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Upslope range shifting has been documented in diverse species in response to
global warming. Plasticity, which refers to the ability of organisms to alter their
phenotypes in changing environments, is crucial for the survival of those that newly
migrated to a high-altitude environment. The scope and mechanisms of plasticity
across biological levels, however, have rarely been examined. We used two agama
lizards (genus Phrynocephalus) as model systems and a transplant experiment to
comprehensively assess their plasticity on multiple organization levels. Two low-altitude
(934 m) agama species, Phrynocephalus axillaris (oviparous) and P. forsythii (viviparous),
were transplanted to a high-altitude site (3,400 m). After acclimation for 6 weeks in
seminatural enclosures, plasticity was measured from bite force, tail display behavior,
gene expression, and metabolome. Both lizards were capable of acclimating to the
high-altitude environment without sacrificing their performance in bite force, but they
also showed high plasticity in tail display behavior by either decreasing the intensity
of a specific display component (P. forsythii) or by the trade-off between display
components (P. axillaris). Genes and metabolites associated with lipids, especially
fatty acid metabolism, exhibited significant differentiation in expression, compared to
individuals from their native habitats. Improved fatty acid storage and metabolism
appeared to be a common response among animals at high altitudes. Despite distinct
reproductive modes that may differ in response to physiological pressure, the two lizards
demonstrated high concordance in plasticity when they faced a novel environment at
high altitudes. Taken together, lizards likely acclimate to high-altitude environments by
reducing behavioral activity and increasing energy efficiency after range shifting. Our
results provide new insights into our understanding of phenotypic plasticity and its
importance in today’s changing climate.

Keywords: high altitude, lizards, behavior, performance, gene expression, metabolome, plasticity

INTRODUCTION

Upslope range shifting has been documented in diverse species as a response to global warming
because cooler regions likely relieve species from overheating and facilitate their survival (Thomas
and Lennon, 1999; Parmesan and Yohe, 2003; Root et al., 2003; Thomas et al., 2006). However,
moving up along an elevational gradient comes with several other inevitable environmental
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stressors, including hypobaric hypoxia and intense UV radiation,
which may reduce the successful reproduction and individual
survival (Scheinfeldt and Tishkoff, 2010; Kouyoumdjian et al.,
2019). Endemic high-altitude species have evolved several specific
mechanisms that enable them to tolerate these stressors, such as
improved O2 uptake and modified metabolism (Qu et al., 2013;
Zhang et al., 2014; Li et al., 2018). How newly range shifted species
survive in the high-altitude environments remains to be explored.

Phenotypic plasticity plays a crucial role in facilitating
organisms to live at high altitudes (Wilson and Franklin,
2002; Seebacher, 2005; Scoville and Pfrender, 2010; Corl
et al., 2018). Plasticity in metabolism is particularly important
(Seebacher, 2005; Horscroft et al., 2017). Abundant evidence
has demonstrated that the oxygen transport system is highly
plastic in dealing with severe hypoxia (Storz, 2007; He et al.,
2013; Lui et al., 2015), while plasticity in metabolic activities
also assists animals in coping with cold and hypoxia (Hammond
et al., 2001; Seebacher, 2005). The Australian freshwater turtle
Chelodina longicollis, for example, responds to cold stress
by increasing the activity of regulatory enzymes (Seebacher
et al., 2004). Correspondingly, gene expression, which connects
genotype to metabolism, is highly plastic and also shows large
differences between individuals living at different altitudes. For
example, deer mice from high altitudes show a large-scale
upregulation of genes associated with oxygen and metabolic
fuel utilization, compared to low elevation individuals (Cheviron
et al., 2014; Scott et al., 2015). Plasticity in animal behavior
and performance is well known for buffering environmental
changes along altitude gradients, especially for ectothermic
species (Kearney et al., 2009; Enriquez-Urzelai et al., 2019). In
a new environment, individuals often seek proper retreat sites
to avoid the overheating risk (Enriquez-Urzelai et al., 2019) or
immediately adjust their behavior patterns to match the local
environments (Refsnider et al., 2018).

