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DNA barcoding has been largely successful in satisfactorily exposing levels of standing

genetic diversity for a wide range of taxonomic groups through the employment

of only one or a few universal gene markers. However, sufficient coverage of

geographically-broad intra-specific haplotype variation within genomic databases like

the Barcode of Life Data Systems (BOLD) and GenBank remains relatively sparse. As

reference sequence libraries continue to grow exponentially in size, there is now the need

to identify novel ways of meaningfully analyzing vast amounts of available DNA barcode

data. This is an important issue to address promptly for the routine tasks of specimen

identification and species discovery, which have seen broad adoption in areas as diverse

as regulatory forensics and resource conservation. Here, it is demonstrated that the

interpretation of DNA barcoding data is lacking in statistical rigor. To highlight this, focus

is set specifically on one key concept that has become a household name in the field:

the DNA barcode gap. Arguments outlined herein specifically center on DNA barcoding

in animal taxa and stem from three angles: (1) the improper allocation of specimen

sampling effort necessary to capture adequate levels of within-species genetic variation,

(2) failing to properly visualize intra-specific and interspecific genetic distances, and (3)

the inconsistent, inappropriate use, or absence of statistical inferential procedures in DNA

barcoding gap analyses. Furthermore, simple statistical solutions are outlined which can

greatly propel the use of DNA barcoding as a tool to irrefutably match unknowns to

knowns on the basis of the barcoding gap with a high degree of confidence. Proposed

methods examined herein are illustrated through application to DNA barcode sequence

data from Canadian Pacific fish species as a case study.
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1. THE MANY FACES OF DNA BARCODING

1.1. DNA Barcoding: Historical
Development
In its infancy, DNA barcoding (Hebert et al., 2003a) was
envisaged as a means to resolve a longstanding problem facing
biodiversity science: the taxonomic impediment. Significant
lack of progress in taxon characterization due to an aging
expert population, in conjunction with the limited availability of
adequate research funding to support such endeavors, has greatly
contributed to the lack of timely dissemination of taxonomic
information and knowledge in recent decades (Cao et al., 2016).
In a time marked by global species extinction and ongoing
environmental crisis, DNA barcoding promised to accelerate
the description of novel taxa, as well as revise the status of
existing ones. This was possible through the assembly of genetic
“signatures” within a centralized repository more rapidly than
customary Linnean classification was even capable. The proposal
seemed, at first, like wishful thinking within some academic
circles. DNA barcoding employs short molecular sequence tags
from standardized genomic regions, such as the c. 650 bp
fragment from the 5’ end of the mitochondrial cytochrome c

oxidase subunit I (COI) gene in animals, to establish taxon-level
matches to unknown specimen queries at any life stage across
the animal kingdom (Hebert et al., 2003b). Several past studies
have also discussed the appeal of isolating a barcode sequence
from mitochondrial DNA (mtDNA), as opposed to its nuclear
counterpart [e.g., Hubert et al. (2008); Hubert and Hanner
(2015)]. Notably, due to the effects of random genetic drift,
mutational substitutions are expected to reach fixation within
populations and become diagnostic of species sooner because
the effective population size of mitochondria is one-quarter less
than that of nuclear genes. The specific choice of COI as the
currently unattested DNA barcode for animals is justified in
several respects: (1) that it is protein-coding, (2) that it possesses
a reasonably high rate of nucleotide substitution, and (3) that
it lacks introns and comprises few insertions/deletions (indels)
and no stop codons. In addition to these desirable characteristics,
its ease of amplification, sequencing and alignment across most
taxa, due to its highly conserved nature, makes COI the preferred
gene marker over other such loci that meet only some of the
abovementioned requirements (Phillips et al., 2019). Despite
this, the attractiveness of DNA barcoding’s use as both a
specimen identification and species discovery tool is fraught with
much controversy. The molecular identification of specimens
to any level of biological organization through DNA barcodes
necessarily depends a priori on known taxon designations
brought about through the current state of taxonomic practices
(DeSalle, 2006). Furthermore, DNA barcoding’s success rests
crucially on extant species-level haplotype diversity as well as
the distinction between intra-specific and interspecific genetic
variation across taxa (Phillips et al., 2019). When such links can
be established, observable geographic and historic patterns of
genetic diversity are then readily explained.

While DNA barcoding has found myriad applications in
diverse subdisciplines of evolutionary biology, ecology, and

