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The mechanisms underlying diversity-functioning relationships have been a consistent
area of inquiry in biogeochemistry since the 1950s. Though these mechanisms remain
unresolved in soil microbiomes, many approaches at varying scales have pointed to the
same notion—composition matters. Confronting the methodological challenge arising
from the complexity of microbiomes, this study used the model DEMENTpy, a trait-
based modeling framework, to explore trait-based drivers of microbiome-dependent
litter decomposition. We parameterized DEMENTpy for five sites along a climate
gradient in Southern California, United States, and conducted reciprocal transplant
simulations analogous to a prior empirical study. The simulations demonstrated climate-
dependent legacy effects of microbial communities on plant litter decomposition across
the gradient. This result is consistent with the previous empirical study across the same
gradient. An analysis of community-level traits further suggests that a 3-way tradeoff
among resource acquisition, stress tolerance, and yield strategies influences community
assembly. Simulated litter decomposition was predictable with two community traits
(indicative of two of the three strategies) plus local environment, regardless of the
system state (transient vs. equilibrium). Although more empirical confirmation is still
needed, community traits plus local environmental factors (e.g., environment and litter
chemistry) may robustly predict litter decomposition across spatial-temporal scales. In
conclusion, this study offers a potential trait-based explanation for climate-dependent
community effects on litter decomposition with implications for improved understanding
of whole-ecosystem functioning across scales.

Keywords: microbiome, composition, decomposition, trait, tradeoff, climate, litter, legacy

INTRODUCTION

Understanding how ecosystems function across spatial-temporal scales often requires knowledge of
biotic community composition. This composition-functioning relationship has been a consistent
theme since the 1950s (Harper, 1967). From terrestrial to aquatic to marine systems, species
composition has been quantified and related to systems functioning (e.g., Loreau, 2000; Tilman
et al., 2014). Given that microbiomes comprise tremendous diversity and complexity in the
biosphere (e.g., Bardgett and van der Putten, 2014; Tedersoo et al., 2014; Thompson et al., 2017),
understanding how microbiomes drive composition-functioning relationships can therefore
inform how entire ecosystems function.
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Many efforts have addressed composition-functioning
relationships in microbiomes, but there are still unresolved
mechanisms. For instance, functioning may saturate with
increasing microbial diversity (e.g., CO2 production; Yu et al.,
2019). Lab incubations of natural communities showed that
composition matters for rates of plant litter decomposition
(e.g., Strickland et al., 2009; Cleveland et al., 2014). Similarly,
field sampling and subsequent lab incubations under the same
conditions also revealed compositional effects (Rivett and Bell,
2018; Pascual-García and Bell, 2020).

In addition to varying community composition, there are
studies that also manipulate local environment to study
community-environment interactions. For instance, Allison
et al. (2013) conducted a reciprocal transplant under varying
drought and nitrogen deposition conditions in a grassland
ecosystem and found that changes in microbial community
composition can indirectly affect litter decomposition. In a
gradient of lake sediments, Orland et al. (2019) showed that
community structure and environment interacted to influence
CO2 production. Notably, overcoming some limitations in these
earlier studies, Glassman et al. (2018) conducted a large reciprocal
transplant study across a climate gradient in Southern California,
United States, and found climate-dependent compositional
effects on litter decomposition. Still, even in that study, the
mechanistic relationship between microbiome composition and
functioning remained elusive.

The challenge of identifying underlying mechanisms may arise
from interrelated conceptual and methodological issues in the
fields of microbial ecology and biogeochemistry. First, many
litter decomposition studies de-emphasize the role of microbial
composition in controlling soil carbon dynamics (e.g., Beugnon
et al., 2021). This approach reflects the influential conceptual
framework of hierarchical control of litter decomposition (e.g.,
Lavelle et al., 1993; Aerts, 1997). That is, litter decomposition
is argued to be hierarchically controlled by climate, substrate,
and microorganisms, with microbial community composition
occupying the least important position. More recently, this
hierarchical theory has been challenged with the argument
that decomposers control litter decomposition beyond the local
scale and that a more explicit consideration of microbial
communities is warranted (Bradford et al., 2017). Second, a
high degree of functional redundancy in soil microbiomes
introduces methodological issues (Finlay et al., 1997; Allison
and Martiny, 2008). Communities with different taxonomic
composition can be functionally very similar (Louca et al., 2016),
making taxonomy-based approaches less relevant for predicting
ecosystem processes. These issues are probably the major
contributors to the current underappreciation of composition in
modeling litter and soil organic matter decomposition (e.g., Adair
et al., 2008; Bradford et al., 2017).

