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The Changshagongma wetlands is the Chinese National Nature Reserve were listed as
a Ramsar Wetland of International Importance in 2018. Here, we examined four periods
(1992, 2002, 2013, and 2020) of remote sensing image data to analyze the changes
in wetland landscape patterns and the ecological risk in Changshagongma Wetland
Nature Reserve over the past 30 years. The results showed that wetlands account
for approximately 30% of the study area, and swamp meadows were the main type
of wetland, accounting for approximately 95% of the total wetland area. In terms of
landscape patterns, wetland fragmentation declined, wetland patch shapes became
less complicated, and spatial connectivity increased. The landscape fragmentation
of non-wetland alpine meadows was reduced. The patches of sandy grasslands
tended to be regular, and their spatial connectivity was reduced. The wetland regions
of high ecological risk are concentrated in the central and southern parts of the
Changshagongma Wetland Nature Reserve. Low-risk regions are mainly concentrated
in the contiguous swamp meadows in the northwest and wetlands in the southwest.
From 1992 to 2020, the level of ecological risk of the Changshagongma Wetland Nature
Reserve showed a “∧”-shaped trend, with the highest risk in 2002 and the lowest
risk in 2020. Among the selected indicators, climate conditions constituted the main
factor affecting the ecological risk of the Changshagongma Wetland Nature Reserve,
followed by topographical conditions, and human activities were the least influential.
Over the past 30 years, the temperature and precipitation in the study area increased
significantly. The climate in the study area can be roughly divided into two periods
bounding 2002, and the climate has been changing from cold and dry to warm and wet.
The ecological environment of the study area is affected by natural and human activities.
Cold and dry climatic conditions and uncontrolled grazing accelerate the destruction
of the wetland ecological environment, and warm and wet climatic conditions and
ecological conservation policies are conducive to the ecological restoration of wetlands.
In general, the wetland landscape structure in the study area has become less complex,
landscape heterogeneity has decreased, and ecological quality has improved.

Keywords: Changshagongma wetlands, wetland landscape, pattern change, geodetector, landscape ecological
risk
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INTRODUCTION

Landscape patterns refer to the spatial arrangement and
combination of landscape patches of different shapes and sizes.
Different landscape patterns are formed under the combined
effects of various ecological processes. Since the 1980s, landscape
ecology methods have been gradually applied to wetland research.
With these applications, the analysis of changes in landscape
patterns has become a focus of wetland ecology research
(Cong et al., 2019; Shen et al., 2019). Changes in wetland
landscape patterns refer to changes in landscape distribution and
composition caused by conversion between landscape classes.
Changes in wetland landscape patterns can be divided into three
categories: conversion from wetland to non-wetland, conversion
from non-wetland to wetland, and conversion between different
subclasses of wetland. Landscape class changes have two types of
causes: human activities and natural factors (Bai et al., 2013; Liu
et al., 2014). Remote sensing technology has been widely used in
wetland research (Huang et al., 2018; Mahdavi et al., 2018; Wang
et al., 2021). In recent years, cutting-edge technologies such as big
data and cloud computing have been developing rapidly. Google
Earth Engine (GEE) is a cloud-based platform, that combines a
multi-petabyte catalog of satellite imagery and geospatial datasets
with planetary-scale analysis capabilities. Its advantages include
rich data, excellent performance, diverse algorithms, and an open
system (Kumar and Mutanga, 2018). It is an important tool for
image classification and is widely used in the study of wetland
changes (Wang et al., 2020; Chen and Zhu, 2021; Cui et al., 2021;
Yao et al., 2021).

Regional landscape ecological risk assessment is an
important foundation for regional conservation, and it
plays an important role in elucidating the distribution and
trends of regional ecological risks and implementing targeted
ecological conservation (Santos et al., 2006; Liu et al., 2008).
The essence of change in landscape patterns is characterized
long-term cumulative changes in the use mode and use intensity
of landscape classes. Researchers have conducted a great
amount of research on ecological risk assessment based on
landscape pattern metrics. Using landscape patterns to construct
a landscape ecological risk model has become an important
method of ecological risk assessment (Shi et al., 2015; Jin et al.,
2019). Exploring the factors driving regional ecological risks
provides active guidance for improving the regional conservation
approach. As an important tool for detecting driving factors that
cause spatial heterogeneity, Geodetector has been widely used in
many research fields by researchers and has generated excellent
application results (Du et al., 2017; Wang et al., 2019; Yuan et al.,
2019; Chen et al., 2020; Zhu et al., 2020).

The Qinghai-Tibet Plateau is rich in alpine wetland resources,
and its wetlands account for approximately 20% of China’s total
wetland area. It is one of the most important regions for wetland
functions in China (Zhao et al., 2015). Located on the eastern
portion of the Qinghai-Tibet Plateau, the Changshagongma
Wetland Nature Reserve is an alpine wetland region. It is also
an important component of the source region of the Yangtze
River and the Yellow River. The region is characterized by
harsh climatic conditions and a fragile natural environment. It

is considered uninhabitable, and nomadism is the main way
of life for humans in the region. Relatively few studies have
been conducted on these wetlands because of their remote
location, and research on landscape patterns and ecological
risks of wetlands under the influence of climate change is
especially lacking.

Choosing an appropriate spatial scale and conducting a
landscape ecological risk assessment based on the ecological
significance of landscape pattern metrics hold practical
significance for wetland landscape ecological research (Jin et al.,
2019; Hou et al., 2020). The specific steps taken in this study
were as follows: (1) Based on the GEE platform, four periods
of data (1992, 2002, 2013, and 2020) on the Changshagongma
wetlands were extracted, and landscape pattern metrics were
selected at the class level and landscape level to analyze the
changes in landscape pattern. (2) Landscape pattern metrics
were used to construct a landscape ecological risk model, and
the ecological risk of the wetlands in the study area was assessed.
(3) Factors driving the wetlands’ ecological risk were analyzed
using Geodetector.