more broadly in biodiversity science, one surprising area,
namely applied regulatory forensics, has reaped the benefits
barcoding has to offer in unparalleled ways throughout the
years. The identification of regulated species of socioeconomic
importance through the accumulation of DNA barcodes has
been instrumental in combatting instances of seafood market
fraud as well as monitoring the introduction and spread of
invasive pests, particularly in Canada and the USA [e.g., seafood:
Shehata et al. (2018, 2019a); meat products: Naaum et al.
(2018), Shehata et al. (2019b); invasive arthropods: Madden
et al. (2019)]. Despite this, several obstacles still remain.
The inherent dynamism characteristic of public genomic
databases, such as the Barcode of Life Data Systems [BOLD;
Ratnasingham and Hebert (2007)] (http://www.boldsystems.
org) and GenBank (https://www.ncbi.nlm.nih.gov/genbank/),
precludes their routine use for such a task. The fact that the
addition of new specimen records to community databanks
may produce contradictory findings over time is problematic
(Phillips et al., 2020). Instead, regulatory sequence databases
should be populated with static taxon records traced to
voucher specimens whenever possible so that such issues can
be mitigated. While the inclusion of fit-for-purpose DNA
sequences in governmental repositories like the European
and Mediterranean Plant Protection Organization (EPPO)’s
Q-bank (https://qbank.eppo.int) for agricultural/quarantine
pests and the United States Food and Drug Administration
(USFDA)’s Reference Standard Sequence Library for Seafood
Identification (RSSL) (https://www.fda.gov/food/dna-based-
seafood-identification/reference-standard-sequence-library-
seafood-identification-rssl) for seafood species represents a
step in the right direction, small sample size issues continue
to plague the arena (Phillips et al., 2020). Further, the deep
sampling of an adequate number of specimens necessary to
capture sufficient levels of standing haplotype variation within
species is critical if high confidence in specimen assignments
is desired (Phillips et al., 2015, 2019, 2020; Doorenweerd et al.,
2020). This is even more important since much sequence
data in BOLD and GenBank suffer from serious quality
control issues (namely biological and/or methodological). To
ensure accurate identification, access to fewer high-quality
specimen records is always preferable to the availability of many
problematic records (Collins and Cruickshank, 2014). DNA-
based identification accomplished through DNA barcoding
places heavy reliance on the accuracy and completeness of
reference sequence libraries to enable the rapid assignment of
unknown specimens to valid or putative species, depending
on whether the ultimate goal is specimen identification or
species discovery respectively. As use of distance-based methods
strongly outweighs other taxon identification approaches [e.g.,
tree-based algorithms Barbera et al., 2019] or character-based
approaches Rach et al., 2008; Wong et al., 2009) within most
DNA barcoding studies, due in part to computational expense,
outdatedness, or inaccessibility of most software, a means of
directly testing the overall performance of DNA barcoding
is needed. Such a path forward is provided by the DNA
barcode gap.
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1.2. DNA Barcoding and the Barcode Gap:
A Perfect Harmony?
A well-established tenet in the field is that the majority of DNA
barcode variation found across species exceeds genetic variability
seen within species. This apparent “barcode gap” (Meyer and
Paulay, 2005) was recognized early on as a critical factor to the
success of DNA barcoding. The existence of a species’ barcoding
gap is often invoked as evidence that DNA barcoding “works”
in practice (Stoeckle and Thaler, 2014). Under current sampling
efforts and morphological identifications associated with DNA
barcodes, a large number of species show greater than 2% genetic
distance to their nearest heterospecific and typically exhibit less
than 1% intra-specific distance (Hubert and Hanner, 2015).

Researchers have differing opinions on how the DNA barcode
gap ought to be defined. Whereas Meyer and Paulay (2005)
advocated the use of the mean genetic distance to the nearest
neighbor, employment of the minimum interspecific distance
is now commonplace. Reliance on the former metric tends to
exaggerate the presence of a real species barcoding gap through
inflating false positives (see section 4.3.1 below for further
discussion), leading to misidentification of specimens (Meier
et al., 2008). Thus, on the basis of this paradigm shift, it is
wholly conceivable that published DNA barcoding studies have
likely reported biased estimates of the barcoding gap at the
species level and therefore warrant revisitation and cautious
interpretation. Perhaps this is why the barcoding gap is depicted
using both the mean and maximum intra-specific genetic
distance within BOLD’s Barcode Gap Analysis tool available
in the user Workbench. Meyer and Paulay (2005) differentiate
between two variants of species barcoding gaps, depending on
whether specimen identification or species discovery is the end
goal: “local” and “global,” respectively. A “local” DNA barcode
gap can be applied whenever an individual specimen of a
particular species is closer in distance to another member of
the same species; whereas, a “global” barcoding gap is applicable
whenever a threshold can be identified that separates all species

(Collins and Cruickshank, 2013). While each of these hold great
importance for the identification of unknown specimens, the

absence of a sufficiently wide “global” barcode gap that readily

distinguishes higher-level taxonomic diversity (e.g., phyla) does
not immediately rule out the existence and usefulness of “local”
gaps at lower levels of taxonomic organization (i.e., genus,
species) (Kvist, 2017; Koroiva and Kvist, 2018).

Many studies, particularly early ones (see below for some

taxon-specific examples), use a barcoding gap approach as

a reliable species, genus, or higher-level (i.e., order, family)

separation criterion with little discussion as to its overall

utility (Čandek and Kuntner, 2015). However, both the
existence and application of the DNA barcode gap are equally

important: taken together, they reconcile both morphological

identifications established through Linnean taxonomy with

molecular identifications based on DNA sequence variation.

Recognizing this, Collins and Cruickshank (2013) discussed the

“inappropriate use of fixed distance thresholds” and “incorrectly
interpreting the barcoding gap.” Despite strong support early-
on in the DNA barcoding enterprise for the existence of

the DNA barcode gap, subsequent studies have since gone
on to suggest that the presence of a barcode gap at any
taxonomic level is simply an artifact of insufficient specimen
sampling across narrow geographic and morphologic space
(Dasmahapatra et al., 2010; Bergsten et al., 2012; Čandek and
Kuntner, 2015). In light of this observation, the interpretation
of the barcode gap across taxa is not a straightforward task
[e.g., marine gastropods molluscs: Meyer and Paulay (2005),
butterflies: Wiemers and Fiedler (2007), spiders: Čandek and
Kuntner (2015), annelids: Kvist (2017), leaf-footed bugs: Zhang
et al. (2017), dragonflies/damselflies: Koroiva and Kvist (2018)].
This may be due to the fact that the very definition of the
DNA barcode gap has undergone refinement over the years. As
a result, no one “true” quantitative approach exists for measuring
the DNA barcoding gap that can be unanimously agreed upon
within the barcoding community. The use of arbitrary and fixed
distance cutoffs to separate out all taxa, such as the well-known
2% heuristic (Hebert et al., 2003a,b) and the 10× rule (Hebert
et al., 2004) no longer holds (Collins and Cruickshank, 2014;
Zhang et al., 2017). Rather, because barcoding data is in a state of
continual flux, as more specimens are collected and as taxonomic
revisions are made, taxon distance thresholds should instead be
directly computed from specimen DNA sequences when possible
(Collins and Cruickshank, 2013; Young et al., 2017).