Despite these advancements, a holistic look at how a
newly arrived animal may survive in a natural high-altitude
environment is lacking. Previous studies were often carried out
in laboratory settings with only one stressor considered, typically
temperature or oxygen (Seebacher et al., 2004; Seebacher,
2005), but natural high-altitude environments are complex with
multiple stressors. Therefore, animal transplant experiments
from low- to high-altitude environments with a natural setting
are highly desirable. Furthermore, plastic changes in response
to high altitudes likely take place at multiple organization
levels, including gene expression, metabolism, and performance.
Plasticity in metabolic functions is likely essential for organisms
to survive at high altitudes. Different pathways, such as oxidative
phosphorylation and tricarboxylic acid cycle, have different
capacities in heat production and oxygen utility (Voet and Voet,
1995; Cheviron et al., 2012). Several studies have also shown that
the fatty acid metabolic pathway is crucial in dealing with high-
elevation environments (Cheviron et al., 2012; Qu et al., 2013;
Tang et al., 2013; Lui et al., 2015). Other levels of phenotypic
variations, such as morphology and behavior, may also contribute
to or depend on metabolic functions.

Toad-headed agama lizards (genus Phrynocephalus) provide
an excellent system to investigate the plasticity in response

to high-altitude environments. As ectothermic species, agama
lizards are sensitive to environmental changes. This genus is
widely distributed in the Eurasian Arid Belt. Recent studies
have shown that they have evolved a series of physiological and
behavioral traits that are related to high-altitude habitats (Tang
et al., 2013; Yang et al., 2014). In addition, these lizards use tail
displays in their social communications, which are regulated by
anaerobic metabolism (Zhu et al., 2021; Hu et al., 2022). Also,
both oviparity (laying eggs) and viviparity (giving live birth) exist
in this group of lizards, and viviparity has often been associated
with high-altitude or high-latitude environments (Guo and
Wang, 2007). The different reproductive modes may restrict or
expand their plasticity in a new high-altitude environment. In this
group of lizards, one oviparous species (Phrynocephalus axillaris)
and one viviparous species (P. forsythii) are sympatric at low-
altitude habitat, and P. forsythii has been assessed to face high
extinction risk under global warming (Sinervo et al., 2018).
Therefore, a comparison between P. axillaris and P. forsythii
would provide an opportunity to reveal both common and
specific patterns in response to high-altitude environments
for agama lizards.

In this study, we aimed to make a multilevel assessment of the
plasticity in response to high-altitude environments for agama
lizards. Specifically, we examined (1) whether agama lizards were
capable of acclimation from low- to high altitudes and (2) the
patterns of plasticity on performance, behavior, gene expression,
and metabolome. To achieve these objectives, we transplanted
two sympatric agama species P. axillaris (oviparous) and
P. forsythii (viviparous), from their original low-altitude habitat
to high-altitude environments in the Qinghai-Tibetan Plateau.
Their bite force was measured to assess their performance, and
their gene expression profiles from heart, liver, and muscle, as
well as blood metabolomes, were obtained to examine their
patterns of plasticity.

MATERIALS AND METHODS

Experimental Design
We used a transplanting design to simulate lizards’ upslope
range shifting. Two Phrynocephalus species, P. axillaris and
P. forsythii from Kuerle, Xinjiang, China (41.50386◦N, 86.2290◦E,
elevation = 934 m a.s.l.), were sampled on June 18–July 2, 2017,
and transplanted to a high-altitude environment on July 4, 2017,
in Zoige, the eastern part of Qinghai-Tibetan Plateau in Sichuan
Province (33.71389◦N, 102.48543◦E, elevation = 3,400 m a.s.l.).
Although a control treatment in the original site would provide
consistent conditions for comparison after transplantation, it
was difficult to conduct experiments without a well-equipped
field workstation in the original site. To minimize bias caused
by microhabitat differences, we built six outdoor seminatural
enclosures (length × width × height = 5 m × 5 m × 1.5 m,
Figure 1A), and the settings resembled the original habitat as
much as possible. We used sand from a field site of P. vlangalii,
a sister species of P. forsythii, as substrate, and had a fishing
net suspended above each enclosure to reduce the risk of bird
predation. The lizards were kept in the enclosures for 6 weeks
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FIGURE 1 | Transplant experimental design and plasticity in performance and behavior for Phrynocephalus axillaris and P. forsythii. (A) Image of P. axillaris and
P. forsythii, the outdoor enclosures used for the common garden in Zoige, the eastern part of the Qinghai-Tibetan Plateau in Sichuan Province, and the schematic
drawing of tail coil and tail lash for tail displays. (B) Comparison of bite force before and after transplant. (C) Comparison of tail coil speed and tail lash speed before
and after transplant for P. axillaris. (D) Comparison of tail coil speed and tail lash speed before and after transplant for P. forsythii. (E) Comparison of tail coil duration
and tail lash duration before and after transplant for P. axillaris. (F) Comparison of tail coil duration and tail lash duration before and after transplant for P. forsythii. In
(B–F), bar plots represent the mean values, and error bars represent their standard error. Asterisks indicate statistical significance levels: **p < 0.01; ***p < 0.001.

to acclimate to the new environments, and mealworms were
provided every 3 days to offset food shortage.