An alternative, emerging framework focuses on community-
level functional traits that mediate the composition-functioning
relationship in microbial systems under various disturbances.
Trait-based investigations have been established in vegetation,
showing clear advantages in revealing community composition-
function relationships (e.g., McGill et al., 2006). For instance,
recent studies demonstrated that traits can predict the long-term

functional consequences of biodiversity change, together
with data on interacting abiotic factors (e.g., van der Plas
et al., 2020; Klimešová et al., 2021; Wolf et al., 2021). Trait-
based quantification of microbial community composition,
especially considering high functional redundancy (e.g., Allison
and Martiny, 2008; Fetzer et al., 2015), holds promise for
distinguishing functioning between communities. Malik et al.
(2020a) proposed a trait-based Y-A-S framework, arguing
microbial communities trade off among three primary
strategies—Yield (Y), Acquisition (A), and Stress tolerance
(S). Based on this Y-A-S theory, under drought pressure,
microbiomes were revealed to trade off resource acquisition
for stress tolerance (Wang and Allison, 2021). Therefore, we
hypothesize that coordinated changes among traits representative
of these three primary strategies may provide a unifying
explanation for composition-function relationships under
environmental change.

Trait-based modeling offers a flexible framework in which
processes influencing microbiomes’ dynamics and functioning
can be incorporated and easily manipulated. The modeling
approach circumvents some logistic and technical challenges
currently facing empirical studies. Following up on a previous
reciprocal transplant experiment across a climate gradient in
Southern California, United States that spanned nearly 2,000 m
of elevation, 15◦C in temperature, and multiple vegetation types
(Glassman et al., 2018), we explored trait-based mechanisms
with DEMENTpy, a trait-based microbial systems modeling
framework (Allison, 2012; Wang and Allison, 2021). Here
we expand on an earlier modeling study that focused on
legacies of drought in a grassland litter microbiome (Wang
and Allison, 2021). By simulating Glassman et al.’s (2018)
broader reciprocal transplant design, we aimed to disentangle
the influence of compositional legacy vs. climate change
(temperature and precipitation) and their interactions on litter
decomposition while identifying the roles of community traits
in mediating microbial decomposition. Climate perturbation
may affect microbiome functioning by altering community-level
traits through selection on different community-level strategies
(e.g., Watt, 1947; Wilson, 1997; Whitham et al., 2006). Guided
by the overarching question of how microbial composition
affects litter decomposition, this modeling study specifically
addressed the following specific questions: (1) What are the
relative contributions of microbiome composition (legacy effects)
vs. local climate to litter decomposition? (2) Similarly, what
are their relative contributions to the community-level traits of
enzyme investment and drought tolerance? How are these traits
coordinated? And (3) How do community traits relate to litter
decomposition?

MATERIALS AND METHODS

Decomposition Model of Enzymatic
Traits in Python
DEMENTpy (Decomposition Model of Enzymatic Traits in
Python) is a spatially explicit, trait-based, microbial systems
modeling framework built on top of an individual-based
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modeling scheme (Figure 1; GitHub Repository1; Wang and
Allison, 2021). This model simulates microbial systems’ dynamics
in composition (in terms of hypothetical taxa) and functioning
(in terms of litter decomposition; Figure 1A). This model and
its earlier versions (e.g., Allison, 2012; Allison and Goulden,
2017; Wang and Allison, 2019) have been successfully applied to
addressing a series of issues in microbial ecology.

