ITS amplicon sequences were processed
using QIIME 2TM (Caporaso et al., 2010; Bolyen et al., 2019),
version qiime2-2018.8. For all data, the DADA2 (Callahan et al.,
2016) pipeline was used for quality filtering, removal of chimeric
sequences, merge paired end reads and generate a table of
amplicon sequence variants of each dataset (ASVs, Callahan et al.,
2017). To eliminate the bases corresponding to the primers, the
first 16 bases of the forward reads and 24 bases of the reverse
reads of the 16S rRNA sequences were trimmed. From the ITS
sequences, 22 and 24 bases of forward and reverse reads were
clipped, respectively. Furthermore, to remove low-quality regions
of the sequences, each read was clipped to some position where
the quality decreases and was determined with the interactive
quality plots of QIIME 2TM (Bolyen et al., 2019). The 16S
rRNA sequences were truncated to 315 bases for forward reads
and 250 bases for reverse reads, and the ITS sequences were
truncated to 310 bases and 215 bases for forward and reverse
reads, respectively.

Taxonomy was assigned to the representative unique
sequences from each ASVs based on the Naïve Bayes
classifier (Bokulich et al., 2018) and annotated according to
the Greengenes 13_8 database (DeSantis et al., 2006); for the
16S rRNA data and from the ITS data the UNITE database
v8.0 (Nilsson et al., 2019) was used. For each dataset, the
ASVs represented by less than 10 sequences were removed
in all samples, and the ASVs that were classified as plant
chloroplast, mitochondria, archaea, unassigned sequences, or
only assigned to phylum level were also eliminated. For diversity
and statistical analysis, the ASVs tables of bacteria and fungi were
normalized by their relative abundance (Fitzpatrick et al., 2018;
Solís-García et al., 2021).

Diversity and Statistical Data Analysis
Alpha diversity was evaluated with the Hill numbers (qD), where
the order q determines the sensitivity of the measure to the
relative abundance (Chao and Chiu, 2016). 0D is equivalent to the
richness; the measure 1D counts the ASVs proportionally to their
abundances and corresponds to the effective numbers of common
ASVs; the measure for 2D considers the most abundant ASVs
and can be interpreted as the effective number of dominant ASVs
(Chao et al., 2014; Montes-Carreto et al., 2021). The comparisons
of the diversity measures among colonche management practices
were made under the same sample coverage and the no overlap
in the 95% CI values indicates significant differences (Cumming
et al., 2007). Sample coverage values, qD, and their confidence
intervals were calculated with the iNEXT R package 3.5.3 (Hsieh
et al., 2016), using as an endpoint the maximum number of
sequences in each treatment.
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FIGURE 1 | Sampling sites and colonche samples (A1) the locality of Laguna de Guadalupe in Guanajuato state; (A2), Mexquitic de Carmona in San Luis Potosí.
(B) Claypots where spontaneous fermentation occurs; (C) Inoculum stored from the last season; (D) Cooked and boiled Cactus prickly pear fruits where sugars are
concentrated; (E) Inoculated samples ready to sell in the local markets.

For beta diversity analyses, each phylogenetic tree was
constructed with the ASVs of bacteria or fungi of the
inoculated and spontaneous colonche management practices.
The sequences alignment was made with MAFFT, the trees were
inferred with FastTree and then rooted at its midpoint. The
ASVs tables of bacteria and fungi log2-transformed and the
dissimilarity matrices of the Unifrac weighted and unweighted
distances were calculated with the phyloseq (McMurdie and
Holmes, 2013) and vegan packages (Oksanen et al., 2013).
The phylogenetic dissimilarities of the bacterial and fungal
communities were represented with the ordination method of
non-metric multidimensional scaling (NMDS) based on the
Unifrac weighted and unweighted distances (Lozupone et al.,
2011). To compare the structure of each community of the
inoculated and spontaneous colonche management practices a
permutational multivariate analysis of variance (PERMANOVA)
was computed using the vegan package with 999 permutations.

Significant differences in the relative abundance of each taxon
between the inoculated and spontaneous colonche management
practices were evaluated through the Mann-Whitney-Wilcoxon
test with an FDR correction in R v.3.5.2 software, considering as
a significant values P < 0.05. The shared bacteria and fungi ASVs
among both treatments were plotted as a Venn diagram with the
VennDiagram package (Chen and Boutros, 2011).