We examined multiple levels of phenotypic plasticity by
comparing lizard states before and after transplanting. The bite
force was used to assess lizard body condition and performance
in the new environments, while the tail display behavior,
gene expression, and metabolism were used to assess the
plasticity patterns.

Behavioral Data Collection
We collected data of tail display behavior from 25 males of
P. axillaris and 26 males of P. forsythii from the original site
(Figure 1A). The detailed protocols on display collection are
described by Wu et al. (2018). First, we captured intruder males
using noose from a different site 3 km away and measured their
snout-vent length (SVL) to the nearest 0.01 mm using caliper.
Then, the resident male was approached by a size-matched
intruder using a 4-m-long fishing rod. Meanwhile, a video camera
(HDR PJ670, Sony, Japan) was set up in front of the resident
male and recorded the display response. The trial was terminated
after the display stopped, or at a maximum of 5 min if no display
was observed. At the conclusion of each trial, a ping-pong ball
was placed at the location of the resident and recorded as a scale
for subsequent analysis. The resident male was captured using
a noose after filming. Immediately after capture, we measured
the body temperature from the center of its dorsum with an
IR thermometer (HT-866, HCJYET, China). The lizards were
kept individually during the experiment. We also measured the
SVL and bite force of each lizard. The SVL was measured using
a caliper to the nearest 0.01 cm. The bite force was recorded

using a piezoelectric force transducer (Type 9203, Kistler Inc.,
Switzerland) that connected to a charge amplifier (Type 5995A,
Kistler Inc., Switzerland) and fitted with two metal bite plates
(Vanhooydonck et al., 2005). We encouraged the lizards to bite
the plates by gently tapping the mouth using a blunt metal probe.
To minimize bias due to motivation and physical condition, we
repeated the measurement three times and used the maximum
value as the final measurement (Vanhooydonck et al., 2005).

A total of 22 male P. axillaris and 23 male P. forsythii
were transplanted from the original site to the high-altitude
site. Individuals of each species were randomly divided into
three groups (7–8 for each) and kept in seminatural enclosures.
After acclimation for 6 weeks, we recorded the social display
behavior and measured SVL and bite force in the same way.
All raw data of the behavioral experiment are shown in
Supplementary Table 1.

Bite Force Plasticity Analysis
We analyzed the correlation between bite force and transplant
treatments using linear models in the nlme package (Pinheiro
et al., 2018) in R version 4.0.5 (R Core Team, 2015). The bite force
was log-transformed before modeling to meet the assumption of
Gaussian error distribution. We established a linear model with
the transplant treatment as the main effect while considering
individual body temperature as co-variable.

Display Digitization and Plasticity
Analysis
To quantify the tail display, we tracked the motion of tail tips
following the methods outlined by Hedrick (2008) in MATLAB
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2015b (MathWorks Inc., Natick, MA, United States). The x-y
coordinates of tail tips were determined using the DLT dv5
software (Hedrick, 2008) with successive frames. We extracted
two tail display variables, the average display speed and display
duration. The average display speed was defined as the average
distance moved by tail tip within a specific time. The display
duration was defined as the time of each display bout. We
quantified the two variables for both tail coil display and tail
lash display to examine whether tail display plasticity differed
between components. As the orientation of the lizard relative to
the camera likely affected tail display quantification (Bian et al.,
2016), we categorized each display as either facing toward or away
from the camera or at the right angle to the camera. Finally,
we transformed the grid-based display variables to Euclidean
distance in MATLAB using the ping-pong ball as scale.

We analyzed the correlation between tail display and
transplant treatments using linear mixed models in the nlme
package (Pinheiro et al., 2018) in R version 4.0.5 (R Core Team,
2015). All independent variables were log-transformed to meet
the assumptions of the linear mixed model. For average tail
display speed, we considered transplant treatment and display
orientation as fixed effects, with lizard identity as a random effect
and assuming a Gaussian error distribution. For display duration,
we considered treatment as fixed effects, with lizard identity as
a random effect and assuming a Gaussian error distribution.
We included the SVL of residents as covariates in both tail

display speed and duration models to account for the potential
effect of body size.