MATERIALS AND METHODS

Study Area
The Changshagongma Wetland Nature Reserve is on the
eastern portion of the Qinghai-Tibet Plateau, located at 97◦22′–
98◦39′ E and 33◦18′-34◦12′ N (average elevation of 3,840–
5,249 m), adjacent to Sanjiangyuan National Park in Qinghai
Province, within the boundary of Shiqu County, Ganzi Tibetan
Autonomous Prefecture, Sichuan Province (Figure 1). Its total
area is approximately 6,700 km2. The dimensions are 100 km
from north to south and approximately 120 km from east to west.
The climate is cold, with short spring and autumn seasons, rainy
summers, and severely cold and dry winters. The annual average
temperature is –2 to 0.7◦C, and the annual precipitation is 360–
820 mm. Topographically, the reserve is a typical hilly plateau.
The Zhaqu River basin in the north belongs to the Yellow River
basin, and the remaining rivers are in the Yangtze River basin.
Many wetlands are within the reserve’s boundaries, including
swamp meadows, lake wetlands, and riverine wetlands. It is an
important water conservation area in the upper reaches of the
Yangtze River and the Yellow River and holds high research and
conservation value.

Data
The data used in this study included remote sensing imagery,
digital elevation model (DEM) data, aspects, slopes, relief
amplitude, temperatures, evapotranspiration, precipitation,
protected area boundaries, and roads. The remote sensing data
were obtained from Landsat images (Table 1) provided by
the GEE platform.1 To improve the quality of the extracted
wetland data as much as possible, the time periods were
limited to June to September, and images with a cloud cover
of less than 15% were selected as available images, and the

1https://developers.google.cn/earth-engine/datasets/catalog/landsat
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FIGURE 1 | Geographical location of the Changshagongma Wetland Nature Reserve.

appropriate image was chosen from them as the base image.
Then, according to the cloud coverage area of the basic image
data, the available image data of the adjacent time period are
selected as the supplementary image data of the cloud coverage
area. Cloud removal, geometric correction, fusion splicing, and
image cropping were conducted on the GEE cloud platform to

obtain four periods of image data (1992, 2002, 2013, and 2020).
The meteorological station measurement data were obtained
from the China Meteorological Data Service Center,2 and
meteorological station measurement data were used for climate

2http://data.cma.cn
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TABLE 1 | Landsat images used in this study.

Base images Supplementary images

Date Tract
number

Date Tract
number

Date Tract
number

1992 03.08.1992 134036 16.06.1992 134036

03.08.1992 134037 16.06.1992 134037

2002 15.08.2002 134036 17.07.2003 134036

15.08.2002 134037 17.07.2003 134037

2013 13.08.2013 134036 16.08.2014 134036

13.08.2013 134037 16.08.2014 134037

2020 17.09.2020 134036 25.08.2020 134037 02.07.2021 134036

17.09.2020 134037 29.06.2020 134036 02.07.2021 134037

29.06.2020 134037

trend analysis. The gridded meteorological data were obtained
from the National Earth System Science Data Center of the
National Science and Technology Infrastructure,3 with a spatial
resolution of 1 km, and were resampled in spatial resolution
(3 km) for driving force analysis. The DEM data were from the
Geospatial Cloud,4 with a resolution of 30 m and were resampled
in spatial resolution (3 km) for driving force analysis. Slope,
aspect, and relief amplitude were calculated using the DEM
data. The boundaries of the study area were obtained from the
Chinese Nature Reserve Specimen Resource Sharing Platform.5

Road data were derived through vectorization from Google Earth
historical images. The data used the same projection coordinate
system (UTM Zone 47N).

Spatiotemporal changes in regional ecological risks result from
the combined effects of multiple factors. This paper selected
eight indicators, including topography and geomorphology
(aspect X1, elevation X2, slope X3, and relief amplitude X4),
climatic characteristics (annual evapotranspiration X5, annual
precipitation X6, and annual average temperature X7), and
human disturbance (distance from road X8). The driving force
was detected by using the geographic detector model. Since the
dependent variables in Geodetector must be categorical variables,
X1 was divided into eight categories based on the situation
in the study area. X2, X3, X4, and X8 were each divided into
five categories using the natural breaks method. The remaining
climatic variables were divided into seven categories each.

Methodology
Extraction of Wetland Information
The landscape in the study area was classified into wetlands
and non-wetlands based on the existing relevant classification
standards in combination with field investigations. The wetland
landscape included three subclasses: swamp meadows, lake
wetlands, and riverine wetlands. Non-wetlands included three
subclasses: alpine meadows, sandy grasslands, and alpine bare
rocks. By referring to previous experiences and practical
conditions, the interpretation signs of subclasses were established

3http://www.geodata.cn
4http://www.gscloud.cn/
5http://www.papc.cn/

(Table 2). We used the support vector machine (SVM) classifier
within the Google Earth Engine (GEE) cloud-computing
platform to classify the images and manual visual interpretation
and correction based on field survey data and Google Earth
historical images. Finally, the accuracy of the classification was
evaluated by calculating the overall classification accuracy and
Kappa coefficient through the confusion matrix.

Landscape Pattern Metrics Selection
Landscape pattern metric analysis is a common method for
studying the history of wetland landscape patterns. Landscape
pattern metrics can greatly condense landscape spatial pattern
information and reflect its structural and spatial configuration.
Metrics for landscape patterns are usually computed and
analyzed at the patch level, class level, and landscape level (Bai
et al., 2013). The selection of appropriate landscape metrics is
useful for understanding regional landscape patterns (Inkoom
et al., 2018; Ma et al., 2019). This article analyzed the changes
in the landscape pattern metrics from two perspectives: the
class level and the landscape level. The selected class-level
metrics included the percentage of landscape (PLAND), patch
density (PD), aggregation index (AI), and mean fractal dimension
(FRAC_MN). The selected landscape-level metrics included
edge density (ED), PD, contagion index (CONTAG), and the
Shannon’s diversity index (SHDI). See the related literature
for specific concepts, calculation methods, and the ecological
significance of the metrics (Li and Wu, 2004; Wu, 2004). The
calculation of these metrics was completed using the Fragstats
4.2.1 software package. At the same time, a bivariate correlation
analysis was carried out between the landscape pattern index and
the eight selected indicators (X1 − X8 ).