Using a trait-based approach, DEMENTpy initiates a
microbial community with many hypothetical taxa by randomly
drawing values from distributions of physiological traits
(Figure 1B) and assigning them to different taxa. These
hypothetical taxa with differing combinations of trait values
are randomly placed on a grid to form a spatially structured
microbial community. Community dynamics are then simulated
by explicitly modeling demographic processes of cell metabolism
and growth, mortality, and reproduction for each taxon
population at a daily time step driven by daily temperature and
litter water potential. With explicit intra-cellular metabolism,
microbial taxa secrete exoenzymes and produce osmolytes both
constitutively and inducibly simultaneously without prescribing
an order (Figure 1C). This non-hierarchical approach does not
prescribe a cellular level tradeoff between enzyme and osmolyte
production. Rather, tradeoffs emerge from community assembly.
The exoenzymes degrade different organic compounds at rates
that depend on temperature and moisture. The production
of inducible osmolytes depends on water potential. The rate
of inducible osmolyte production is then normalized to a
value from 0 to 1, which is regarded as drought tolerance.
This parameterization of drought tolerance is an update to the
previous DEMENT version which instead directly introduced a
drought tolerance parameter and imposed a penalty on carbon
use efficiency (Allison and Goulden, 2017).

Simulation of Reciprocal Transplanted
Microbiomes Across a Climate Gradient
Five sites representing five ecosystems (Desert, Scrubland,
Grassland, Pine-Oak, and Subalpine) were studied in Southern
California, United States, forming a climate gradient spanning
nearly 2,000 m of elevation and 15◦C in temperature (Glassman
et al., 2018). More detailed information about location,
mean climate, and soil of these five sites can be found
in Supplementary Figure 1 and the section on Gradient
Information in Supplementary Appendix. A reciprocal
transplant simulation like the field study by Glassman et al.
(2018) was conducted with DEMENTpy across this gradient
following a “transplant” protocol as follows.

Prior to transplant, we conducted a 3-year spin-up (Wang
and Allison, 2021) to equilibrate microbiomes with site-specific
litter and climate at each of the five sites. One year of
climate data from 2011 (representative of normal meteorological
conditions) was recycled three times at each site. At year four,
simulated microbiomes (n = 20 per site) were designated as the
starting communities for transplantation. These microbiomes
were initiated (“inoculated”) on the same amount of grassland
litter and reciprocally “transplanted” to the five sites where they

1https://github.com/bioatmosphere/DEMENTpy

were exposed to site-specific climate forcing. Our simulations
use only grassland litter to mimic the empirical study, which
for tractability reasons focused on a single litter type (grass)
that occurred across the gradient (Glassman et al., 2018). These
“transplant” simulations lasted 4 years with each transplant
corresponding to a spin-up (n = 100 per site, e.g., 5
communities 20 spin-ups). In each new year, a new cohort of
grassland litter was initiated.

With this transplant simulation protocol, we ran two different
forcing scenarios. One scenario recycled the 2011 climate forcing
through 8 years of simulations (hereafter referred to as average
forcing; Supplementary Figure 2). Another recycled the 2011
forcing for 3 years to reach equilibrium, then—following the
field transplant timeline—used 2015 forcing before the transplant
and 2016–2019 forcing after the transplant (hereafter referred
to as actual forcing; Supplementary Figure 3). The average
forcing scenario was intended to emphasize the effect of site-
driven climate variation on microbial legacies and to speed up
the system return to equilibrium, whereas the actual forcing
overlays a greater range of natural climate variability that slows
the system return to equilibrium following transplantation, as
in the Glassman et al. (2018) experiment. Daily soil surface
temperature (◦C) for each site was derived from averaging field
soil temperature measurements for the average forcing and
approximated using the Daymet (version 4; Thornton et al., 2020)
daily temperature product for actual forcing. Estimates of litter
water potential (MPa) were derived from analysis of fuel moisture
sensors at the grassland site, near Loma Ridge, California (Allison
and Goulden, 2017) using two different scaling methods for the
average and actual forcing, respectively. See section DEMENTpy
forcing in Supplementary Appendix for details.