Transcriptome Sequencing Analysis
For each species, 6 individuals from the original habitat
and 6 transplanted individuals were subjected to part of the
examination. Tissues of the heart, liver, and muscle were collected
immediately after euthanization on the days of collection or
immediately after the completion of the transplant experiments.
The sample information is provided in Supplementary Table 2.
Total RNA was extracted from each tissue sample according to
the TRIzol protocols (Invitrogen, Carlsbad, California). Paired-
end sequencing with a read length of 150 base pairs (bp) was
carried out on the Illumina HiSeq2500 platform by Novogene
(Beijing, China).

Raw sequencing reads were first cleaned by excluding the
adapter sequences and low-quality base calls using a Novogene
pipeline. Trimmomatic version 0.35 (Bolger et al., 2014) was
used to trim the clean reads with LEADING:3, TRAILING:3,
SLIDINGWINDOW:4:15, and MINLEN:70. We checked the
read quality before and after trimming using FastQC version
0.11.8 (Andrews, 2010). Subsequently, quality-filtered reads of
three different tissue samples from one representative individual
of each species (A2, G1, and M2 for P. axillaris; C1, I1, and O1
for P. forsythii) were used in de novo assembly via Trinity version
2.8.4 after in silico read normalization (Grabherr et al., 2011;

FIGURE 2 | Plasticity in gene expression profiles. (A) Principal component analysis (PCA) plot for expression profile of P. axillaris. The colors of dots represent the
experimental groups. (B) PCA plot for expression profile of P. forsythii. (C) Network for overrepresented Gene Ontology (GO) categories for differentially expressed
genes (DEGs) in liver of P. axillaris. (D) Network for overrepresented GO categories in the liver for P. forsythii. In the networks, the size of dots represents the number
of genes in each category, and the FDR represents the p-values after multiple correction by false discovery rate.
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Haas et al., 2013). Since Trinity usually generates a large
number of assembled transcripts, among which many may have
questionable biological significance, we used kallisto version
0.44.0 (Bray et al., 2016) to quantify the abundance of the
assembled transcripts and build expression matrices. Transcripts
with “transcripts per million transcripts” (TPM) less than three
were removed to generate the final assembly for each species.
To obtain orthologous sequences among the two species, a best
reciprocal hit (BRH) method was applied for the final assemblies
via BLAST+ version 2.7.1 (Camacho et al., 2009).

The clean reads for each tissue sample were mapped to the
transcriptome assemblies for corresponding species by STAR
version 2.6 (Dobin et al., 2013). The quantity of reads that
matched to the same transcripts was counted using the HTSeq-
count tool with the “union” resolution mode (Anders et al., 2015).
The expression similarity among samples was calculated by the
Euclidean distance and visualized by clustering heatmap after
regularized log-transformation (rlog) of normalized counts via
DESeq2 version 1.20 (Love et al., 2014). Principal component
analysis (PCA) was used to assess the relationship between
samples. We compared the samples that belonged to the same
species separately to examine the expression divergence among

different tissue types within one species. Differentially expressed
genes (DEGs) were estimated using generalized linear models in
edgeR package version 3.22.5 (Robinson et al., 2010; McCarthy
et al., 2012). We used a strict thresold to characterize DEGs,
with fold-change ≥ 2 and adjusted p-value < 0.05 [false
discovery rate (FDR)].

Functional annotation was applied by aligning the transcripts
to the UniProtKB/Swiss-Prot database (release “2018_08”) with
BLAST hits E-value cutoff greater than 10−5. For transcripts
with annotation information, overrepresentation test of DEGs
was calculated using the clusterProfiler package (Yu et al., 2012)
in R with annotation to the Gene Ontology (GO) category and
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
databases. The minimum number of transcripts required for each
test of a given category was 10.