Landscape Ecological Risk Assessment
Based on the concept and connotation of landscape ecological
risk (Shi et al., 2015; Jin et al., 2019; Yue et al., 2021), a landscape
ecological risk index (LERI) can be constructed using a landscape
disturbance ecological index (E) and fragile index (F) (Pei et al.,
2014). To characterize the spatial distribution of ecological risks,
the study area was divided into 739 ecological risk cells with
a grid of 3 km × 3 km according to equal distance sampling
methods. 3 km× 3 km The calculation formula of the landscape
ecological risk index (LERIk) for each assessment cell is as follows:

LERIk =
n∑

i=1

Ai

A
(Ei × Fi)

where LERIk is the landscape ecological risk index value for the
kth cell evaluated. Ai is the area of land cover type i in the kth risk
assessment cell. A is the area of the kth risk assessment cell. Ei is
the landscape disturbance ecological index value for land cover
class i. Fi is the landscape fragility index value of land cover class
i. The value for the landscape vulnerability fragile index can be
determined using an expert scoring method.

The landscape disturbance ecological index (Ei) characterizes
the extent to which a landscape is affected by natural or human
activities. It can be expressed using the area-weighted mean shape
index, fractal dimension, and landscape dominance. The formula
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TABLE 2 | Image example of landscape type.

Major Type Wetlands Non-wetlands

Minor Type Swamp meadows Lake wetlands Riverine wetlands Alpine meadows Sandy grasslands Alpine bare rocks

Image example

FIGURE 2 | Trends of temperature and precipitation at the Shiqu County Weather Station from 1990 to 2020.

is
Ei = (α× AWMSIi + β× FDi + γ× Si)× Di

where AWMSIi is the area-weighted mean shape index, which
is an important indicator for measuring the complexity of a
landscape’s spatial pattern; generally, the more complex the
landscape is, the stronger the disturbance of the assessment

unit by the natural environment or human activities. FDi is
the fractal dimension, which reflects the shape complexity of
patches and landscape patterns at a certain observational scale
and can represent the impacts of human activities or the
natural environment on the landscape pattern. Si is the landscape
dispersion index, which reflects the fragmentation degree of
landscape patches on a certain spatial scale and can represent
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TABLE 3 | Image classification accuracy verification.

1992 2002 2013 2020

Overall accuracy (%) 88.0 87.3 85.7 86.7

Kappa coefficient 0.855 0.845 0.825 0.838

the degree of influence of the natural environment or human
activities on the landscape pattern. Di is the landscape dominance
index, which reflects the dominant landscape in the evaluation
unit, and the dominant landscape plays a leading role in the
changing process of the landscape pattern. α, β, and γ are the
weights of the three corresponding metrics, and α+ β+ γ =

1. Referring to the existing research results and considering
the situation in the study area, the values of 0.5, 0.3, and 0.2
were assigned to α, β, and γ, respectively. The indicators were
normalized during the calculation.

Landscape fragility (Fi) characterizes the vulnerability of
different land use classes. The higher its value is, the higher the
ecological risk. Based on the existing research and the situation
in the study area, an expert scoring method can be used to
determine the vulnerability of a landscape class. From high
vulnerability to low vulnerability, the classes were ranked as
sandy grasslands 7, alpine meadows 6, riverine wetlands 5, lake
wetlands 4, swamp meadows 3, and alpine bare rocks 1. The
weights were normalized before calculation.

The Geodetector Model
Geodetector is a spatial analysis method developed and
continuously improved by Wang et al. This method is mainly
used in research on the mechanisms of spatial differentiation. The
core concept is based on the assumption that if an independent
variable has an important influence on a dependent variable,
then the spatial distribution of the independent variable should
resemble the spatial distribution of the dependent variables
(Wang and Xu, 2017). The model includes four components: the
factor detector, interaction detector, risk detector, and ecological
detector. This article used the factor detector to reveal the driving
factors that influence the spatial differentiation of ecological risks
in the study area. The factor detector is used to detect whether a
certain geographical factor causes of the spatial differentiation of
a certain geographical feature and its power of explanation (q).
The formula for the factor detector is

q = 1−

L∑
h=1

Nhσ
2
h

Nσ2

where N and σ2 represent the number of the independent
variable’s partition cells and the variance in the dependent
variable Y in the region, respectively. L is the number of
strata of the independent variable (h = 1, 2, · · · , L), Nh
and σ2

h are the number of partition cells and variance in the
independent variable, respectively, corresponding to dependent
variable Y at stratum h.

RESULTS

Climate Change Trend Analysis
Based on the annual cumulative precipitation (PRE) and annual
average temperature (TMP) data from the Shiqu County Weather
Station, the 10-year moving average precipitation (PRE-AVG)
and 10-year moving average temperature (TMP-AVG) were
calculated and used as references to analyze climate trends in the
study area. As shown in Figure 2, based on the changes in the
10-year moving annual average precipitation and annual average
temperature, precipitation and temperature showed gradual,
fluctuating declines before 2002. After 2002, clear but fluctuating
increases occurred. Additionally, the degree of decline in the early
period (1992–2002) was smaller than the degree of increase in
the later period (2002–2020). Over the past 30 years, temperature
and precipitation in the study area have increased, and the
increase in temperature has been more obvious than that in
precipitation. In terms of the climatic characteristics of the
selected time periods, the annual precipitation was 555.8 mm
in 1992, 366.9 mm in 2002, 574.2 mm in 2013, and 638.8 mm
in 2020. The precipitation in 2002 was significantly lower than
the 10-year average of 529.2 mm and much lower than the 30-
year average of 589.8 mm. The annual average temperature was
–2.01◦C in 1992, –0.70◦C in 2002, 0.18◦C in 2013, and 0.14◦C in
2020. The average temperature in 2002 was significantly higher
than the 10-year moving average temperature of –1.19◦C. The
average annual temperature exceeded 0◦C in 2003, and the 10-
year moving annual average temperature has been higher than
0◦C since 2017, indicating a further increase in temperature.
Overall, the climate in the study area changed from cold and dry
to warm and wet.