Numerous computational and statistical methods have been
proposed over the years to better quantify the magnitude of
the barcode gap. For instance, the 10× rule, where a taxon
separation cutoff of 10 times the mean intra-specific distance is
adopted, goes some way into accomplishing this, but it cannot be
readily applied to distinguish among all taxa due to differences
in both taxon evolutionary and life histories. The absence of
a DNA barcoding gap to reliably discriminate species can be
attributed to three primary factors: (1) the recent/rapid splitting
of species from the Most Recent Common Ancestor (MRCA),
leading to the retention of ancestral polymorphisms as a result
of incomplete lineage sorting, introgressive hybridization or
species synonymy; (2) the likely presence of cryptic species
diversity due to lack of fixed morphological differences among
closely-related taxa; and, (3) human-mediated errors (e.g.,
overlumping/oversplitting of taxa) in the identification of
specimens by experts (Hubert and Hanner, 2015; Koroiva and
Kvist, 2018). Thus, the employment of taxon-specific distance
thresholds, as opposed to generic cutoffs, seems more reasonable.
As a consequence, the adoption of a number of query-based
criteria designed to aid in the reliable separation of intra-
specific and interspecific distances has propagated throughout
the DNA barcoding community and literature over the years.
These include for instance the Best Close Match criterion
employed within the TaxonDNA software (Meier et al., 2006),
and methods available in the spider (Brown et al., 2012),
the adhoc (Sonet et al., 2013), and the BarcodingR (Zhang
et al., 2016) R packages. In spite of the introduction of various
methods to aid the solving of the species genetic separation
problem, a significant knowledge gap persists: the apparent
dearth of statistical thoroughness in the computation of genetic
distances that accompanies the majority of published DNA
barcoding studies.
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2. A NEED TO IMPROVE AND MAINTAIN
STATISTICAL RIGOR IN DNA BARCODING
STUDIES

Here, evidence is presented pointing to the lack of statistical
rigor in DNA barcoding as it relates to distance-based specimen
identification and species delineation. Despite having been
pointed out as a clear limitation multiple times in various
capacities by authors of previous studies (Matz andNielsen, 2005;
Nielsen and Matz, 2006; Luo et al., 2015; Phillips et al., 2019), the
issue of statistical rigor within the context of DNA barcoding has
not yet garnered the scrutiny it desperately deserves. This may be
due to the fact that there is no one set definition for statistical
rigor in the literature, partly because, like science, statistics is
rooted deeply in epistemology, and more generally in philosophy
(Lindley, 2000). The problem faced here however is that the
majority of researchers, particularly those in life science fields,
lack an appropriate level of statistical knowledge necessary for
the proper application of statistical methods (Fieberg et al., 2020).
As a result, misuse, abuse and misinterpretation of quantitative
results is rampant in academic settings. By no means are DNA
barcoding studies immune to this. Such naïveté has led to the
overuse of “basic” parametric statistical procedures such as t-
tests and the drawing of incorrect conclusions from p-values
(Wasserstein et al., 2019). These and other statistical “sins” are
so widespread in academic publications that some statisticians
have devoted much of their time, and even their entire careers, to
writing about the most common errors made by non-statisicians
and steps to take to avoid making them [e.g., Good and Hardin
(2003)]. Thus, here, statistical rigor is informally and simply
defined as the use of appropriate quantitative methods (e.g.,
genetic distance thresholds) to test and justify hypotheses in light
of empirical evidence (i.e., DNA sequence data) and uncertainty.
This definition is adopted herein. Notably, it is stressed that
the ubiquitous barcoding gap should be better defined on a
statistical level, contingent on its use for the task of identifying
unknown specimens or in describing novel species. However,
as most DNA “barcoders” are not also statisticians, the lack
of a statistically-precise static definition for the DNA barcode
gap is understandable, albeit one that is absolutely necessary.
Although there is much that could be elaborated on here, in
this investigation, focus is specifically placed within the context
of the need for the sound interpretation of the DNA barcoding
gap as a necessary and sufficient criterion to assess the overall
performance of DNA barcoding in animal taxa.

In the following subsections, problems with barcode gap

interpretation from the standpoints of (1) requiring higher intra-

specific specimen sample sizes to adequately capture standing

genetic variation, (2) needing better descriptive statistics,

along with visualization methods, to concisely and accurately
summarize taxon genetic sequence distance data, and (3)

necessitating more appropriate statistical inference procedures
to draw meaningful conclusions from limited DNA sequence
data are outlined. Throughout the present work, Meier et al.’s
(2008) version of the DNA barcoding gap is employed; however,
one can easily replace “maximum” with “mean” everywhere in

the context of interspecific distances with the understanding
that discrepancies as to which species show a barcode gap may
(and often do) result. As pointed out by Meier et al. (2008),
employment of the mean interspecific distance is not correct
since this metric approaches the true mean. In contrast, use of
the smallest inter-specific distance adequately reflects the fact that
specimen identification becomes more challenging as sampling
depth is increased (Meier et al., 2008). Viable solutions are
then proposed which better harmonize the seemingly disparate
disciplines of DNA barcoding and statistics. Moreover, the
methods proposed herein also extend to the notion of (statistical)
reproducibility. Many scientific studies lack sufficient information
(including detailed explanations, quantitative data andmetadata)
necessary to replicate original experiments. A prime example
where a sufficient level of detail is crucial to convey to researchers
is in the description of agent-based models (ABMs), which are
used widely in ecology. Typically, ABMs incorporate numerous
assumptions needed to establish baseline individual- and group-
level behavior in “perfect-world” scenarios. To ensure that such
rigor is not compromised, Grimm et al. (2006) introduced and
outlined a standard protocol that sought to bridge challenges
of ABM: Overview, Design concepts and Details (ODD). This
work has since been expanded upon to more fully encapsulate
the elements needed to adequately describe ABMs in a complete
but succinct manner (Grimm et al., 2010). The approaches
outlined and examined below go some way into better enabling
reproducibility, much like the ODD Protocol, as they are not
only planted firmly in solid statistical theory, but are also
straightforward to implement and easy to understand by the
statistical nonexpert. While it is recognized that much of the
discussion outlined herein on the absence of statistical rigor
in DNA barcoding in the context of the barcode gap is highly
animal-centric, potential solutions to ameliorate this problem are
easily extended to other taxon groups, in particular plants and
fungi, and their proposed barcode loci. Focus on animals was
decided on simply because use of DNA barcoding in this group is
much more straightforward and less controversial in comparison
to non-animal species.