Metabolomic Assay Analysis
For each species, 10 individuals from the original habitat and
10 transplanted individuals were subjected to this part of the
examination. The sampling of blood plasma was conducted
immediately after euthanization on the days of collection or the
completion of the transplant experiment. In detail, each lizard

FIGURE 3 | Plasticity in main biochemical clusters of metabolites identified in metabolome assay. Red color denotes metabolites from positive ion mode, and blue
color denotes metabolites from negative ion mode. The top panels represent the metabolome in P. axillaris, and the bottom panels represent that in P. forsythii.
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was fixed on a polyvinyl board. Then, we used ophthalmic scissors
to remove the skin of the neck and make a cut on the Jugular
vein. Notably, 40 µl blood plasma was extracted by a capillary
(length: 100 mm; inner diameter: 1.55 mm) from the vein. Finally,
the plasma was pushed into a 200-µl tube and then immediately
stored in liquid nitrogen. The plasma samples were inputted
for metabolome assay using the liquid chromatography-mass
spectrometry (LC-MS) method (Brown et al., 2011; Dunn et al.,
2011) and an ultra-performance liquid chromatography (UPLC)-
TripleTOF 5600 system (AB SCIEX, Majorbio, Shanghai, China).
Due to the different properties of metabolites, two modes (i.e.,
negative and positive ion modes) were used to detect metabolites.
The raw data from LC-MS passed through a series of quality
control phases, including baseline filtering, peak identification,
integration, retention time correction, and peak alignment, and
finally were normalized using the software XCMS (Tautenhahn
et al., 2012). Final data matrices contained retention time,
mass-to-charge ratio, and peak intensity. The identification
of metabolites was carried out using substance-matching in

the METLIN and HMDB databases and an in-house standard
library according to the retention time and m/z. The SIMCA-
14.1 (Umetrics, Kinnelon, United States) was used to perform
orthogonal partial least squares discriminant analysis (OPLS-
DA) for obtaining variable influence on projection (VIP) values.
Differentially expressed metabolites (DEMs) were defined using
the following cutoff criteria: (1) Benjamini-Hochberg-adjusted
p-values being less than 0.05; (2) fold-change (expressed as the
ratio of average metabolite abundance between groups) being
less than 0.5 for downregulation or being larger than 2 for
upregulation; (3) VIP being larger than 1.

The Chemical Similarity Enrichment Analysis (ChemRICH;
Barupal and Fiehn, 2017) was conducted to classify the
metabolites into biochemical clusters from metabolomic database
using Chemical Translation Service (CTS) and PubChem
Identifier Exchange Service (Barupal et al., 2018). ClassyFire
(Feunang et al., 2016) was used to automatedly annotate
metabolite classification with default parameters. In addition, to
further identify key metabolic processes for various metabolites,

FIGURE 4 | Plasticity in fatty acid metabolism. (A) A schematic illustration of fatty acid metabolism in organisms. The blue frames represent the important biological
processes in the pathway: lipolysis, beta-oxidation, lipogenesis, citric acid cycle (CAC), and fatty acid synthesis. Crucial genes and metabolites in the pathway are
indicated by red or blue colors, which represent upregulation and downregulation of genes or metabolites, respectively. (B) The expression fold-change of SREBF1,
FASN, and ACADVL in P. axillaris and P. forsythii.
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null diffusion-based enrichment was conducted with the KEGG
pathway database by runDiffusion function using the FELLA
package (Picart-Armada et al., 2018).

RESULTS

Plasticity in Bite Force
We found no significant change in bite force in P. axillaris (from
8.81± 0.70 n, n = 11 to 7.12± 0.51 n, n = 17; t =−0.95, p = 0.35;
Figure 1B) and in P. forsythii (from 2.40 ± 0.22 n, n = 14 to
4.31 ± 0.16 n, n = 18; t = 0.74, p = 0.47; Figure 1B) after being
acclimated to high-altitude environments.

Plasticity in Tail Display Behavior
We detected clear plasticity in tail display behavior in both
species. In P. axillaris, average tail coil speed was significantly
increased (from 16.28 ± 3.19 cm/s, n = 23 to 97.55 ± 8.82 cm/s,
n = 20; t = 5.06, p = 0.0004; Figure 1C), while average tail
lash speed was significantly decreased (from 79.50 ± 8.52 cm/s,
n = 22 to 15.19 ± 1.49 cm/s, n = 22; t = −5.28, p = 0.0005;
Figure 1C) after being acclimated to high elevation area.
Meanwhile, the average tail coil duration decreased significantly
from 11.01 ± 2.33 s (n = 23) to 1.98 ± 0.46 s (n = 20; t = −3.31,
p = 0.007), while average tail lash duration increased significantly
from 2.63 ± 0.35 s (n = 22) to 6.77 ± 1.02 s (n = 22; t = 4.00,
p = 0.003; Figure 1E). In P. forsythii, we found no significant
change in average tail coil speed (from 12.13 ± 1.06 cm/s, n = 13
to 15.82 ± 1.18 cm/s, n = 22; t = 1.63, p = 0.13; Figure 1D),
in average tail lash speed (from 14.28 ± 1.07 cm/s, n = 20 to
10.87 ± 0.60 cm/s, n = 20; t = −0.97, p = 0.35; Figure 1D),
and in average tail lash duration (from 10.19 ± 1.55 s, n = 20
to 8.05 ± 0.85 s, n = 20; t = −0.85, p = 0.41; Figure 1F) after
being acclimated to high elevation area, but the average tail coil
duration decreased significantly from 15.99 ± 2.57 s (n = 13) to
3.89± 0.52 s (n = 22; t =−4.73, p = 0.0004; Figure 1F).