Changes in Landscape Distribution and
Area
The accuracy of the classification was evaluated, and the overall
accuracy of the classification results for all four periods was found
to exceed 85% (Table 3). Therefore, the classification results of the
four periods (Figure 3) met the research requirements.

As seen in Figure 3, swamp meadows and alpine meadows
were the main landscape classes. Swamp meadows were mainly
located in the north and southeast. Riverine wetlands were widely
distributed in valleys between hills. Lake wetlands were mainly
found in the north. Alpine meadows were mostly distributed in
the central and southern regions. Sandy grasslands were mainly
located in the central and western regions. Alpine bare rocks
were mainly distributed in the alpine snow-covered areas in the
western, southwestern, and central regions. As seen in Table 4,
among the wetland subclasses in the study area, swamp meadows
was the main type of wetlands with the largest area, followed by
riverine wetlands, and then lake wetlands. Overall, the wetland
area in the study area first decreased and then increased. Among
the subclasses, swamp meadows decreased from 1909.83 km2

(28.46%) in 1992 to 1748.96 km2 (26.07%) in 2002, then increased
to 1892.16 km2 (28.20%) in 2013 and increased to 1943.79 km2

(28.97%) in 2020. Riverine wetlands decreased from 80.99 km2

(1.21%) in 1992 to 70.87 km2 (1.06%) in 2002, then increased to
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FIGURE 3 | Distribution of various landscape types in the Changshagongma Wetland Nature Reserve in the four periods. (A) 1992, (B) 2002, (C) 2013, (D) 2020.

80.79 km2 (1.20%) in 2013 and increased slightly to 81.55 km2

(1.22%) in 2020. Lake wetlands decreased from 9.70 km2 (0.14%)
in 1992 to 7.49 km2 (0.11%) in 2002, then increased to 9.35 km2

(0.14%) in 2013 and decreased slightly to 9.22 km2 in 2020.
The change in the area of alpine meadows was the same as
that of wetland area. It decreased from 2926.90 km2 (43.62%)
in 1992 to 2889.74 km2 (43.07%) in 2002, and then increased to
2983.60 km2 (44.47%) in 2013 and to 3133.04 km2 (46.69%) in
2020. The change in the area of sandy grasslands was opposite to
the change in wetland area. The area of this subclass increased
from 1204.18 km2 (17.95%) in 1992 to 1416.28 km2 (21.11%)
in 2002, then declined to 1169.00 km2 (17.42%) in 2013 and
decreased to 966.15 km2 (14.4%) in 2020. Alpine bare rocks were
relatively stable with small changes in area. The total area of
this subclass was approximately 576 km2 (8.59%). Comparing
the climatic trends among the time periods, the precipitation
decreased from 1992 to 2002, and the wetland area was smallest
in 2002, when the annual precipitation was the lowest. The
precipitation increased significantly from 2002 to 2020, and the

wetland area also increased significantly after 2002, indicating
that precipitation affected the change in wetland area.

Landscape Pattern Metrics Analysis
Metric Changes at the Class Level
The landscape pattern metrics at the class level for the
Changshagongma Wetland Nature Reserve in the four periods
were calculated (Figure 4). PLAND is the percentage of a type
of landscape in the total area, and the largest area is the main
landscape, which is the dominant landscape in the study area. As
shown in Figure 4A, the PLAND values over the four periods
were ranked in descending order as alpine meadows > swamp
meadows > sandy grasslands > alpine bare rocks > riverine
wetlands > lake wetlands. The PLAND values of alpine meadows,
swamp meadows, and sandy grasslands were significantly higher
than those of other landscape classes. Alpine meadows were
always the largest and dominant landscape in the study area.
In comparison, the PLAND values of swamp meadows, alpine
meadows, and sandy grasslands showed obvious fluctuations,
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TABLE 4 | Area (km2) and percentage (%) of various landscape classes at the Changshagongma Wetland Nature Reserve during the four time periods.

Landscape type 1992 2002 2013 2020

Major type Minor type Area % Area % Area % Area %

Wetlands 1 1909.83 28.46 1748.96 26.07 1892.16 28.20 1943.79 28.97

2 80.99 1.21 70.87 1.06 80.79 1.20 81.55 1.22

3 9.70 0.14 7.49 0.11 9.35 0.14 9.22 0.14

Non-wetlands 4 2926.90 43.62 2889.74 43.07 2983.60 44.47 3133.04 46.69

5 1204.18 17.95 1416.28 21.11 1169.00 17.42 966.15 14.40

6 578.32 8.62 576.57 8.59 575.02 8.57 576.05 8.59

Total 6709.92 100.00 6709.91 100.00 6709.92 100.00 6709.80 100.00

1, swamp meadows; 2, riverine wetlands; 3, lake wetlands; 4, alpine meadows; 5, sandy grasslands; and 6, alpine bare rocks.

while those of riverine wetlands, lake wetlands, and alpine bare
rocks displayed smaller fluctuations. The trends in PLAND values
were similar for alpine and swamp meadows, first decreasing and
then increasing. The minimum values occurred in 2002 (43.07%
for alpine meadows and 26.07% for swamp meadows), and the
maximum values occurred in 2020 (46.69% for alpine meadows
and 28.95% for swamp meadows). In comparison, the PLAND
values of sandy grasslands first increased and then decreased. The
maximum value appeared in 2002 at 21.11%, and the minimum
value appeared in 2020 at 14.40%. The PLAND values of riverine
wetlands, lake wetlands, and alpine bare rocks fluctuated slightly.
These results show that over the past 30 years, the changes
in swamp meadows, alpine meadows, and sandy grasslands
dominated the main process of landscape pattern change.