RESULTS

Preprocessing and Taxonomic
Classification
To visualize the changes in the bacterial communities between
fermentation management practices we obtained pair-end
sequencing of the V3-V4 region of the 16SrRNA leads to a total
of 2,398,545 reads, with an average of 28,769.79 (± 33,516.46)
reads per sampling, then, after filtering the ASVs table, a total

of 701 in all 16S samples, belonging to 173 bacterial genera
(Supplementary Table 1). For fungal communities by ITS
sequence, a total of 1,505,383 pair-end were obtained with an
average of 62,724.291 (± 23,303.49) reads for all the sampling
which composed a total of 203 ASVs; then, after filtering the
table with 0.01% of relative abundance, 201 ASVs were obtained,
belonging to 187 yeast genera (Supplementary Table 1). The
bacterial and fungal communities of each colonche management
practices had a sample coverage of 100% suggesting that the
most of the ASVs were captured (Supplementary Figure 1A).
Also, rarefaction curves for all the samples reached the plateau
indicating that the sequencing depth was sufficient to cover
most of the bacterial and fungal diversity in each colonche
management practices (Supplementary Figure 1B).

Colonche Microbiome Is Partially
Consistent With the Management
Hypothesis
To analyze our hypothesis, the alpha diversity was estimated
using the Hill numbers (qD). For the ASVs of the bacterial
community (Supplementary Table 2), the clay pots samples
showed a higher richness (0D = 543 ± 0.121), followed by the
spontaneous samples (0D = 136 ± 0.433), the inoculated samples
(0D = 128 ± 0.929), the cooked samples (0D = 113.00 ± 3.485),
and being the inoculum samples (0D = 47 ± 0.163) the ones with
the lowest richness (Figure 2A). Also, the clay pot samples were
the most diverse (1D = 131.575 ± 1.412, 2D = 38.087 ± 1.212)
compared with the other colonche management practices
(Figures 2B,C and Supplementary Table 2). The diversity
values of the effective number of common and dominant
ASVs were significantly higher in the inoculated samples
(1D = 18.277 ± 0.929, 2D = 11.507 ± 0.04) contrarily to the
spontaneous samples (1D = 11.081 ± 0.049, 2D = 4.33 ± 0.019;
Figures 2B,C). Thus, there is a reduction in richness from
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FIGURE 2 | Comparison of the richness and alpha diversity of the bacterial (A–C) and fungal communities (D–F) between the different colonche management
practices estimated with the Hill numbers (qD). Interval plots of richness (A,D), effective number of common amplicon sequence variants (ASVs) (B,E), and effective
number of dominant ASVs.

spontaneous to inoculated fermentation practices in the colonche
microbiome, which is consistent with our hypothesis. The
richness of the ASVs of the fungal community (Figure 2D
and Supplementary Table 2) showed a different pattern, the
clay pots also display the highest values (0D = 159 ± 0.151),
followed by the inoculated samples (0D = 32 ± 0.539), then
the cooked samples (0D = 31 ± 0.458), the spontaneous
samples (0D = 19 ± 0.917), and finally the inoculum with
the less richness (0D = 3 ± 0.151). Diversity of clay pots
samples (1D = 28.873 ± 0.214, 2D = 14.787 ± 0.145) was
higher than that of the other colonche management practices
(Figures 2E,F). In contrast, diversity of common and dominant
fungal ASVs was significantly higher in the spontaneous samples
(1D = 2.667 ± 0.004, 2D = 2.442 ± 0.004) than in the inoculated
samples (1D = 1.826 ± 0.007, 2D = 1.346 ± 0.004; Figures 2E,F).