All transplant scenarios were initialized on a 100 by 100
spatial grid with a bacterial community of 100 hypothetical taxa
using well-informed parameter values (Supplementary Table 1;
Allison and Goulden, 2017; Wang and Allison, 2021). The
pool of taxa was the same prior to spin-up at all five sites.
Leaf litter concentrations of C-, N-, and P-containing substrates
(mg cm−3) were estimated based on near-infrared spectroscopy
measurements at each site along the climate gradient (Baker
and Allison, 2017). Within each forcing scenario, we ran
ensembles of 20 independent simulations (corresponding to 20
independent spin-ups) for each transplant combination (5 sites
× 5 communities× 20 spin-ups = 500 simulations in total). Each
of the 25 combinations used the same set of 20 seeds for random
number generation.

Data Analyses
We analyzed simulation outputs for litter mass loss (i.e.,
total substrate remaining) and community-level traits (enzyme
investment and drought tolerance) as well as community-level
allocation to enzymes, osmolytes, and yield. Enzyme investment
(Ecom) and drought tolerance (Dcom) are biomass-weighted
community mean trait values calculated as:

Ecom =
n∑
i

EiMi
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FIGURE 1 | Schematic of the DEMENTpy model. DEMENTpy bridges across microbial traits, community-level processes, and system-level functions (A). Major
traits include gene richness and production rate for transporters, enzymes, and osmolytes, as well as enzyme kinetic parameters (B). These traits dictate cellular
level metabolic processes of constitutive and inducible production of enzymes and osmolytes (C).

Dcom =

n∑
i

DiMi

respectively, where Ei and Di refer to the ith taxon’s enzyme
production rate and drought tolerance, respectively, and Mi
is the relative biomass of the ith taxon in the community.
Using site-specific temperature and water potential, a series of
statistical analyses were performed on these data. Assumptions
of normality and equality of variance were ensured to be met
during the analysis.

To validate the model, the simulated percent litter mass
loss in the 1st year was compared to empirical measurements
at 6 and 12 months after transplant (Glassman et al., 2018).
Next, variance partitioning of decomposition (i.e., total substrate
remaining) among factors of community (i.e., origin) and
site (i.e., local environment), as well as their interactions was
conducted with two-way ANOVA. The same analysis was
performed twice to further test whether system state (transient:
the end of the 1st year; equilibrium: the end of the 4th
year under the average forcing) was a factor contributing
to the changes in decomposition. These variance partitioning
results were compared to the empirical results (Glassman
et al., 2018) to further test the performance of DEMENTpy.
Similarly, to disentangle factors influencing community enzyme
investment and drought tolerance (an advantage of this modeling
study), variance partitioning of enzyme investment and drought
tolerance with two-way ANOVA was performed. Again, the same

analysis was performed at two different time points in different
years. Furthermore, Pearson’s correlation was used to examine
relationships between the two traits simulated by the model.

To test whether community traits can explain decomposition,
a series of four multiple linear regressions of decomposition
against covariates of local environment [temperature (temp) and
water potential (psi)], enzyme investment (enz), and/or drought
tolerance (drt) were performed with the least-squares approach:
mode1 1: f(temp, psi), model 2: f(temp, psi, enz), model 3: f(temp,
psi, drt), and model 4: f(temp, psi, enz, drt). These multiple
linear regression models were fitted separately to the 1st year
and the 4th year data (including annual litter decomposition
and mean traits and temperature and water potential) pooled
together from all five sites. Adjusted R2 and information criteria
of AIC (Akaike Information Criterion) and more parsimonious
BIC (Bayesian Information Criterion) were used to evaluate
model performance.

RESULTS

Partitioning Variance of Litter
Decomposition
After the spin-up and before transplant, different microbial
communities were realized across the gradient as indicated
by differences in community traits of enzyme investment
and drought tolerance (Supplementary Figure 4). Overall,
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from desert to subalpine, the drought tolerance decreased
while the enzyme investment increased under both average
forcing and actual forcing. However, this overall pattern was
less pronounced for enzyme investment than for drought
tolerance, especially for enzyme investment under average
forcing (Supplementary Figure 4B).