3. CASE STUDY: DNA BARCODING OF
PACIFIC CANADA’S FISHES

From this point onward, statistical approaches to better
characterizing the DNA barcode gap will be framed in the
context of the barcoding of Canadian Pacific fishes as a focal
case study. Many fish species native to the Pacific [e.g., Sockeye
salmon (Oncorhynchus nerka)] hold strong socioeconomic and
conservation importance globally, particularly as central food
commodities within the seafood supply chain. As such, in recent
decades, much work has gone toward better understanding
patterns of standing genetic diversity in this group to aid recovery
of declining fish stocks.

DNA barcodes were downloaded from BOLD on December 1,
2020. Specifically, sequence data were taken from Steinke et al.
(2009a) (BOLD Project: TZFPC Fishes of Pacific Canada Part I)
and consist of 1219 specimens representing 198 species (as of the
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date of download). At the time of project release and publication
of Steinke et al. (2009a), data comprised 1225 specimens records
from 201 species. Within the current dataset two specimen
records (Process IDs: TZFPA062-06 and TZFPB406-05) were
flagged as problematic (i.e. misidentified) in BOLD and an
additional sequence (Process ID: TZFP069-04) was outside the
barcode region length necessary for BARCODE compliance (i.e.,
said sequence was shorter than 500 bp; Hanner, 2009). Only
the latter record was excluded from further analysis, leaving a
sequence count of 1218. The two misidentified specimens were
identified at the time of record submission to the species level as
Arctozenus risso (Spotted barracudina) and Lipolagus ochotensis
(Eared blacksmelt), respectively. A single record was associated
with only a genus name [TZFPA198-07 Icelinus (sculpins)],
so it was removed from subsequent calculations/inferences.
Further, a total of 46 singleton species were identified. These
records were also excluded from downstream consideration
since DNA barcode gap analysis requires the inclusion of at
least two specimens per species to be meaningful. This clearly
highlights the lack of adequate sufficient sampling necessary
to capture standing levels of within-species genetic variation
existing within many DNA barcode libraries. Included in the
gap analysis were five records comprising interim species
[Paraliparis sp. (snailfishes)]. Thus, only 1171 of the 1218
specimens (representing 152 species) were deemed useable.
Sequence alignment necessary for determination of the DNA
barcoding gap was carried out directly using the built-in amino
acid-based Hidden Markov Model (HMM) aligner due to dataset
size. The default Kimura-2-Parameter (K2P) DNA substitution
model was maintained, along with the default Pairwise Deletion
option for ambiguous base and gap handling. While usage of
K2P to account for differences in transition and transversion
rates among sequence sites is both widespread and criticized
in DNA barcoding studies as well as the community-at-large
(Collins et al., 2012; Srivathsan and Meier, 2012), other more
parsimoniously rigorous nucleotide evolution models (such as
the uncorrected p-distance) can (and should) be adopted without
loss of information (and may even be better suited in the
long run). Simply blindly adopting K2P because of its initial
employment by Hebert et al. (2003a), who argued that its use is
warranted when genetic distances are low, is not reason enough,
especially given that many taxa display large distances within and
among species.

Using the Barcode Gap Analysis tool available through the
BOLD Workbench, results revealed a total of 29 species (19.1%)
had nearest neighbor distances less than the 2% threshold.
The species L. ochotensis showed a maximum intra-specific
distance of 1.24% and a minimum interspecific distance of
13.43% (nearest species: Northern smoothtongue (Leuroglossus
schmidti); nearest neighbor: TZFPA187-07), while distances for
A. risso, a singleton, were 0 and 17.72% (nearest species: Northern
pearleye (Benthalbella dentata); nearest neighbor: TZFPB335-
05), respectively. Although observed magnitudes of genetic
distances for both of these species suggest that DNA barcoding
“works” and is an effective tool when it comes to specimen
identification, it is nevertheless unsettling that all mentioned
species’ nearest neighbors fall into separate genera. While this

finding suggests a lack of overall specimen sampling depth
for these species and perhaps Pacific fishes in general (Steinke
et al., 2009a), it must further be emphasized that many Pacific
species occur in deep, cold-water environments; thus, deep
barcode sequence divergences are not a rare phenomenon. One
species, Paraliparis pectoralis, had a maximum within-species
distance of 2.27% (minimum interspecfic distance: 9.17%, nearest
species: Paraliparis paucidens, nearest neighbor: TZFPA048-
06). Another species, the Deepwater bristlemouth (Cyclothone
atraria), displayed a maximum intra-specific distance of
9.22% (nearest neighbor distance: 22.78%; nearest species:
Stout blacksmelt (Pseudobathylagus milleri); nearest neighbor:
TZFPB400-05). These two cases of high intra-specific distance is
strong indication of potential cryptic species diversity. All other
maximum within-species distances were below 2%. It should
be noted here that specimens assigned as correctly-identified
or misidentified to a given species, as well as those individuals
displaying cryptic genetic variation or evidence of barcode
sharing may in fact not bear these characteristics. Calculated
maximum intra-species genetic distances for C. atraria and
P. pectoralis were based on sample sizes of only nine and
12 individuals respectively. Even though specimen sample size
information is available for all species assessed by Steinke
et al. (2009a), it is still impossible to directly discern how
reliable reported genetic distance measures are, and therefore the
trustworthiness of estimated DNA barcode gaps.