Colonche Microbial Differences Between
Spontaneous and Inoculated
Fermentation Practices
To characterize the differences between spontaneous and
inoculated colonche microbiome, the beta diversity of
bacterial and fungal communities was represented with a
NMDS using weighted and unweighted Unifrac distances
(Figure 3 and Supplementary Figure 2). Although phylogenetic
dissimilarities between the bacterial groups in spontaneous and
inoculated fermentations by the unweighted Unifrac distance
allow visualizing the splitting of both bacterial communities
(p < 0.036), there is an inoculated sample that is closer to
the spontaneous samples, and the spontaneous fermented
samples are more disperse and less clustered (Figure 3A and
Supplementary Table 3). The weighted Unifrac distances
partially allow discriminating fungal community (p < 0.047),
it can be seen that the spontaneous bacterial communities are

clustered, while the inoculated samples are more variable and
there are samples that overlap with the spontaneous treatment
(Figure 3B and Supplementary Table 4). Both results are
supported by PERMANOVA analysis (999 permutations).
Summarizing, the overlap in microbial communities for both
types of fermentation practices might reflect a common shared
composition of microorganisms occurring in the Opuntia
streptacantha substrate. The variation in the spontaneous
bacterial community is consistent with the data of alpha
diversity, while for fungal communities there are less differences
among treatments, which might reflect the high abundance and
dominance of Saccharomyces genus, as referred to for alpha
diversity (Figure 2B).

Colonche Microbial Genus Composition
in the Different Fermentation Practices
The Microbial Community in Spontaneous
Fermentation: Clay Pots and Spontaneous Colonche
Besides different diversity levels, we found that clay pots have
a high richness in the composition of bacteria and fungi at the
genus level (Figure 2). Among the most abundant bacteria genera
occurring in the clay pots are: Arthrobacter (14.92%), Elstera
(10.12%), Alkanindiges (7.72%), Massilia (6.92%), Pseudomonas
(5.18%), Nocardioides (1.79%), Roseomonas (1.62%), Rhizobium
(1.40%), Blastococcus (1.39%), Achromobacter (1.20%),
Brevundimonas (1.15%). While for fungal community,
Penicillium (38.15%), Cladosporium (9.70%), Didymella
(9.60%), Wickerhamomyces (8.90%), Naganishia, (7.86%),
Alternaria (6.42%), Rhodotorula (4.06%), Fusarium (3.02%),
Saitozyma (1.62%), Aureobasidium (1.38%), Vishniacozyma
(1.14%), Cystofilobasidium (1.01%) and although Saccharomyces
(0.42%) ends up as the most dominant yeast in the spontaneous
fermentation, its abundance is lower in the clay pots (Figure 4).
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FIGURE 3 | Non-metric multidimensional scaling (NMDS) plots-based (A) on UniFrac weighted distance of the bacterial community structure; (B) an Unifrac
weighted distances of the fungal community structure associated with inoculated and spontaneous fermentation practices in the colonche production.

At the end of the spontaneous fermentation process, 10
fungal ASVs (Aureobasidium, Candida, Cladosporium, Pichia,
Saccharomyces, Torulaspora, Rhodotorula, Wickerhamomyces,
one unidentified taxon and one not assigned fungal) are shared
within the clay pots. This group is mainly involved in the
final stages of the fermentation process of the spontaneous
fermentation. Four groups are exclusive of the spontaneous
fermented colonche (Dekkera, Kazachstania, Kluyveromyces
and Knufia) and 45 are unique for clay pots. This behavior is
similar in the bacterial community, in which 6 genera (Massilia,
Elizabethkingia, Clostridium, Bacillus, Alkanindiges and one
not assigned taxon) are shared with the spontaneous final
product and the clay pots. For instance, 12 genera (Weissella,
Tanticharoenia, Tatumella, Streptococcus, Rheinheimera,
Pediococcus, Lactococcus, Lactobacillus, Gluconacetobacter,
Faecalibacterium, Dorea and Aeromonas) are present in the
final product of spontaneous fermentation, being particularly
remarkable Lactobacillus and Leuconostoc, which are present in
higher abundance (Figure 4). Finally, 71 ASVs are exclusive of
the microbiota communities of the clay pots.

The Microbial Community in the Inoculated
Fermentation: Inoculums, Cooked and Inoculated
Colonche
It can be visualized that the inoculums are the samples with the
lowest richness of bacteria and yeasts; for instance, we identified
only 7 bacteria and 2 yeast genera, mainly dominated by multiple
taxa of Lactic Acid Bacteria (LAB) as: Lactobacillus (24.60%),
Leuconostoc (10.34%), Alkanindiges (8.65%), Pediococus (6.92%),
while yeasts are dominated by Saccharomyces (99.9%) and
Kazachstania (0.01%). Surprisingly, there were a higher number
of ASVs for the cooked samples with 32 bacteria genera
(Supplementary Table 5) and 21 yeasts, contrasting with the final
product of the inoculated fermentation, which had fewer ASVs
(Supplementary Table 6).