Plasticity in Gene Expression
A total of 44,000,068–123,811,250 and 42,179,214–91,710,426
raw reads were generated for P. axillaris and P. forsythia by
Illumina sequencing, respectively. After filtering, 41,832,664–
118,600,900 and 39,967,100–90,040,782 reads were retained,
respectively (Supplementary Table 3). For P. axillaris, 27,894
transcripts were obtained with an N50 size of 2,372 bp and a
mean length of 1,224 bp. For P. forsythii, 31,519 transcripts were
obtained with an N50 size of 2,185 bp and a mean length of
1,205 bp. By the BRH method, 8,892 orthologous transcripts were
identified among the two species.

The PCA plot showed that the tissue-specific expression was
very consistent for all types of tissues within the two species, and
the expression divergence for any type of tissues between low-
and high altitudes was lower than any cross-tissue comparisons
(Figures 2A,B). Generally, transcriptomes from heart and muscle
were less diverged than from liver for both species. As for
DEGs of P. axillaris, 1,612 were identified in heart between
low- and high-altitude groups, with 690 upregulated and 922
downregulated, given low-altitude sample as a reference; 2,792

DEGs were identified in liver, with 1,485 upregulated and 1,307
downregulated; 2,993 DEGs were identified in muscle, with 1,365
upregulated and 1,628 downregulated. Similarly, for P. forsythii,
913 DEGs were identified in heart, with 405 upregulated and
408 downregulated; 1,301 DEGs were identified in liver, with 722
upregulated and 579 downregulated; 1,994 DEGs were identified
in muscle, with 868 upregulated and 1,126 downregulated.

After functional annotation for DEGs of P. axillaris, a total
of 32 GO categories and 1 KEGG pathways were identified as
overrepresented in heart, most of which were associated with
muscle function (e.g., GO: 0006936 muscle contraction, GO:
0003012 muscle system process) and small molecule metabolism
(e.g., GO: 0019320 hexose catabolic process, GO:1901135
carbohydrate derivative metabolic process). In muscle, 158
GO categories and 7 KEGG pathways were overrepresented
by DEGs, concentrating mostly on muscle function, including
GO: 0003012 muscle system process, GO: 0006936 muscle
contraction, and GO: 0006941 striated muscle contraction, and
also associating with acid metabolism, such as GO: 0043436
oxoacid metabolic process. In liver, different from the other two
tissues, 77 GO categories and 13 KEGG pathways were identified
as overrepresented by DEGs, which were mostly associated with
lipid metabolism, including GO: 0044255 cellular lipid metabolic
process, GO: 0006631 fatty acid metabolic process, and GO:
0008202 steroid metabolic process. Similar patterns were also
found in overrepresented KEGG pathways, such as map00071
fatty acid degradation and map01212 fatty acid metabolism
(Figure 2C and Supplementary Figure 1).

For the DEGs of P. forsythii, four GO categories and one
KEGG pathway were overrepresented in heart, which were all
related to circadian regulation, including GO: 0032922 circadian
regulation of gene expression, GO: 0009649 entrainment of
the circadian clock, and pathway hsa04710: circadian rhythm.
In muscle, 60 GO categories but no KEGG pathways were
overrepresented by DEGs. Those categories were mostly related
to cell migration and blood vessel development, including GO:
0030334 regulation of cell migration, GO: 0048514 blood vessel
morphogenesis, and GO: 0010594 regulation of endothelial
cell migration. In liver, 115 GO categories and 13 KEGG
pathways were overrepresented. Similar to P. axillaris, most
of those functional categories were also associated with lipid
metabolism, including GO: 0008202 steroid metabolic process
and GO: 0006631 fatty acid metabolic process, and pathways,
such as map00071 fatty acid degradation (Figure 2D and
Supplementary Figure 1).