4. HIGHLIGHTING THE LACK OF
STATISTICAL RIGOR IN DNA BARCODING

Prior to delving any further into the primary elements that
constitute the lack of statistical rigor in DNA barcoding, along
with the discussion of simple solutions to help aid its mitigation,
astute readers may have noted thus far the use of the term
“distance” to describe both genetic variability within species, as
well as among species. This is no mistake. To the untrained
eye, these terms are synonymous from a lexical point of view,
and can be (and often are) used interchangeably within general
writing. However in scientific writing, this constitutes a major
faux-pas. The term “divergence” is used in the phylogenetics
literature to express differences in either number of mutations
or amount of time separating taxa (e.g., species differing by
2% per million years) accomplished through molecular clock
measurements. Recently, DeSalle and Goldstein (2019) reiterated
the importance of carefully balancing word meaning and word
choice in barcoding papers so that author(s)’ overall intent is
not blurred. Numerous highly-cited past DNA barcoding studies
employing barcode gap analyses have unknowingly used the term
“divergence” to denote gene variation seen across species. Even
some authors of the current work are guilty of this. Such word
usage bears similarity to the confusion between the terms “species
identification” and “specimen identification,” as raised by Collins
and Cruickshank (2013) as the third of seven deadly sins of
DNA barcoding. There is an important mathematical/statistical
distinction between distance and divergence which must be
stressed: distances are symmetric, whereas divergences are not.
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Considering two different specimens (or species), calling them
A and B, then the distance between A and B is equal to the
distance between B and A. Such a pattern is easily observed
from examining a pairwise distance matrix of intra-specific
and interspecific genetic distances. Values are identical (zero)
with respect to the main diagonal (moving top left to bottom
right), as a specimen or species will display zero distance
from itself to itself. This can also be seen through exchanging
matrix rows for columns and vice versa. On the other hand,
the notion of divergence (e.g., the Kullback-Leibler divergence)
speaks to how different two probability distributions are from one
another (Kullback and Leibler, 1951). Thus the term “distance”
is employed everywhere throughout the current work when
referring to intra-specific and interspecific differences. While this
confusion does not directly contribute a lack of statistical rigor
per se, to this end, all future DNA barcoding studies employing
barcode gap analyses should use the term “distance” over
“divergence” to avoid any potential ambiguity and confusion.

4.1. Balancing Allocation of Specimen
Sampling Effort
Current specimen sampling efforts for DNA barcoding have
been improperly delegated to further the growth of public
reference sequence databases such as BOLD and GenBank. Both
geographic and taxonomic barcoding projects and campaigns
have been far too focused on exhaustively sampling as many
species as possible (Phillips et al., 2015, 2019). This assertion
is immediately evident from examining BOLD species lists,
where an overwhelming majority of species are singletons or
doubletons. For instance, while specimen records are abundant
for taxa like fishes and insects, they are highly lacking for
birds, most mammals and especially herpetofauna (reptiles and
amphibians). From this observation, it is clear that the sampling
of intra-specific rather than interspecific genetic variation has
been severely limited. While both extremes of genetic variation
are necessary to fully comprehend and assess the scope and
magnitude of species limits, taxon rarity combined with narrow
sampling are typical in DNA barcoding studies (Ahrens et al.,
2016; Gaytan et al., 2020). Barcoding initiatives should therefore
instead be focused on the dense sampling of an optimal
number of specimens per species, which should be strongly
calibrated by factors such as research budget, cost and funding
(Cameron et al., 2006; Stein et al., 2014). Much of the need
for comprehensive sampling of intra-specific genetic variation
and the appropriate magnitude of required specimen sample
sizes also stems from observed phylogeographic patterns in
wide-ranging taxa and/or the continual hybridization between
evolutionarily-related species in tandem with introgression of
mitochondrial genomes. Thus, many factors are at play and need
to be accounted for in the determination of adequate sample
sizes, both for DNA barcoding and unbiased estimation of the
DNA barcode gap.

In the early days of the DNA barcoding endeavor, it was
decided by the Consortium for the Barcode of Life (CBOL)
that at least 5-10 specimens per species be collected from
wide geographic regions for assembly of reference sequence

libraries; indeed, this heuristic has been globally adopted by
barcoding campaigns such as the Fish Barcode of Life (FISHBOL)
(Ward et al., 2009) in an attempt to limit project costs and
maximize returns. However, while collection of only a few
individuals of every species is a good starting point, recent
studies have highlighted that such small sample sizes are likely
far from adequate to capture the majority of standing haplotype
variation found within species; instead, hundreds to thousands of
individuals may be needed based on both empirical findings and
simulation studies (Zhang et al., 2010; Phillips et al., 2015, 2019).
Further, it is imperative that, in addition to target species, sister
species also be adequately sampled. This is necessary for both
the strong detection and the correct interpretation of the DNA
barcode gap. In the case of monotypic genera or rare/endangered
taxa, representatives from the closest allied genus should also
be targeted since only a few exemplars/individuals can often
be retrieved.

4.1.1. Estimating Intra-Specific Specimen Sample

Sizes With the R Package HACSim
The lack of a comprehensive and robust sampling of within-
taxon genetic variation is a very real problem for molecular
species diagnosis because it impedes the ability of DNA barcode
researchers to acquire a full understanding of standing levels of
intra-taxon haplotype diversity that is required to quantify the
barcode gap.

To this end, the R package HACSim (Phillips et al., 2020) can
aid biodiversity researchers and regulatory scientists in assessing
current levels of specimen sampling effort reflected in genomic
sequence libraries like those housed in BOLD (i.e., through
computing the observed fraction of haplotype diversity that has
likely been sampled within species). The method can further
assist researchers in obtaining optimal specimen sample sizes
likely required to adequately capture the majority of haplotype
diversity found within presumably panmictic species randomly
sampled across their entire geographic/ecologic ranges. This is
done through extrapolating haplotype accumulation curves and
observing the point on the x-axis where curves begin to saturate
toward an asymptote. It is well known that most species within
diverse taxonomic groups (e.g., freshwater fishes) exhibit high
degrees of population structure and geographic isolation. Thus,
the likelihood of observing a true species’ barcode gap is increased
when specimen sampling effort is high across its geographic
range. Furthermore, the employment of HACSim to better gauge
required sampling depths within species means that less reliance
will ultimately be placed on arbitrary distance thresholds such
as the 1% cutoff employed within BOLD (Ratnasingham and
Hebert, 2007, 2013) to assign Linnean names to user-submitted
query sequences based on expertly-verified references. Since
it has long been recognized that a given taxonomic level is
not equivalent, in terms of genetic distance, across different
evolutionary lineages (e.g., a family of insects is not equal
to a family of fishes), it is reasonable to expect that species
falling on separate branches of the Animal Tree of Life will
warrant the use of different distance thresholds when it comes
to specimen identification. In fact, it seems reasonable that the
output of HACSim can be employed to calculate optimal distance
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thresholds for reliable species separation. This is because, with
larger specimen sample sizes and increasing spatial scale, intra-
specific genetic distances will tend to increase, while distances
observed among species will shrink (Meyer and Paulay, 2005;
Bergsten et al., 2012).