As mentioned above, in the inoculated fermentation process
all microbial ASVs of the inoculums are shared with the
inoculated final product. Also, Alkanindiges, Clostridium

Corynebacterium, Gluconacetobacter, Lactobacillus, Leuconostoc,
Massilia, Pediococcus, Sphingomonas, Staphylococcus, Weissella
and one not assigned taxon are shared between the cooked
and the inoculated samples. Dorea and Elstera are the only
two exclusive genera of the inoculated samples and 18 genera
(Actinomycetospora, Actinotelluria, Albidovulum, Arthrobacter,
Blastococcus, Dietzia, Gaiella, Helcobacillus, Micrococcus,
Microlunatus, Nocardioides, Oceaniovalibus, Ochrobactrum,
Roseomonas, Solirubrobacter, Sporosarcina, Streptomyces and
Tanticharoenia) are exclusive of the cooked samples.

For the fungal community we registered 9 genera being
commonly shared between the cooked treatment and inoculated
samples (Candida, Cladosporium, Dipodascus, Hanseniaspora,
Kazachstania, Kluyveromyces, Saccharomyces, Torulaspora and
one unidentified taxon). The genera Alternaria, Arthrinium,
Cryptococcus, Didymella, Filobasidium, Fusarium, Mucor,
Naganishia, Rhodotorula and Starmerella are exclusive
of cooked samples and only Aureobasidium, Dekkera,
Issatchenkia and Pichia are unique for the final product of
inoculated fermentation.

The Microbial Composition Between Spontaneous
and Inoculated Fermentations
For bacterial communities we found that 12 ASVs are
shared among the fermentation practices, like Lactobacillus
(p < 1e-1), Alkanindiges, Clostridium, Dorea, Faecalibacterium,
Gluconacetobacter, Lactococcus, Leuconostoc (p < 1e-1),
Pediococcus (p < 1e-1), Tatumella, Tanticharoenia, and
Weisella (p < 1e-1). For instance, 6 genera are exclusive to
spontaneous treatment like Aeromonas, Bacillus, Elizabethkingia,
Massilia, Rheinheimera and Streptococcus and 4 are exclusive
of the inoculated samples (Staphylococcus, Sphingomona,
Corynebacterium, Elstera) (Figure 5A). In the fungal
communities, we identified 11 genera shared among samples
under different fermentation practices: Aureobasidium, Candida,
Cladosporium, Dekkera (p < 1e-1), Hanseniaspora, Kazachstania
(p < 1e-6), Kluyveromyces, Pichia, Saccharomyces, Torulaspora
and other unidentified taxa. The inoculated samples displayed
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FIGURE 4 | Composition of the (A) Bacterial Genera composition of the community associated with the management practices and colonche production stages
and, (B) the fungal Genera composition. Low abundance taxonomic groups (relative abundance < 1%) were reported as others. NA mean not assigned. The
asterisk indicates significant differences in taxa relative abundance between management practices.
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FIGURE 5 | Venn diagrams of the number of unique and shared amplicon sequence variants (ASVs) of the (A) bacterial and (B) fungal community associated with
the fermentation practices of colonche samples inoculated (red) and spontaneous (purple).

4 exclusive ASVs (Wickerhamiella, Issatchenkia, Dipodascus
and Clavispora), while the spontaneous fermentation samples
registered 3 unique ASVs (Wickerhamomyces, Knufia and one
not assigned genus) (Figure 5B).

DISCUSSION

Differences Between Spontaneous vs.
Inoculated Fermentations
Our results confirm that spontaneous and inoculated
fermentation practices significantly differ in the composition of
microbial assemblages and the relative abundance of bacterial
and fungal taxa in fermenting communities. These results
are in concordance with most of the literature reporting that
spontaneous fermentations exhibit a higher number of microbial
species than inoculated products (Tamang et al., 1988; Raspor
et al., 2002; Haruta et al., 2006; Domizio et al., 2007; Alves
et al., 2010; Hong et al., 2015; Anagnostopoulos et al., 2020; Lu
et al., 2021). These results confirm the reduction of diversity
hypothesis, as can be visualized in Figure 2, where the lowest
values of diversity for both bacteria and fungi were recorded
in the inoculums and the reduction at the final composition
for bacterial communities occurs in the inoculated samples.
Nevertheless, this relation is not unidirectional for fungi, for
which we observed small differences, contrarily to what has been
previously reported (Raspor et al., 2002).