Plasticity in Metabolism
A total of 4,523 features of metabolites were detected in the
metabolome assay, among which 4,309 features were retained
after filtering. After ChemRICH classification, 1,109 and 985
metabolites were identified with biochemical annotation for
positive and negative ion mode of LC-MS, respectively. For
P. axillaris, 421 DEMs were identified in positive ion mode
with 83 upregulated and 338 downregulated; 482 DEMs were
identified in negative ion mode with 80 upregulated and 412
downregulated. Similarly, for P. forsythii, 565 DEMs were
identified in positive ion mode with 106 upregulated and 459
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downregulated; 554 DEMs were identified in negative ion mode
with 117 upregulated and 437 downregulated. Both positive and
negative ion modes suggested that the patterns of metabolome
for the two species were quite similar. For all biochemical
clusters, amino acids, peptides, and analogs contained the most
metabolites for both species, among which approximately 55% of
the metabolites were differentially expressed. However, clusters
associated with lipids were identified, showing a high ratio of
DEMs, such as fatty acid esters, fatty acids and conjugates, and
glycosphingolipids (Figure 3).

A total of 29 DEMs were mapped to KEGG pathways,
among which 16 and 26 were from P. axillaris and P. forsythii,
respectively. A high proportion (50.0% for P. axillaris and
53.8% for P. forsythii) of DEMs were associated with lipids,
including those concordantly regulated in both species, such
as the upregulation of 17α-Hydroxypregnenolone (cortisol
synthesis and secretion) and sphingosine phosphocholine
(sphingolipid metabolism) and the downregulation of cholesterol
sulfate (steroid hormones biosynthesis) and L-palmitoylcarnitine
(fatty acid degradation). In addition, lipid metabolism-related
pathways were overrepresented by DEMs in both species,
including fatty acid degradation, primary bile acid biosynthesis,
and taurine and hypotaurine metabolism (Supplementary
Table 4).

Fatty Acid Metabolism
Fatty acid metabolism appeared to be a major source of plasticity
for both DEGs and DEMs, and therefore, we further examined
detailed expression patterns for genes and metabolites associated
with the fatty acid metabolic pathway (Figure 4A). We identified
a total of 13 genes and 4 symbolic metabolites within the pathway
that was differentially expressed in both species. Intriguingly, the
patterns of up- or downregulation for those genes were identical
in the two lizards, suggesting a common acclimation process
in response to high-altitude environments for Phrynocephalus
species. Among those genes, three play crucial roles in the
fatty acid metabolic pathway: sterol regulatory element-binding
transcription factor 1 (SREBF1), fatty acid synthase (FASN), and
very long-chain-specific acyl-CoA dehydrogenase (ACADVL)
(Figure 4B). SREBF1 acts as an inductor of lipogenesis in
liver leading to increased storage of fatty acid as triglycerides
for organisms. FASN encodes the enzyme FASN that catalyzes
the synthesis of fatty acid from acetyl-CoA and is regulated
by SREBF1 (Bhuiyan et al., 2009; Bouchard-Mercier et al.,
2012). On the opposite side, ACADVL catalyzes the first step
of mitochondrial fatty acid beta-oxidation, which digests fatty
acid into acetyl-CoA before the citric acid cycle to produce
energy, specifically for long-chain fatty acids (Miller et al., 2015).
Among the metabolites within the pathway, L-palmitoylcarnitine
is an important ester derivative of carnitine, which plays a
core role in fatty acid metabolism by transporting long-chain
fatty acids into mitochondria (Wood et al., 1984; Mutomba
et al., 2000). In both P. axillaris and P. forsythii, SREBF1 and
FASN showed significant upregulation, while ACADVL and the
L-palmitoylcarnitine showed significant downregulation, which
strongly suggested increased storage and decreased digestion of
fatty acids.