HACSim is specifically relevant to assessing genetic variation
derived from Sanger-based amplicon reads obtained from
any taxon under study and any molecular marker of interest.
Preliminary simulation studies demonstrate that HACSim
reliably suggests specimen sample sizes necessary to recover
wide-ranging levels of within-species haplotype diversity
(Phillips et al., in preparation). Thus, such a method should be
of invaluable use to the DNA barcoding community-at-large.
However, as we progress deeper into the realm of big data, the
potential of HACSim to aid in the characterization of genetic
diversity through the use of next-generation sequencing (NGS)
andHigh-Throughput Sequencing (HTS) data for environmental
DNA (eDNA) and metabarcoding applications [e.g., Deiner et al.
(2017); Elbrecht et al. (2018)] becomes clear. This said, it is
critical that the capabilities of HACSim be expanded upon,
especially the ability to handle multiple specimen reads. Thus, all
computational DNA barcoders should consider contributing to
this endeavor.

4.2. Visualization of Intra-Specific and
Interspecific Genetic Distances
A large majority of published DNA barcoding studies infer the
detection (presence or absence) of a species’ barcode gap through
visualization of specimen pairwise sequence distances as either
histograms or dotplots (Collins and Cruickshank, 2013). Collins
and Cruickshank (2013) were correct to suggest the employment
of dotplots as opposed to frequency histograms to better depict
the estimated distribution of species’ interspecific and intra-
specific distances, but they failed to offer a more thorough
quantitative treatment as to why this is the case.

4.2.1. Circumventing the Problem With Histograms

and Dotplots for Barcode Gap Display
Histograms partition numerical data into discrete class intervals
called bins [not to be confused with BINs (Barcode Index
Numbers) (Ratnasingham and Hebert, 2013)] to more easily
visualize how sample data is distributed. However, the use of
histograms, while both ubiquitous as a statistical summarization
method and widely-understood by many, can often muddy the
true shape of probability distributions if both the bin width
and number of bins in which to group data are not chosen
wisely. Histograms with narrow bins tend to be more precise
when density of the sample data is low; whereas, when density
of observations is high, wider bin widths should be preferred
because of the tendency to better expose true data signal relative
to noise (Scott, 1979). Whenever bin widths are chosen to
be equal in size, the height of resulting histogram bars is
proportional to the number of samples contained in each bin.
Conversely, for the case of unequal bin widths, the area of bars
scales with the number of observations. Despite the added benefit
of experimenting with bin widths to reveal hidden structure
within data, most software now routinely employed to construct

histograms, such as R’s graphics (R Core Team, 2018) and
ggplot2 packages, utilize equal bin widths in generating
histograms by default. Similarly, too small a choice of the number
of bins and the histogram will be very rugged (i.e., have high
bias); too large the number of bins and the histogram will be
oversmoothed (i.e., possess high variance) (Scott, 1979). If DNA
barcode researchers choose to continue to use equal histogram
bin widths to display the barcode gap, then consideration of
the optimal number of bins to employ needs to be carefully
investigated. Several measures of appropriate bin numbers to
use have been proposed in the statistical literature such as the
robust Freedman-Diaconis rule (Freedman and Diaconis, 1981),
which makes use of the sample interquartile range (IQR), or
Scott’s Normal reference rule (Scott, 1979), which employs the
estimated (sample) standard deviation calculated from Normal
distributions. Unfortunately, most heuristics (including the ones
mentioned here) place a strong dependence on sample size. For
instance, Microsoft R© Excel sets the number of histogram bins to
be equal to the square root of the number of data observations,
whereas graphics employs Sturges rule (Sturges, 1926), basing
the number of bins to scale proportionally with the base-two
logarithm of the number of samples, while ggplot2 defaults
to using 30 bins regardless of dataset size. For Sturges rule, bin
width is computed from dividing the sample range of the data by
the optimal bin number. The validity of Sturges rule in particular
has been called into question as it tends to oversmooth data in
the case of large samples, while still performing reasonably well
for sample sizes less than 200 (Hyndman, 1995). Thus, there
have been calls for the usage of more reliable methods. The
main problem with equal bin widths is that important trends in
the data may be confined to only one or a few bins. A further
point worth mentioning here is that many programs (R included)
default to using histogram frequencies (counts per bin). However,
this may not be ideal. Plotting based on densities instead has
the advantage of ensuring the area under the histogram is equal
to one. Therefore, allowing histogram bins to vary in width
for either (or both) genetic distances within or among species
may be worth exploring. The reason behind employing such an
approach is that it can account for bins with low numbers of
observations. While having an approximately equal number of
data points per binmay be ideal, such an approach is not typically
seen in practice. Further, if this route is taken, alternatives
for appropriate bin numbers apart from the methods outlined
previously need to be examined. Because studies potentially
employ different software for histogram generation, results are
no longer directly comparable; thus, care must be exercised when
making generalizations.