Fermentation traditionally occurs spontaneously and
is initiated by a diverse community of indigenous yeasts
and bacteria associated to the plants, the environment, or
the fermentation facilities where it is produced (Pretorius
et al., 1999; Motarjemi, 2002; Bokulich et al., 2013; Bokulich
and Mills, 2013; da Silva Vale et al., 2021). In different
traditional fermented beverages, the yeast genera Hanseniaspora,
Pichia, Metschnikowia, Candida, Torulaspora, Rhodotorula,
Cryptococcus, Lachancea, Zygosaccharomyces have been recorded
as the most common at the initial stages of the successional
process of fermentation, while strains of Saccharomyces cerevisiae
become dominant at the last stages (Krieger-Weber et al., 2020).
Although successional dynamics were not assessed in our
current analysis, it could be considered that the fermentative
environment as the clay pots where spontaneous fermentation

occurs and the cooked samples before the inoculation, displayed
a higher richness at both initial stages. This information also
confirms that there is a marked dominance of the genus
Saccharomyces at the final stages of the fermentation, and it
occurs independently if it is spontaneous or inoculated fermented
colonche. This can be explained because of the Saccharomyces
capacity to quickly adapt to variable environmental conditions
(Legras et al., 2018).

Our results confirm that the non-Saccharomyces yeast
group comprises a variety of oxidative, weakly fermentative
and strongly fermentative yeasts of genera like Rhodotorula,
Cryptococcus, Hanseniaspora, Candida, Pichia, Issatchenkia,
Metschnikowia, Lachancea, Zygosaccharomyces, Starmerella,
Torulaspora and others (Barata et al., 2012), which are found at
different frequencies at the clay pots and the cooked samples.
This group has low fermentation power and are sensitive to
prevailing anoxic conditions and increasing ethanol levels
(Martinez et al., 2013; Quirós et al., 2014; Morales et al., 2015).
Depending on the fermentative capacity and metabolic activity
of the individual species, non-Saccharomyces yeasts are able
to maintain their viability until the middle of fermentation
before starting to decline (Xufre et al., 2006; Renouf et al., 2007;
Andorrà et al., 2008; Zott et al., 2008, 2010; Bagheri et al., 2015;
Sha et al., 2017). Nevertheless, the current results showed the
dominance of Saccharomyces over the non-Saccharomyces groups
in the final products of both types of fermentations. A similar
observation was reported for other fermented beverages around
the world (Tamang et al., 1988; Lyu et al., 2013; Yang et al., 2016;
Sha et al., 2017).

In both types of fermentation, we identified constantly the
Pediococcus genus. Some species of this genus are associated
with spoilage of fermented beverages, especially beers and wines
(Mokoena, 2017). It has been associated with the synthesis
of excessive diacetyl, exopolysaccharides, and biogenic amines,
all of which have a detrimental impact on the quality of the
product (Wade et al., 2019). However, recent research has
supported the contention that Pediococcus spp. can grow in wines
considered to be microbiologically stable. In fact, the presence
of Pediococcus spp. in wines not always lead to spoilage, and
new findings have suggested potential uses for Pediococcus spp.
to contribute to desirable characteristics of wines under certain
circumstances. As Pediococcus was one of the most common
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genera identified in colonche samples, further studies through
High-performance liquid chromatography (HPLC) should be
addressed to characterize if the high abundance is associated
with the spoilage or if it brings desirable characteristics to
colonche and the distinction in the aromatic profile between
fermentation practices.