In the 1st year after transplantation, the five communities
showed different litter-decomposing capabilities across the
gradient (Figure 2). The model-data comparison showed that
simulated rates of mass loss were more similar in magnitude
to the empirical data at 12 months than at 6 months, although
at 12 months the model still tended to overestimate mass loss
(Supplementary Figure 5). Even with this temporal difference
in model performance, the simulated mass loss patterns were
mainly consistent between average forcing and actual forcing
(Figure 2 and Supplementary Figure 5). Decomposition was
strongly influenced by local environment, with a pronounced
increase (i.e., less substrate remaining) from desert to subalpine
sites (df = 4, P < 0.001). The microbial community significantly
affected decomposition as well (df = 4, P < 0.001), with the
desert community overall decomposing the least and the pine-
oak and subalpine communities decomposing the most with
average forcing. With actual forcing, the subalpine community
consistently decomposed the most. However, this community
effect varied with local conditions (i.e., significant community-
site interaction; df = 16; P < 0.05). The pattern of community
differences was comparable across the desert and scrubland sites,
but distinct from the other three sites. Particularly for the average
forcing, those other three sites differentiated the five communities
in terms of substrate remaining more strongly than the desert and
scrubland sites.

By the 4th year after transplant, decomposition in the
average and actual forcing scenarios became much more similar
across the five sites (Year 4 in Figure 2). Though community
(df = 4, P < 0.001) and its interaction with local conditions
(df = 16, P < 0.05) were still statistically significant, only the
desert community at the pine-oak and subalpine sites remained
significantly different from the other communities (and only the
subalpine site under actual forcing). All the other communities,
especially at the desert and scrubland sites, showed similar
litter decomposition.

The change in decomposition over time from the 1st through
the 4th year was reflected in the changing relative contribution
of community, local environment, and their interactions to the
variance of litter decomposition. Take the average forcing case
for example (Figure 3). After the 1st year, community, local
environment, and their interactions accounted for 17.6, 46.4, and
2.0% of the variance in decomposition. By contrast, by the end of
the 4th year, the contribution from community sharply declined
to only 3.8% (the interaction to 1.5%), and local environment
increased to 68.6%.

Changes in Coordination of
Community-Level Traits
Meanwhile, the relative differences in traits between the
communities changed from the 1st through the 4th year

(Figures 3B,C). After the 1st year, 4.4% of the variance
in the enzyme trait was attributed to community (df = 4;
P < 0.001) and 3.0% was attributed to local environment (df = 4;
P < 0.01). However, after the 4th year, the enzyme trait was only
significantly influenced by local environment (df = 4; P < 0.001),
which explained only 7.6% of the variance. By contrast, the
drought trait was consistently and significantly affected by
community (df = 4; P < 0.001), local environment (df = 4;
P < 0.001), and their interaction (df = 4; P < 0.001), though
the relative contribution from community and local environment
decreased (43.6–18.5%) and increased (34.0–59.2%), respectively,
from the 1st to the 4th year. The contribution from their
interactions increased slightly (6.5–8.4%).

Enzyme investment and drought tolerance traits displayed
varying correlations in different sites across the gradient
(Figure 4 and Supplementary Figure 6). Overall, these two
traits were negatively correlated among the five communities
both across the gradient and over time. At both time points,
the correlation strength displayed an overall descending pattern
across the gradient from low to high elevation. In addition,
although the strength by the end of the 4th year was overall
lower than the 1st year across the sites, it is noteworthy that
the desert site did not change (Supplementary Figure 6F), and
that the subalpine site became uncorrelated (Supplementary
Figure 6J). These changes in traits and their correlations dictated
community-level resource allocation among enzymes, osmolytes,
and yield (Supplementary Figure 7).

Relating Community Traits to Litter
Decomposition
Community traits were related to annual decomposition with
four multiple linear regression models (Table 1). In the 1st
year, a model with either enzyme investment (Model 2) or
drought tolerance traits (Model 3) explained decomposition
better than a model with only local temperature and moisture
(Model 1). Although Model 2 with enzyme investment was
better than Model 3 with drought tolerance, only Model 4 with
both drought tolerance and enzyme investment outperformed
all three other models (both the smallest AIC and BIC
and the largest adjusted R2-values). The performance of
Model 4 was the best as well in the 4th year (both
the smallest AIC and BIC and the largest adjusted R2-
values), though its margin over Model 2 with enzyme
investment was relatively small. In combination, a model with
both enzyme and drought tolerance traits had the strongest
explanatory power.