A much better alternative to displaying the DNA barcoding
gap is to rely on the continuous variant of the histogram, kernel
density estimation (KDE) plots (Rosenblatt, 1956; Parzen, 1962),
to more accurately inform on the actual population distribution
of the barcoding gap through depiction of intra-specific and
interspecific pairwise genetic distances as smooth curves. KDE
works by weighting data observations relative to their distance
to other similar-magnitude data points. Much like histograms
however, KDE often requires careful parameter selection, in
particular regarding the kernel type and the kernel bandwidth.
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The kernel type strongly defines the overall shape that the
density curve takes on, whereas the kernel density bandwidth
controls the amount of smoothness of the generated curve.
Optimal choice of these parameters is crucial so as to not distort
real patterns present within the data. Most modern software
(such as R) employ defaults which tend to work well under a
wide variety of situations, but also give the user fine control
over parameter initialization. However, automatic settings can
sometimes lead to undesirable results. R for instance employs
a Gaussian kernel and chooses the kernel bandwidth to be
equal to the standard deviation of the kernel itself; this should
be sufficient as far as estimation of the DNA barcode gap
is concerned. Often with kernel density estimation, data may
extend beyond those observed from histograms. In particular,
data that are constrained to only positive support values can end
up having negative density values, which for genetic distances,
is not biologically meaningful. In practice however, this is
not an immediate concern since truncation methods exist to
ensure that data located at the boundaries of KDE plots have
positive support.

The dotplot approach to inferring the barcode gap (Figure 1)
is simple: on a plot of maximum intra-specific genetic distances
(displayed on the x-axis) vs. minimum interspecific distances
(shown on the y-axis), represented by points for every barcoded
species, a line corresponding to the function y = x is drawn.
Points occurring above this line suggest that a barcode gap is
present for a given species and that DNA barcoding “works”. In
contrast, points falling below the 1:1 line for any species suggest
that the DNA barcode gap is absent, and thus barcoding fails to
tell specimens apart. Often, points plotted in this fashion overlap
tightly, making species-by-species visual inspections difficult.
Figure 1 clearly shows that many Canadian Pacific fish species
exhibit maximum intra-specific distances very close to, or equal
to, zero. This strongly indicates that adequate specimen sampling
needed to characterize standing haplotype diversity at the species
level is severely lacking.

The use of traditional dotplots to display the barcode gap
would be better represented as half-logarithm dotplots (Figure 2)
which plot sorted log-transformed genetic distances for every
species included in a taxon dataset against the number of
species sampled (Steinke et al., 2009a,b). A horizontal line is
then drawn at the 1% mark (or similar threshold), allowing for
good separation of intra-specific distances from nearest neighbor
distances. Plotting sorted genetic distances in this manner allows
for relative differences to be easily seen among species (Steinke
et al., 2009a). Further, through employing a log transformation
of species’ genetic distance data, interesting patterns are more
easily spotted without worry for any loss of information. This
is the case for two reasons. First, since y = loga(x) (where
a ∈ (0, 1) ∩ (1,∞) and x > 0) is monotone, the order of
plotted points is preserved. Second, the log transform is variance-
stabilizing because it has the effect of making positively-skewed
data less skewed through removing any dependence existing
between the mean and variance of a set of data observations.
Without such a transformation in place, sample observations
would likely display varying levels of heteroscedasticity (i.e., non-
constant variance). Similar to the y-axis of Figure 1, numerous

data points (representing over 60 fish species) lie directly on the
x-axis, indicating a complete lack of sufficient specimen sampling
(Figure 2). Despite its promise, it appears that the modified
dotplot has not caught on within the DNA barcoding community
outside a select few fish DNA barcoding studies (Steinke et al.,
2009a,b).

A much more intuitive means of displaying intra-specific
distances and interspecific distances is through using “quadrant
plots” (Figure 3) because they can be employed to directly detect
“outlier” and problematic species in need of closer examination.
In this approach, as in the generation of traditional and half-
logarithm dotplots, barcoded species are depicted as points on
a plot of maximum intra-specific distances on the x-axis vs.
minimum interspecific distances on the y-axis. Points fall into
one of four categories in positive Cartesian space, depending on
a predefined species distance cutoff (2% typically). Moving in
a clockwise fashion from the top left corner, each category can
be viewed as a case of either “barcoding success” or “barcoding
failure.” Quadrant I corresponds to the case where species
are easily discriminated using DNA barcoding and reflects
concordance with currently accepted Linnean taxonomy (i.e.,
interspecific distances are greater than the prespecified level
cutoff, while intra-specific distances are less than the chosen
threshold—a “success.”) Species falling into Quadrant II likely
represent cryptic complexes (i.e., both intra-specific distances
and interspecific distances are greater than the prespecified level
cutoff—a “failure.”) Species in this partition are indistinguishable
through morphology alone and as a result are lumped under a
single species name by taxonomists. Quadrant III encompasses
evolutionarily young species that have recently diverged from the
MRCA (i.e., not enough time has elapsed to allow nucleotide
differences in the barcode region to accumulate—a “failure.”)
This category can also include species that are known by various
synonyms. Finally, Quadrant IV includes likely misidentified
specimens or instances of hybridization between closely-related
species—a “failure.”) Of all the case study species, C. atraria
is the only species that would fall into Quadrant II. Based
on computed genetic distances, both Arctozenus risso and
Lipolagus ochotensiswould be classified as belonging to Quadrant
I; yet BOLD categorizes each of them as misidentified. This
result is telling: it strongly suggests that Lipolagus ochotensis
was represented in Steinke et al.’s (2009a) dataset by only
a handful of collected specimens. Indeed, this is the case
with only four sampled specimens. Thus, the plausibility of
both Arctozenus risso and Lipolagus ochotensis as barcoding
“successes” (and therefore presenting a real barcode gap) should
be immediately called into question. Like the half-logarithm
dotplot, the quadrant plot approach has seen very limited
use in barcoding studies, despite its inherent simplicity. Such
plots appear to have only been employed in two previous
publications (Hebert et al., 2004; Hubert and Hanner, 2015).