The presence of yeast genera like Wickerhamiella, Clavispora,
Dipodascus and Issatchenkia, has been described previously in
pulque fermentation (Rocha-Arriaga et al., 2020). For instance,
the differences of the fungal community between the inoculated
fermentation are due to the common use of pulque to improve
their fermentation or the use of the same containers for pulque
production. Torulaspora is one of the few microorganisms
previously identified in colonche samples (Ulloa and Herrera,
1978). By the current sampling we identified its presence in
clay pots and in the cooked samples, which might represent
the initial stages of fermentation. However, at the end of the
fermentation under both types of practices low numbers of this
genus were identified, and such low population density may
be due to strict anaerobic conditions and low invertase activity
(Visser et al., 1990; Hanl et al., 2005), mainly promoted by
Saccharomyces species.

Kluyveromyces was also found in the colonche samples,
it is a genus that has been isolated from a great variety
of habitats and has been described to have high metabolic
diversity and a substantial degree of intraspecific polymorphism.
Therefore, several different biotechnological applications have
been investigated with this yeast: production of enzymes, single-
cell protein, aromatic compounds, and other applications (Varela
et al., 2017). However, it cannot grow under strictly anaerobic
conditions and the ethanol production is almost exclusively
linked to oxygen limitation (Visser et al., 1990; van Dijken et al.,
1993; Bellaver et al., 2004). In this sense, the higher abundance of
Kluyveromyces genus in cooked and inoculated colonche samples
might be due to a low alcohol content, but further studies are
still needed to address the relationship between physicochemical
attributes and the presence of microbial communities.

Kazachstania genus is typically encountered in the plant
substrate, for instance, it is associated with grapevines and,
in a low frequency, in grape must. Although it has not yet
been characterized in cactus prickly pear fruits, this yeast genus
provides positive aroma attributes that should be explored
further. Its low presence in the final inoculated colonche product
might be due to the dominance of the Saccharomyces which
display a higher abundance in this treatment. Rhodotorula is
also a common basidiomycete yeast that has been reported
in several dairy products, it has a weak fermentative capacity,
and has also been found associated with insects as vectors
(Fonseca and Inácio, 2006; Kemler et al., 2017). The presence
of this basidiomycete yeast might reflect the presence of
insects closer to the clay pots and the low cautions in the
storage of the cooked substrate. Nevertheless, this yeast was
not found at the end of fermentation under both treatments,
suggesting that hygienic practices are performed or inhibited
during fermentation. In general, fungi held more stable ranges
of diversity indexes in most of the samples analyzed, a
similar pattern previously reported in beverages like pulque
(Rocha-Arriaga et al., 2020).

Multiple strains of LAB from the Lactobacillus genus were
registered in this study, Lactobacillus was the most abundant
genus of bacteria, found abundantly (∼ 50%) in all phases
of colonche fermentation except in clay pots. LAB are found
in decomposing plant material and fruits, in dairy products,
fermented meat and fish, cereals, beets, pickled vegetables,
sourdough, silages, fermented beverages, juices, sewage and
in cavities of humans and animals (König et al., 2009; Devi
et al., 2013; Liu et al., 2014; Mokoena, 2017). LAB genera
include Lactobacillus, Lactococcus, Leuconostoc, Pediococcus,
Streptococcus, Aerococcus, Alloiococcus, Carnobacterium,
Dolosigranulum, Enterococcus, Oenococcus, Tetragenococcus,
Vagococcus and Weissella (Khalid, 2011), with Lactobacillus
being the largest genus, including more than 100 species that are
abundant in carbohydrate-rich substances and most of them are
the most common and shared among samples of colonche in
both fermentations process. It has been characterized that some
LAB are used as probiotics, due to their health benefits (Ljungh
and Wadstrom, 2006; De Leblanc et al., 2007; Azaïs-Braesco
et al., 2010; Evivie et al., 2017). Although the main aim of this
work was not to identify possible probiotics of LAB genera in
colonche, we suggest that further studies in this direction may
contribute to improve intestinal microbiota and human health
through this beverage.

Our current study identified that 12 bacterial and 11 fungal
ASVs are shared between spontaneous and inoculated colonche
samples. Nevertheless, only the bacterial genera Lactobacillus,
Leuconostoc, and Pediococcus and the Saccharomyces yeasts were
the most abundant for both fermentation practices and appear
in the inoculum and in the cooked samples. We propose as
a first exploratory analysis that these 4 genera might reflect
the microbial core of colonche because they appear common
and abundantly in all the colonche samples. These genera are
common throughout the fermentation of several fermented
beverages and are closely related to food quality (Zhu et al., 2020;
An et al., 2021; Ban et al., 2022). Nevertheless, further analysis
as functional assignation and metaproteomics under a network
approach can give insights of the functional microorganism’s core
and the relevance to achieve a predictable product.