DISCUSSION

Identifying the mechanisms underpinning microbiomes’
composition-functioning relationship is a research theme
of fundamental importance but with methodological
challenges. Our study approached this issue from a trait-
based perspective using a theory-driven, trait-based microbiome
model—DEMENTpy—complemented by statistical modeling
analyses. Overall, our simulations of litter decomposition
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FIGURE 2 | Decomposition across the gradient during the 1st year and 4th year after transplant under both average forcing (A–J) and actual forcing (K–T). The
color band is 90% confidence interval (n = 20).

A B C

FIGURE 3 | Variance partitioning of decomposition (A), enzyme trait (B), and drought tolerance (C). For the enzyme trait (B) only community and site are significant
in year 1, and only site is significant in year 4. These results are under the average forcing.

were consistent with a previous transplant experiment in
that both studies found evidence for climate-dependent
legacy effects of microbial community composition
(Glassman et al., 2018). Our model analysis of community-
level traits further suggests that a 3-way tradeoff may
mediate these legacies and the effects of local climate on
community composition.

Comparison With Empirical Study
This modeling study agrees with the general conclusion of the
earlier field transplant experiment by Glassman et al. (2018)
that microbial composition matters in climate-dependent litter
decomposition, though there are mismatches between the data
and model outputs. DEMENTpy captured the pattern of litter
mass loss across the gradient better at an annual timescale than
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A B

C D

FIGURE 4 | Enzyme investment vs. drought tolerance by the end of year 1 and year 4 after the transplant. (A,B) Are under the average forcing, while (C,D) are under
the actual forcing. Data are pooled together across the gradient and color-coded by site.

TABLE 1 | Regression models predicting annual litter decomposition as a linear function of temperature, water potential, enzyme investment trait, and/or drought
tolerance trait.

Year 1 (Transient) Year 4 (Equilibrium)

Model Adjusted R2 AIC BIC Adjusted R2 AIC BIC

Mode1 1 f(temp, psi) 0.43 5565.28 5582.24 0.66 5410.42 5427.28

Model 2 f(temp, psi, enz) 0.67 5297.44 5318.51 0.76 5232.42 5253.50

Model 3 f(temp, psi, drt) 0.59 5405.83 5426.90 0.71 5328.41 5349.48

Model 4 f(temp, psi, enz, drt) 0.74 5183.35 5208.64 0.79 5172.56 5197.84

at the shorter 6-month timescale (Supplementary Figure 5).
In both studies, transplanted communities reflected the legacy
of environmental conditions in their ecosystems of origin
(including temperature, precipitation, and litter chemistry).
Broadly speaking, model-predicted compositional effects and
interactions between the community and local environment
(Figure 2) were consistent with the field experiment. Moreover,

the relative contributions of community, local environment,
and their interactions to the variance in decomposition were
also similar in both studies. Within 6–18 months after the
transplant, Glassman et al. (2018) reported ranges of these
contributions of ∼6–10% for the community (vs. 17.6% for the
simulations at 1 year after transplant), ∼30–65% (vs. 46.4%)
for local environment, and no significance to a maximum of
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19% (vs. 2.0%) for their interactions. In accordance with the
empirical results that showed an increasing contribution from
local environment over time, our model also predicted a decline
in legacy effects of composition over time, albeit at a longer
timescale of 4 years (Figure 3A).

Although Glassman et al. (2018) found evidence for
community-driven difference in litter decomposition, they did
not find significant support for Home Field Advantage (HFA;
Gholz et al., 2000; Veen et al., 2018) within a measurement
time frame of 6–18 months after the transplant. Similarly, in
our modeling study, by the end of the 1st year, the average
decomposition of the five communities was very close to each
other in the desert site (under both the average forcing and
actual forcing), and the subalpine community had the most
decomposition under actual forcing (though not significantly
different) and relatively high decomposition under average
forcing (not significantly different as well; Figure 2). Moreover,
whether the system reached equilibrium in the 4th year (under
the average forcing) or not (under the actual forcing), all HFA
disappeared (Figure 2). Therefore, our modeling results and
the field investigation were comparable with respect to overall
patterns, but the time scale was different.