PD can reflect the level of fragmentation of a landscape
class. The larger its value is, the more fragmented the landscape
class, and vice versa. Figure 4B indicates that the levels of
fragmentation were the highest for sandy grasslands and alpine
meadows and were lower for wetlands (swamp meadows, riverine
wetlands, and lake wetlands) and alpine bare rocks. The level of
sandy grasslands fragmentation changed significantly from 1992
to 2020. The PD of sandy grasslands increased from 1.29 in 1992
to 1.59 in 2002, increased to a maximum value of 1.80 in 2013,
and then decreased to a minimum value of 1.27 in 2020. The PD
values of alpine meadows first decreased from 1.30 in 1992 to 1.14
in 2002, then increased to the highest value of 1.78 in 2013, and
then decreased to the lowest value of 1.07 in 2020. The PD values
of swamp meadows decreased from 0.22 in 1992 to the lowest
value of 0.18 in 2002 and remained unchanged after increasing to
0.21 in 2013. The PD values of the other classes did not change
significantly. Overall, landscape fragmentation at the class level
decreased from 1992 to 2020.

AI can reflect the degree of aggregation and disaggregation
of a landscape class. The greater its value is, the higher the
degree of landscape aggregation. The lower its value is, the
less aggregated the landscape. As shown in Figure 4C, the
aggregation levels of the landscape classes in the study area
were ranked from high to low as swamp meadows > alpine
bare rocks > alpine meadows > sandy grasslands > riverine
wetlands > lake wetlands. All AI values for swamp meadows
in the four periods exceeded 95, indicating that the spatial
connectivity of swamp meadows was very high. The AI values
of alpine bare rocks and alpine meadows were greater than

90, indicating their high spatial connectivity. The AI values of
riverine wetlands and lake wetlands was lower, indicating that
riverine wetlands and lake wetlands were relatively disaggregated.
The AI values of wetlands increased from 1992 to 2020, indicating
that the spatial connectivity of wetlands increased. Among the
non-wetlands, the AI values of sandy grasslands tended to
decrease, and the area of sandy grasslands decreased, indicating
that the connectivity of sandy grasslands decreased, and sandy of
sandy grasslands became spatially smaller and more isolated.

FRAC_MN can reflect the shape of a patch. The higher
its value is, the greater the shape deviates from a square and
the more irregular the distribution, and vice versa. Figure 4D
shows that the FRAC_MN values of various landscape classes
were ranked from high to low as riverine wetlands > alpine
bare rocks > swamp meadows > alpine meadows > sandy
grasslands > lake wetlands. The FRAC_MN values for riverine
wetlands was significantly higher than those of other landscape
classes because rivers are linearly distributed and their shapes
are extremely irregular. The FRAC_MN values for lake wetlands
was significantly lower than those of other landscape classes
because the lake wetlands are mostly clusters with regular shapes.
The FRAC_MN values for swamp meadows was relatively high
because their area is greatly affected by the topography of the
study area; most swamp meadows are in strips with irregular
shapes. Alpine bare rocks are distributed along the belt-shaped
mountain ranges, so their FRAC_MN values was relatively high.

Metric Changes at the Landscape Level
The landscape pattern metrics of the Changshagongma Wetland
Nature Reserve at the landscape level in the four time periods
were calculated (Figure 5). ED and PD can comprehensively
reflect the level of fragmentation in a landscape. The greater
the ED and PD values are, the higher the level of landscape
fragmentation, and vice versa. From 1992 to 2020, the trends in
ED and PD in the study area were similar. ED and PD gradually
increased from 1992 to 2013 and reached their highest values
(ED, 49.23; PD, 4.03) in 2013. From 2013 to 2020, ED and PD
decreased to minimum values of 45.04 and 2.76, respectively.
Fragmentation in the study area first increased and then declined.
The trend in landscape fragmentation was consistent with that of
the sandy grasslands area.

CONTAG reflects the degree of aggregation or disaggregation
of different patch classes in a landscape. The higher the CONTAG
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FIGURE 4 | Landscape pattern metrics of the Changshagongma Wetland Nature Reserve at the class level during the four time periods. (A) Percentage of
landscape (PLAND), (B) patch density (PD), (C) aggregation index (AI), and (D) mean fractal dimension (FRAC_MN).

FIGURE 5 | Changes in landscape pattern metrics at the landscape level during the four periods at the Changshagongma Wetland Nature Reserve. (A) edge density
(ED) and patch density (PD), (B) contagion index (CONTAG) and Shannon diversity index (SHDI).

value is, the stronger the connectivity in the landscape, and vice
versa. From 1992 to 2020, CONTAG first decreased from 54.96
in 1992 to a lowest value of 54.83 in 2002 and then increased to
54.89 in 2013. It finally increased to a highest value of 56.19 in
2020, indicating that the landscape connectivity in the study area
underwent a process of first decreasing and then increasing. The
trend in landscape connectivity was consistent with that of the
areas of swamp meadows and alpine meadows.

SHDI can reflect the uniformity and heterogeneity of a
landscape. The lower the SHDI value is, the more similar the
patches and the lower the heterogeneity of the landscape, and
vice versa. From 1992 to 2020, the SHDI first increased from
1.30 in 1992 to a highest value of 1.31 in 2002, then decreased
to 1.29 in 2013 and finally decreased to a lowest value of
1.26 in 2020. The trend in the SHDI was opposite to that
of CONTAG, indicating that the landscape structure of the
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study area first became more complicated, and the landscape
heterogeneity increased from 1992 to 2002. From 2002 to 2020,
the landscape structure tended to be homogeneous, and the
landscape distribution tended to be uniform. In 2002, landscape
connectivity was the lowest, and landscape heterogeneity was the
highest. In 2020, landscape connectivity was the highest, and
landscape heterogeneity was the lowest.

Forces Driving the Landscape Pattern
Using bivariate correlations, this paper analyzes the correlations
between the landscape pattern index and the eight selected
driving factors (X1 ∼ X8) at the type level and the landscape level.