The Clay Pots: Not a Starter Culture but
a Practical Reservoir for Future
Fermentations
The clay pots displayed some microorganism’s genera associated
with pathogenic activity, as are the cases of some strains
of Clostridium, Pseudomonas, and some species of the genus
Pediococcus. Nevertheless, through the fermentation stages these
pathogenic strains disappear, perhaps because of the multiple
strains of Lactobacillus in the spontaneous fermentation process.
LAB have been applied in food preservation, partly due to
their antimicrobial properties and because their capability
to acidify the environment, making it harmless for other
bacterial groups (Cizeikiene et al., 2013; Arena et al., 2018;
Singh, 2018). Bacteriocins are a group of potent antimicrobial
peptides produced by some microorganisms including LAB,
primarily active against closely related organisms, mostly Gram-
positive bacteria to gain competitive advantage for nutrients
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(Parada et al., 2007; Zacharof and Lovitt, 2012; Mokoena, 2017;
Timothy et al., 2021). In fermented foods, LAB display
various antimicrobial activities, through production of various
metabolites, including lactic acid, hydrogen peroxide, and
bacteriocins. Therefore, the high presence of Lactobacillus might
reflect the drastic changes in the composition from the clay pot
samples through the final product, thus inhibiting the pathogens
in the environment.

As mentioned above, clay pots displayed the highest
richness of bacterial and fungal genera, including several
non-Saccharomyces genera, some beneficial bacterial groups as
LAB and some detrimental bacterial groups associated with
the spoilage of the beverage. Nevertheless, some of these
microorganisms contribute to subsequent microbial growth and
brings a stable community, for instance, 10 fungal ASVs and
6 bacterial genera are shared between the clay pots and the
spontaneous colonche. In this sense, a stable consortium as an
inoculum might not be required in spontaneous fermentation
due to the presence of microbial diversity in the clay pots that can
promote a starter community for fermentation process. Further
studies should consider including other microbial inputs, for
example the cactus pear fruits that are exposed to a variety of
microorganisms derived from the environment (e.g., surfaces and
soil), producer’s hands, and tools that can contribute to microbial
communities and the quality of colonche as has been performed
with cocoa fermentation (Schwan and Wheals, 2004; Lefeber
et al., 2010; Figueroa-Hernández et al., 2019; Viesser et al., 2021),
in which these factors contribute to the quality of the product.

The production of spontaneous colonche is mostly performed
in clay pots, nevertheless, sometimes producers store the peeled
cactus prickly pear fruits in plastic containers and then the
fruits are placed inside the clay pots (Ojeda-Linares et al.,
2020). Although we did not characterize the microbial and the
physicochemical differences between the containers, it has been
recorded that the material of the fermentation containers plays
a significant role changing the abundance of specific genus as
Lactococcus and Pedioccous and can affect pH values favoring
a quicker fermentation (Liu et al., 2019). It is possible that the
presence of these genera is favored by a previous storage in
plastic containers and changes in the pH values might also change
the dynamic in the clay pot by acidifying the medium. Though,
further analysis should be performed to characterize the effect of
the containers for colonche production.

The Inoculums: Insights for Unconscious
Microorganisms’ Selection
The producers of traditional fermented beverages select
inoculums as a practical way to acquire an optimal fermentation
capacity and their capability to give consistent quality and aroma
compositions through the fermentation process. As documented
before, the selection of inoculums is related to a community of
bacteria and yeasts that improves the fermentation dynamics
and is mainly characterized by a reduction of diversity (Alves
et al., 2010; Anagnostopoulos et al., 2020; Lu et al., 2021). In
the colonche production, cinaiste is the common name of the
inoculum, it is stored from previous batches year after year,

and our data indicate a marked dominance of S. cerevisiae
strains and a higher number of reads compared with the rest
of samples analyzed. The large inoculum of active S. cerevisiae
cells in most cases ensures a rapid dominance of a single strain
and will therefore likely reduce any impact that the natural
microbiota may have if spontaneous fermentation is allowed.
In addition, the inoculum shows the lowest bacterial diversity,
which is consistent with a reduced richness in starter cultures, a
pattern that has been previously documented for the selection
of starter cultures in other traditional fermented products (Orji
et al., 2003; Zorba et al., 2003; Freire et al., 2015; Fagbemigun
et al., 2021; Lima et al., 2021). Our results therefore expand the
documentation of the deliberate selection of microbial consortia
to acquire an optimal fermented product.