Though differing from Glassman et al.’s (2018) transplant
experiment in some details, our modeling work confirms the
empirical result that litter decomposition depends on microbial
community composition. This finding adds to an increasing body
of evidence along similar lines (e.g., Strickland et al., 2009; Allison
et al., 2013; Cleveland et al., 2014; Bradford et al., 2017; Zakem
et al., 2021). Moreover, some legacy effects may persist and thus
cause different functioning under the same conditions (Wang
and Allison, 2021). Such persistence is widely observed across
different natural systems (e.g., Herzschuh, 2020; Ortiz et al., 2020;
Wilson et al., 2021). Although dispersal in soil microbiomes
may counter persistence (Wang and Allison, 2021), these results
underscore the non-negligible role of environmental history as a
key factor in litter decomposition (Spencer, 2020).

Co-ordination of Community Traits
The notion of multidimensional tradeoffs in the biosphere
is increasingly being embraced as organisms evolve across
organizational and spatial-temporal scales under physical,
biological, and ecological constraints (e.g., Kempes et al.,
2019). Trait-based quantification of communities provides an
approach for identifying those tradeoffs. Most notably, rich
data on plant traits have revealed multidimensional tradeoffs
first in shoots (e.g., Díaz et al., 2016), then in roots (e.g.,
Weemstra et al., 2016), and more recently in whole plants
(Weigelt et al., 2021). Using these traits, vascular plants can be
classified into the CSR (Competitor, Stress-tolerator, Ruderal)
strategy scheme (Pierce et al., 2017). The same approach
applies to multi-tradeoffs in phytoplankton (Edwards et al.,
2011) and animals (de Froment et al., 2014). Our modeling
study suggests there are also multi-dimensional tradeoffs in soil
microbial communities. These tradeoffs emerge from community
assembly of individual taxa with different capabilities in resource
acquisition and stress tolerance. In particular, tradeoffs among
enzyme investment, drought tolerance, and yield determine

the microbial response to climate change (Figure 4 and
Supplementary Figure 7).

Dispersal is another key process influencing community
assembly, which itself can be shaped by local conditions and
stochasticity (e.g., order of taxa arrival; Fukami, 2015; Reijenga
et al., 2021). Our earlier study revealed that rapid dispersal
could counter legacy effects driven by changes in microbial
composition (Wang and Allison, 2021). Potentially many other
disturbances (e.g., fire and nitrogen deposition) can combine to
shape microbial community strategies. To tease out how each
of these factors and their interactions drive 3-way tradeoffs in
community traits, additional efforts focused on specific factors of
interest are needed (e.g., Coyte et al., 2021).

A Unifying Framework for Trait-Based
Prediction of Litter Decomposition?
Our analysis suggests that litter decomposition rates can
be predicted with at least two community traits plus local
environmental conditions (Table 1). This analysis contrasts with
the assumption that community composition makes a negligible
contribution to litter decomposition (Lavelle et al., 1993; Aerts,
1997; Adair et al., 2008; Bradford et al., 2017). Moreover, our
model provides a useful approach for predicting decomposition
across spatial-temporal scales that can integrate effects of past
disturbances. Such an approach is important as empirical studies
of litter decomposition and soil carbon stocks move beyond
snapshots of large-scale spatial data to include information
on disturbance and recovery (Bradford et al., 2021). However,
this approach points to a challenge of measuring and deriving
traits empirically.