The analysis results at the type level (Table 5) show that
the bivariate correlation between the landscape pattern index
of the dominant landscape (swamp meadows, alpine meadows,
and sandy grasslands) and each driving factor is significantly
higher than that of other landscapes. The bivariate correlation
has the highest significance between the landscape index of
the alpine meadows and each driving factor, and it has the
lowest significance between the landscape index of the lake
wetlands and each driving factor. The correlation between human
disturbance (X8) and the AI of lake wetlands, FRAC_MN of lake
wetlands, and PLAND of alpine bare rocks was not significant,
and the correlation between human disturbance (X8) and other
landscape pattern indices was significant. In terms of correlation
coefficients, most types of landscape pattern indices have lower
correlation coefficients with human disturbance than with
natural factors, except for swamp meadows. The results showed
that natural factors are the main factors affecting the landscape
pattern of the Changshagongma Wetland Nature Reserve. The
impact of human disturbance on the landscape pattern of the
Changshagongma Wetland Nature Reserve cannot be ignored,
especially the impact of human disturbance on swamp meadows.

The analysis results at the landscape level (Table 6) show
that the bivariate correlation between PD, ED, and each driving
factor has the strongest significance, followed by SHDI, and
CONTAG is the weakest, and the correlation coefficient of PD is
larger than that of ED. The correlation between SHDI, CONTAG,
and X6 is not significant, indicating that SHDI, CONTAG, and
precipitation have no significant correlation. The correlation
between CONTAG and X1 and X8 is also not significant,
indicating that CONTAG has no obvious correlation with slope
aspect and human activities.

Landscape Ecological Risk Analysis
Spatiotemporal Changes in Ecological Risk
The ecological risk of each evaluation cell in the study area was
calculated using the landscape ecological risk model. Using the
natural breaks method, the ecological risk was divided into five
levels: lowest-level risk (I), lower-level risk (II), moderate-level
risk (III), higher-level risk (IV), and highest-level risk (V). The
spatial distribution is shown in Figure 6, and the time series trend
is shown in Figure 7. In terms of spatial distribution, significant
spatial differences were found in ecological risk. The highest-level
risk areas were mainly concentrated in the central and southern
portions of the Changshagongma Wetland Nature Reserve. The
remote sensing classification results also showed that the area

of sandy grasslands in these regions was large, indicating that
grassland desertification was one of the main threats in terms
of ecological risk. The areas with higher-level and moderate-level
risk were adjacent to the highest-level risk regions. A small area
of moderate-level risk was found in the Zhaqu River basin in the
northeast, at the border of Sichuan and Qinghai. Lowest-level
risk region were concentrated in the contiguous swamp meadows
in the northwest and alpine mountains in the southwest. These
regions are largely uninhabited by humans and undergo very
little disturbance from human activities. The changes in the
average ecological risk in the periods studied followed a hump-
shaped trend. The ecological risk increased from 1992 to 2002
and declined continuously from 2002 to 2020. Since 1992, the
ecological risk has decreased, and the ecological risk trend has
been similar to the trend in climate.

Factors Driving Ecological Risk
Using the Geodetector model, q value changes in factors
driving ecological risks in the Changshagongma Wetland
Nature Reserve from 1992 to 2020 were detected (Table 7).
Although the driving factors differed between time periods,
the overall driving force of climate characteristics was the
highest, followed by topography and geomorphology, and human
disturbance had the lowest effect. In 2020, for example, the
importance of all indicators was ranked from high to low as
X5 > X7 > X2 > X8 > X6 > X1 > X3 > X4. The influence of
the topographic and geomorphological indicators was ranked as
X2 > X1 > X3 > X4. From the perspective of changes in the q
values of the topographic and geomorphological indicators over
time, the changes in X1, X3, and X4 were small. X2 exhibited
relatively large changes, and its q value reached its highest value
in 2002, when the ecological risk was the highest, indicating that
topography and geomorphology were the greatest drivers. The
driving power of aspect, slope, and relief amplitude was low, and
its changes were small. The influence of climatic characteristics
was ranked from high to low as X5 > X7 > X6. Regarding the
changes in the q value of the climatic index over time, the q value
of X6 was lowest in 2002. However, the q values of X5 and X7
showed the opposite trend, and the q values of X6 and X7 were
the greatest. These results showed that the q value of X6 decreased
when the climate was cold and dry and increased when it was
warm and wet. The driving power of X8 was greatest in 2002 and
then decreased later, indicating that the effect of human activities
on the ecological risk of the study area was decreasing.

DISCUSSION

Many alpine wetlands are distributed on the Qinghai-Tibet
Plateau. The Changshagongma Wetland Nature Reserve is
adjacent to the Three Rivers Source of the Qinghai-Tibet
Plateau and is a typical representative of alpine wetlands. Alpine
wetlands play an important role in water conservation, climate
regulation, carbon and nitrogen deposition, water purification,
and biodiversity maintenance (Zhang et al., 2011; Chen et al.,
2014). However, studies have shown that the alpine wetland
ecosystem of the Qinghai-Tibet Plateau has become an area
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TABLE 5 | Bivariate correlations between landscape pattern indices (LPI) and driving factors at the class level.