Selection of microorganisms is an attempt to enhance a
fermentative environment, such type of efforts to transform
the environment are proposed to play an important and
underappreciated role in shaping biotic communities and
evolutionary processes (Jones et al., 1997; Odling-Smee
et al., 2003; Anderson, 2005). In this context, the studies
of management of microenvironments can make relevant
contributions to analyze general processes of domestication
of organisms and their environments. Morphological and
physiological changes in plants and animals show evidence
of domestication and provide insights of the specific
human practices that produce them. Analogous changes in
microorganisms are not easy to identify. In microorganisms as
yeasts, features like the overexpression of metabolic routes like
maltotriose and lactate, the loss of sexual reproduction and the
decreasing survival in nature, have been considered significant
traits to analyze domestication (Gibbons and Rinker, 2015;
Gallone et al., 2016; Gibbons, 2019), but there is still a long way
to explore in this direction. However, the characterization of
the practices performed to produce colonche, particularly the
selection of inoculums and their specific consortia, provide a
signature of deliberate human management and shaping of the
fermenting microenvironments.

Summarizing, our results confirm that the choice of
fermentation practice and management practices as cooking the
fruits or storing batches year after year influence the composition,
structure, and dynamics of microbiota communities in
the different stages of colonche fermentation. Coexistence
of the different fermentation practices and management
techniques favors the context to maintain and diversify microbial
communities involved in the colonche production. As well,
through the carefully reproduction of inoculums, producers
promote and direct selection over microbial communities to
guide the process of fermentation. The clay pots are important
reservoirs of diversity, but they are not commonly considered
relevant in fermentation studies. Although the most dominant
bacterial and fungal ASVs were not dominant in the clay pot,
its presence might highlight the importance at the beginning
of the fermentation and the practices performed to clean it are
also relevant to maintain the microbial community. Finally,
characterizing the management practices that the producers
perform to obtain specific traditional products gives insights
about the knowledge that humans have to reshape biotic
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communities and micro-landscapes to obtain a quality product
at the end of both fermentation types. Thus, it is relevant to
conserve these techniques of micro-biocultural heritage, ensure
its maintenance and, in some contexts, recover it in the context
of the foodscape diversity (Mintz and Du Bois, 2002; Alexiades,
2003, 2009; Marshall and Mejia, 2011; Rocha et al., 2015).

CONCLUSION

The characterization of the microbial communities related to the
production of a traditional fermented beverage prepared with
fruits of O. streptacantha under spontaneous and inoculated
fermentation practices, confirmed that the fermentation practices
affect the species richness, diversity, and the community
structure through spontaneous and inoculated fermentation
practices. However, differences are slightly significant for the
final products for fungal and bacterial communities, which might
be the result of the increasing relative abundance of LAB and
the outstanding abundance of Saccharomyces genus in final
products of both fermentation types. The current information
corroborates that there is a continuous selection on microbial
communities through the elaboration and management of
inoculums. This practice reduces the microbial community and,
in the case studied, traditional fermenters select mostly LAB and
Saccharomyces genera to begin their new batches of colonche year
after year. Diverse microorganisms live in the container where
fermentation occurs, nevertheless, trough the fermentation
dynamics the diversity changes, and a stable community is
reached. Although the current research was not directed to
assess the differences in the colonche quality, the microbial
composition at the end of the fermentation and the demand
of the consumers for this product supports that both types of
fermentation practices yield a good product. However, further
analysis as the characterization of microbial functionalities
and the physicochemical attributes might help to improve the
fermentation practices. Altogether, these results provide the
potential of the traditional knowledge and management over
microorganisms to produce fermented beverages, thus, the
importance to maintain these products, the practices and the
diversity associated over the fermentation process. These results
are relevant to ensure food security and safety in localities where
food availability is constrained.
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