Measuring and Simulating Community
Traits More Accurately
Our modeling framework is promising but could benefit from
more empirical data to parameterize microbial traits and
reduce uncertainties. Forcing uncertainty does not appear to
be a major issue because of the similarity in simulations
between the two forcing scenarios (Figure 2 and Supplementary
Figure 5). However, uncertainty remains in the simulated
community traits due to missing processes such as fungi-
bacteria interactions (e.g., Wright and Vetsigian, 2016), realistic
dispersal (e.g., Cunillera-Montcusí et al., 2021), and evolution.
Notably, a recent study across the Glassman et al. (2018)
climate gradient found fast bacterial evolution in addition to
ecological adaptation (Chase et al., 2021). This fast evolution,
plus ecological drift resulting from fluctuating population sizes
due to chance events (e.g., Travisano et al., 1995), can cause
differences in community trait composition. Representing these
processes in DEMENTpy may help make the predicted shifts
in trait-based strategies more accurate, thereby improving
model predictions of process rates at appropriate time scales
(Supplementary Figure 5).

Making these model improvements will require additional
trait measurements. Our simulations assume that enzymes and
osmolytes are the main metabolites driving Y-A-S tradeoffs.
However, microbes have complex metabolic networks, suggesting
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that many more traits are involved in Y-A-S strategies (Malik
et al., 2020a). These additional traits (e.g., Weisskopf et al.,
2021) may still fit in the 3-way tradeoff framework, but
new techniques are needed to translate trait measurements
into the parameters used by DEMENTpy to predict litter
decomposition. A promising, yet challenging, approach would
be to apply machine learning techniques (e.g., Chen et al., 2021)
to derive indices of stress tolerance and resource allocation
from rich -omics data along environmental gradients (e.g.,
Malik et al., 2020b; Heinken et al., 2021; Monson et al.,
2022).

Broader Implications for Understanding
Whole-Ecosystem Functioning
Our findings are applicable to improved prediction of whole
ecosystem functioning. For example, incorporating plant-
microbiome interactions into such predictions has been
challenging (e.g., Van Voris et al., 1980; Ramirez et al., 2019),
but our modeling approach provides a starting point. Litter
chemistry, which can be associated with above- and below-
ground plant traits (Cornwell et al., 2008), clearly influences litter
decomposition. Therefore, it could be fruitful to predict litter
decomposition at large scales by linking plant and microbial
traits. Such an approach could even allow simultaneous
consideration of legacy effects on vegetation and microbial
communities, as well as their interaction (e.g., Schmid et al.,
2021).

More generally, our study, together with recent vegetation
modeling (e.g., Wang et al., 2018; Rüger et al., 2020), suggests
model predictions could be improved by considering the
multi-dimensional nature of trait tradeoffs in microbiomes
and the biosphere in general. Vegetation modeling is already
moving in this direction (e.g., Kraft et al., 2015; Bruelheide
et al., 2018; Weigelt et al., 2021), and microbiome studies are
catching up (Westoby et al., 2021). Still, there remains the
challenge of incorporating these multidimensional tradeoffs into
ecosystem and Earth system models (e.g., Fiedler et al., 2021;
Terrer et al., 2021) while avoiding the computational expense
of simulating microbial and vegetation composition locally.
Informing larger-scale models with outputs from trait-based
community models, either through direct or offline coupling,
may be a potential way forward.

CONCLUSION

Our theory-driven modeling study suggests that climate-
dependent changes in litter decomposition depend on shifts
in microbial functional strategies within a 3-way tradeoff
space. These shifts integrate legacies of past disturbance
as a key driver of decomposition. Emerging from these
findings is a framework for predicting microbial litter
decomposition as a function of at least two community-
level traits interacting with local climate and litter substrate.
This framework implies that a data-driven statistical model
could predict litter decomposition and soil organic matter
dynamics if high-quality empirical measurements of community

traits are available at sufficient temporal resolution. Our
work also suggests that trait-based modeling, together
with progress made in trait-based vegetation studies, is
an effective tool for exploring the mechanisms underlying
ecosystem functioning in the context of disturbance. Although
uncertainty remains in model performance, especially at a
higher temporal resolution, these tools, together with more
complementary trait measurements, should be applied to
understand the roles of microbiomes in the functioning
of the Earth system. Overall, our study sheds light on the
mechanisms underpinning the diversity-functioning relationship
in complex microbiomes.
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