Minor type LPI Topography and geomorphology Climatic characteristics Human disturbance

X1 X2 X3 X4 X5 X6 X7 X8

1 PLAND –0.001 0.236** –0.364** –0.485** –0.359** –0.164** –0.373** 0.538**

PD –0.099** –0.014 –0.205** –0.239** –0.086** –0.105** –0.094** 0.118**

AI –0.005 0.190** –0.203** –0.290** –0.245** –0.082** –0.247** 0.338**

FRAC_NN 0.035 –0.011 0.106** 0.109** 0.017 0.109** 0.016 –0.147**

2 PLAND 0.008 –0.471** –0.222** –0.031 0.369** –0.050 0.381** –0.203**

PD 0.003 0.026 –0.189** –0.212** –0.115** –0.238** –0.130** 0.264**

AI –0.055 –0.138** –0.008 0.043 0.165** 0.116** 0.174** –0.191**

FRAC_NN –0.009 –0.296** –0.027 0.094** 0.254** 0.105** 0.266** –0.263**

3 PLAND 0.206** 0.087* –0.049 –0.063 –0.093* 0.112** –0.110* 0.153**

PD 0.166** 0.086* –0.114** –0.114** –0.103* 0.071 –0.112** 0.152**

AI –0.076 –0.022 0.094* 0.060 0.026 0.001 0.033 –0.068

FRAC_NN 0.131** –0.042 0.052 0.034 0.060 0.043 0.023 –0.047

4 PLAND –0.016 –0.538** 0.304** 0.421** 0.573** 0.127** 0.590** –0.455**

PD –0.060** 0.104** –0.206** –0.267** –0.150** –0.190** –0.174** 0.072**

AI 0.006 –0.276** 0.201** 0.270** 0.306** 0.158** 0.325** –0.209**

FRAC_NN 0.141** 0.058** 0.155** 0.198** 0.007 0.100** 0.007 –0.214**

5 PLAND 0.106** –0.090** 0.125** 0.089** 0.120** –0.079** 0.080** –0.256**

PD –0.012 0.103** 0.012 0.029 –0.051** –0.076** –0.045* –0.062**

AI 0.107** –0.088** 0.001 –0.006 0.068** –0.108** 0.019 –0.062**

FRAC_NN 0.182** –0.100** 0.090** 0.093** 0.131** 0.165** 0.112** –0.145**

6 PLAND 0.049 0.426** –0.075* –0.110** –0.303** 0.162** –0.293** 0.036

PD 0.044 0.093** –0.041 –0.037 –0.075* 0.070* –0.058 –0.114**

AI –0.020 0.306** –0.097** –0.143** –0.244** 0.056 –0.227** 0.200**

FRAC_NN 0.009 0.055 –0.075* –0.069* –0.078* –0.079* –0.087** –0.064*

1, swamp meadows; 2, riverine wetlands; 3, lake wetlands; 4, alpine meadows; 5, sandy grasslands; and 6, alpine bare rocks.
“*” and “**” indicate significant correlations at levels of 0.05 and 0.01, respectively.

TABLE 6 | Bivariate correlations between landscape pattern indices (LPI) and driving factors at the landscape level.

LPI Topography and geomorphology Climatic characteristics Human disturbance

X1 X2 X3 X4 X5 X6 X7 X8

PD –0.065** 0.164** –0.154** –0.165** –0.171** –0.174** –0.177** 0.036*

ED 0.041* 0.054** –0.123** –0.118** –0.078** –0.102** –0.103** –0.124**

CONTAG –0.032 –0.248** 0.095** 0.149** 0.244** 0.002 0.260** 0.021

SHDI –0.057** 0.415** –0.192** –0.197** –0.419** –0.009 –0.413** 0.133**

“*” and “**” indicate significant correlations at levels of 0.05 and 0.01, respectively.

of rapid change in the landscape pattern of the Qinghai-Tibet
Plateau and a high-risk area for ecological security because of its
strong sensitivity to climate change (Pan et al., 2007).

Previous attribution studies of the landscape pattern of alpine
wetlands have shown that climate change is the dominant factor
(Zhao et al., 2012; Du et al., 2015). This understanding is verified
in a case study based on the Changshagongma Wetland Nature
Reserve (Tables 6, 7), where we found that the explanatory power
of temperature is higher than that of precipitation. In empirical
understanding, precipitation (including rainfall and snowfall) is
the main source of water supply for wetlands, but the amount
of precipitation in alpine regions (the proportion of snowfall is
higher than that of rainfall) is smaller, and the water in alpine
wetlands is not directly replenished by precipitation but more

due to warming, which promotes the melting of ice, snow, and
seasonally frozen soil, and then the water is supplied to the alpine
wetland through the surface (underground) through the snow
melting process. Compared to wetlands in low plains (Yang et al.,
2021), the hydrological processes of alpine wetlands are more
complex and are simultaneously affected by multiple factors, such
as topography, alpine ice and snow, frozen soil, air temperature,
vegetation, and human activities. The amount of water produced
by melting ice, snow, and permafrost is regulated by changes
in air temperature, which makes the effect of temperature in
the change process of alpine wetlands more obvious and direct.
Under global climate change, the temperature of the Qinghai-
Tibet Plateau has increased significantly, and its climate is
trending toward warming and humidification (Xu et al., 2019).
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FIGURE 6 | Temporal and spatial distribution of ecological risk during the four periods in the Changshagongma Wetland Nature Reserve. (A) 1992, (B) 2002, (C)
2013, (D) 2020.

The warming of the Qinghai-Tibet Plateau has accelerated the
melting of ice and snow, which has increased the water supply
of wetlands to varying degrees, resulting in a rise of the water
level and an increase in the area of wetlands such as lakes
and swamps, and the meadows tend to become swampy (Mao
et al., 2021). At the same time, continuous warming increases
the amount of permafrost ablation, which leads to surface water
infiltration or recharge of underground runoff, which directly
affects the groundwater recharge in alpine wetlands and changes
wetland water storage, resulting in fluctuations in wetland area
(Jin et al., 2009; Liu and Wang, 2012). The Qinghai-Tibet
Plateau is increasingly affected by global changes coupled with
the vulnerability of alpine wetlands and their sensitivity to
climate change. The future warming scenario may cause the
wetland landscape pattern to show significant volatility, which
will have various impacts on the ecological security of alpine
wetlands (Xu et al., 2019; Jin et al., 2020). Therefore, in future

research on alpine wetlands, attention should be paid to the
impact of local hydrological processes on the landscape of
alpine wetlands, revealing the changing laws of alpine wetlands
from hydrological processes and then proposing corresponding
measures for the conservation and restoration of alpine wetlands
in changing environments.