DISCUSSION

The upslope range shifting is one of the primary responses
for species under climatic changes (Pecl et al., 2017). Animals
are predicted to colonize high-altitude regions following the
shifting of suitable climatic conditions (Lenoir and Svenning,
2015). At high altitudes, key environmental factors, such as
low oxygen availability, high levels of UV radiation, and their
interactions, pose severe challenges to organisms, especially
ectothermic species (Li et al., 2018; Sun et al., 2018). Our
transplant experiments demonstrate that toad-headed lizards
(P. axillaris and P. forsythii) from low altitudes are capable of
acclimating to high-altitude environments without sacrificing
their performance. P. axillaris showed high plasticity in tail
display behavior, with increased tail coil speed and tail lash
duration, as well as decreased tail coil duration and tail lash
speed, while P. forsythii only showed reduced tail coil duration at
high altitudes. Genes and metabolites associated with fatty acid
metabolism were also identified with significant differentiation
in expression when compared to individuals from low-altitude
native habitats. Moreover, a large proportion of metabolites
showed decreased expression for transplanted groups. Those
consistent results imply that toad-headed lizards acclimate to
high-altitude environments by reducing the behavioral intensity
and increasing energy efficiency in multiple ways. Despite
distinct reproductive models, the two lizards have highly
concordant plasticity.

Plasticity in behavior plays a crucial role in dealing with
the challenges of high-elevation environments from an energy
cost perspective (Refsnider et al., 2018; Enriquez-Urzelai et al.,
2020). As the direct connection between organisms and their
environments, animal behavior is intimately correlated with
energy metabolism (Ros et al., 2006; Mowles, 2014). We found
that both species showed a trend of decreasing their tail display
intensity, either by a specific component (e.g., tail coil in
P. forsythii) or by a trade-off between different components
(e.g., tail coil and tail lash in P. axillaris). Tail displays of
Phrynocephalus lizards play important roles in social conflict
alleviation and mate assessment (Wu et al., 2018), but they are
energetically costly (Zhu et al., 2021). Consistent with our results,
high-altitude Phrynocephalus lizards often constrain their activity
intensity or reduce the display complexity (Hu et al., 2022).
Behavioral traits are intrinsically plastic; lizards and many other
ectotherms are well known for adjusting their behavior quickly in
a new environment (Refsnider et al., 2018; Enriquez-Urzelai et al.,
2020).

Plasticity in nutrient and energy metabolism can balance
the requirements of life activities in high-altitude environments
(Storz et al., 2010; Zhang et al., 2018). As the primary energy
storage for animals, fatty acids play a key role in high-altitude
plasticity and adaptation (Cheviron et al., 2012; Lui et al.,
2015). Tang et al. (2013) first discovered that high-altitude
Phrynocephalus species (Phrynocephalus erythrurus) had high-fat
utility compared to its low-altitude counterpart (Phrynocephalus
przewalskii). In this study, several core genes and metabolites
associated with fatty acid metabolism show concerted patterns
of differential expression, suggesting a common plastic response
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for both P. axillaris and P. forsythii. The SREBF1 gene in both
species is also significantly upregulated at high altitudes, which
functions to facilitate the process of lipogenesis by transforming
other nutrients into fatty acids (Bhuiyan et al., 2009; Bouchard-
Mercier et al., 2012). The upregulation of FASN is consistent
with this process, which directly catalyzes fatty acid synthesis
(Bhuiyan et al., 2009). In addition, ACADVL is downregulated
at high altitudes, which suppresses the breaking down of long-
chain fatty acids during beta-oxidation (Miller et al., 2015). Some
endotherms have similar plastic responses at high altitudes. Yang
et al. (2006) found upregulated leptin gene at high altitudes
for the plateau pika; leptin facilitates the lipolysis process
and is a key regulator for fatty acid metabolism (Pan et al.,
2014). All these results suggest a common response of fatty
acid metabolism, through lipogenesis, synthesis, and lipolysis,
at high altitudes.

Global climatic change has increasingly been a leading cause
for biodiversity loss (Sala et al., 2000; Thomas et al., 2004;
Valtonen et al., 2017). Studying plasticity in response to high-
altitude environments will provide useful insights into how
organisms cope with new environments after upslope range
shifting. In addition to directly buffering the environmental
stress, plasticity may also provide direction for adaptive evolution
toward high altitudes. The “plasticity-first evolution” model
favors phenotypic plasticity that may lead to adaptation and
is supported by an increasing number of cases (Moczek et al.,
2011; Jones and Robinson, 2018). Environmental changes may
first trigger phenotypic plasticity, and the selection on genotypes
that influence the plastic expression of phenotypes will follow.
Therefore, elucidating the nature of plasticity will help to
predict directions of evolution and to manage conservation
projects for organisms under the pressure of climatic change.
Clearly, more studies are needed to unravel a comprehensive
profile for phenotypic plasticity in behavior, performance,
and metabolism for upslope range shifting species in high-
altitude environments.
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