In existing studies, scholars have actively explored the degree
of interference of human activities on various wetlands on the
Qinghai-Tibet Plateau and found that it was generally weak but
varied in different regions (Zhao et al., 2015; Liu et al., 2019). The
case of Zoige has shown that human disturbance has significantly
affected the changes and ecological security of wetland landscape
patterns (Li et al., 2014). Most of the wetlands on the Qinghai-
Tibet Plateau are located in nature reserves, with very few human
activities, and spatial data to quantitatively describe them are
lacking. Because of this limitation, most of the existing studies
have carried out qualitative analysis, and accurately assessing the
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FIGURE 7 | Time series trend in ecological risk during the four periods at the Changshagongma Wetland Nature Reserve.

TABLE 7 | q values of driving factors from 1992 to 2020 (%).

Topography and geomorphology Climatic characteristics Human disturbance

X1 X2 X3 X4 X5 X6 X7 X8

1992 10.34 23.67 5.46 4.39 28.75 9.68 25.45 21.51

2002 10.24 27.99 4.68 4.63 34.77 7.06 31.96 24.87

2013 13.21 19.37 5.36 5.28 26.31 17.22 21.44 19.80

2020 11.23 20.80 5.24 4.00 29.22 11.03 25.33 18.23

impact process and intensity of human disturbance on different
alpine wetlands is difficult (Qiu et al., 2009). In this case, we
try to take the distance between the landscape unit and the
road as the interference degree of human activities on wetland
ecological security in the Changshagongma Wetland Nature
Reserve to reveal the interference process of human footprints
on alpine wetlands to a certain extent. The results showed that,
overall, human activities have a weak disturbance on wetland
landscapes. However, the analysis results at the type level of the
landscape pattern index found that human disturbance had a
significant impact on the landscape pattern changes in swamp
meadows (Table 5). Swamp meadows are transitional wetlands
between meadows and swamps, and changes in their landscape
patterns are related to wetland succession and development.
The strong disturbance of swamp meadows by human activities
showed that swamp meadows, as fragile and sensitive areas
in wetland conservation, are extremely vulnerable to human
activities and present ecological security risks. This attribute
warns wetland protectors and managers to continue to carry
out engineering measures such as returning grazing land to
grassland and wetland restoration in the future. At the same
time, “the most beautiful wetland” is the business card of Shiqu

County’s tourism development. In recent years, the number of
tourists has gradually increased, which will surely make the
Changshagongma Wetland Nature Reserve bear the pressure of
tourism development. Wetland protectors and managers should
scientifically guide the development of tourism, strengthen
ecological protection publicity for tourists, and avoid disorderly
tourism and reckless driving.

CONCLUSION

We completed the fourth phase (1992, 2002, 2013, 2020)
of wetland classification of the Changshagongma Wetland
Nature Reserve using the GEE platform, analyzed the climate
change trends, revealed the evolution characteristics of wetland
landscape patterns, and assessed ecological risk and the
explanatory power of driving factors. The main conclusions are
as follows:

(1) The main land cover (LULC) types in the
Changshagongma Wetland Nature Reserve were swamp
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meadows, alpine meadows, and sandy grasslands. Swamp
meadows were the main type of wetland, and the
distribution was relatively concentrated. From 1992 to
2020, the overall area of wetlands showed a “∨”-
shaped change trend.

(2) Throughout the analysis period (1992–2020), the wetland
landscape pattern of the Changshagongma Wetland Nature
Reserve was optimized, which was reflected in the
enhancement of spatial connectivity and the reduction
of fragmentation and heterogeneity. However, differences
are observed between periods. In the early period (1992–
2002), the climate was cold and dry, and coupled with
high-intensity grazing, the wetland area decreased, and
the sandy grassland expanded, resulting in an increase in
landscape fragmentation and heterogeneity. In the later
period (2002–2020), the climate was warm and humid, and
projects such as returning grazing land to grassland and
wetland restoration were implemented in the region. The
wetland area increased, the sandy grassland area decreased,
the landscape fragmentation was reduced, and the spatial
connectivity was enhanced.

(3) The results of the ecological risk assessment showed
obvious spatial heterogeneity in the ecological risk of the
Changshagongma Wetland Nature Reserve (Figure 6). The
results showed that the topographic difference and the
interference intensity of human activities were the main
reasons for the internal spatial differentiation of landscape
ecological risk.

(4) Overall, climate change had the greatest impact on
the ecological risk of wetland landscapes in the
Changshagongma Wetland Nature Reserve, followed by
topographical conditions and lesser human activities.
Among them, because of the special hydrological process
of alpine wetlands, air temperature and evapotranspiration
had a greater impact on the wetland landscape. Although
the overall impact of human activities on the landscape
pattern was weak, the explanatory power of the landscape
pattern index at the type level found that swamp meadows
were strongly disturbed by human activities and became
fragile and sensitive zones that should be focused on in
wetland conservation and management.

The landscape ecological risk model constructed based on
the landscape pattern index in this paper can better evaluate
and identify the main controlling factors of ecological risk
in alpine and humid regions. However, the scale effects in
the data, classification criteria, and models may affect the
results and therefore cannot be ignored. The Changshagongma
Wetland Nature Reserve and other alpine wetland areas have

many small wetlands (small wetlands play an important role
in maintaining biodiversity, regulating water sources, etc.), but
limited by medium-resolution image data, the interpretation
of small wetlands is not precise and comprehensive enough,
and the complex succession process of wetland landscapes is
easily ignored at fine scales. In further research, high-resolution
image data can be used to strengthen the fine observation of
small and micro wetlands. While improving the data accuracy,
the subjectivity in the wetland classification system should also
be considered. Different landscape classification systems have
different impacts on the calculation of landscape patterns, which
may damage the credibility and universality of the research
results. Follow-up research should focus on the characteristics of
alpine wetlands to establish a common wetland identification and
classification standard to improve the contrast of case studies.
In the model, the grid-based landscape index calculation has a
plastic area unit problem; that is, the index is sensitive to the
setting of the landscape unit scale, and the calculation results may
depend on scale grid units, so future research should pay more
attention to the scale effect of landscape ecological risk.
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