Whereas the abovementioned visual tools offer
strong proof-of-concept of the DNA barcode gap, one
element that they fail to reveal however is whether
a barcoding gap likely exists. To properly address
this question, more rigorous statistical methods
are required.
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FIGURE 1 | Traditional dotplot for visualizing the DNA barcode gap for a range of Canadian Pacific fishes assessed by Steinke et al. (2009a) and generated using the

ggplot2 (Wickham, 2016) R package. Data come from the BOLD Workbench’s Barcode Gap Analysis tool and comprise 1171 specimens from 152 species (c. 7.7

specimens per species on average). Points lying above the 45◦ line indicate that species show a barcode gap and are readily identified via molecular barcodes. On the

other hand, points falling below the 1:1 line suggest that species lack a barcoding gap and thus are not easily diagnosed through their DNA barcodes. Most species

assessed here [146 of 152 species (96.1%)] display a barcode gap since the minimum interspecific genetic distance exceeds the maximum intra-specific genetic

distance. Despite this, evidence of species showing a barcode gap may in fact be an artifact of limited sampling of within-species haplotype variation. The species

Cyclothone atraria at the point (9.22, 22.78) is clearly visible as an extreme outlier and signals possible cryptic species variation.

4.3. Inconsistent, Inappropriate Use, or
Absence of Inferential Statistical
Procedures in DNA Barcoding
Attempts to place DNA barcoding on more statistically-solid
ground have been undertaken several times before, particularly
with regard to specimen classification [e.g., Matz and Nielsen
(2005), Nielsen and Matz (2006), Abdo and Golding (2007),
Austerlitz et al. (2009), Lou and Golding (2010), Zhang et al.
(2012)] and (single-locus) species delineation [e.g., Pons et al.
(2006), Monaghan et al. (2009), Puillandre et al. (2011), Reid
and Carstens (2012), Fujisawa and Barraclough (2013), Zhang
et al. (2013)]. Many of these proposed methods have seen
widespread usage, while others seem to be rarely employed in
certain instances due to their inherent mathematical complexity
and/or black-box nature. Here, the intent is to highlight the
increased need for more rigorous statistical procedures for better
characterizing the DNA barcode gap by pointing to various

efforts that have been made in merging statistical theory with
specimen identification/classification throughout the years.

Perhaps the first instance of the use of statistical algorithmic

approaches in DNA barcoding was for the purpose of specimen

classification. Such methods relied mostly on ideas from classical

inferential paradigms such as likelihood theory, whereas others

took inspiration from more modern predictive machine learning

models, particularly those incorporating subjectivist (Bayesian)

thinking. One promising, yet grossly undervalued technique
worth mentioning here is the probability of correct identification

(PCI) (Spouge and Mariño-Ramirez, 2012; Martin et al., 2020).
While the PCI has many variants, its primary function is to serve
as a simple metric of DNA barcoding efficacy given a richly-
populated and fine-tuned reference database. The PCI statistic
has mostly seen use around appropriate marker selection for
DNA barcoding, particularly in regard to challenging taxa such
as fungi, plants and protists. At its heart, the PCI is nothing
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FIGURE 2 | Half logarithm dotplot for the display of species’ genetic distances modified from Steinke et al. (2009a) for fishes from Pacific Canada. Plotted data

comprise those specimens originally analyzed by Steinke et al. (2009a) (i.e., 1225 specimens from 201 species). Most sampled species are resolved at the 1% log

level of genetic distance.

more than a binomial proportion whose sampling distribution
is easily estimated using resampling procedures. From here, it is
trivial to calculate quantities of interest such as standard errors
and confidence intervals. In essence, the strongmathematical and
statistical theory that underlies the PCI is what is missing and
should be emulated in future DNA barcoding studies employing
the barcode gap.

The use of statistical approaches for species delimitation has
also generated much interest. Before delving into this topic
further however, it must be stressed precisely how evolutionary
biologists view the notions of species and speciation. While
systematists agree on many fronts, one aspect on which there is
large disagreement is in defining of species themselves. Species
are simple testable hypotheses accepted or refuted solely on
the basis of existing expert knowledge and newly acquired
information (Pante et al., 2015). The argument for the use of
DNA barcoding as a species delimitation tool necessarily rests on
the adoption of a workable species concept that is congruent with
one’s belief system concerning what is known or expected to be
true of focal taxa under study (Will et al., 2005;Miller, 2007; Pante
et al., 2015). Unfortunately, deciding on a unified “barcoding

species concept” that is both adequate and universally applicable
across the entire Eukaryotic Tree of Life is no simple task
since such a definition would have to satisfy properties, such as
reproductive isolation andmonophyly, inherent in themore than
two dozen already-existing species concepts found throughout
the literature (DeQueiroz, 2007). DNA barcoding itself will
not succeed in uncovering deep biological and evolutionary
relationships existing among taxa (Will et al., 2005). This is
the case since multiple lines of evidence (e.g., morphology,
ecology, evolutionary/life history, geography or behavior) must
be factored into decision-making regarding the categorization
of taxa into groups reminiscent of species using an integrative
taxonomic framework (Dayrat, 2005). Thus, it has been strongly
cautioned to tread down this road carefully, considering various
strategies to approaching species demarcation tasks, as well as
explanations for species existence, origin and formation over
space and time (Carstens et al., 2013). The majority of proposed
theoretical approaches in this regard have been strongly centered
on population genetic and coalescent theory (Kingman, 1982).
Despite this, methods like that of Birky et al. (2010)’s and Birky
(2013)’s K/θ ratio hold much promise in providing a deeper
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FIGURE 3 | Quadrant plot for the depiction of species’ genetic distances reproduced with modification from Hubert and Hanner (2015). Such plots are informative

since problematic and/or “outlier” species can be easily detected and the success/performance of DNA barcoding assessed. Species are partitioned into four

mutually exclusive groups (labeled I–IV) based on observed magnitudes of intra-specific and interspecific genetic distances. Here, a 2% distance threshold is assumed

to separate most taxa. Solid black lines aid visual resolution of the quadrants. The blue dot at the approximate point (9.22, 22.78) within Quadrant II represents

Cyclothone atraria, a likely cryptic species complex. Plot axes show the relationship to the density curves shown in Meyer and Paulay (2005). Theoretically,

between-species genetic variation should greatly exceed barcode sequence variation observed within species (Quadrant I; minimum interspecific distance −
maximum intra-specific distance > 2%). Practically, this will only be the case when specimens have been adequately sampled.

theoretical basis for the DNA barcode gap and a direct means
of testing for its existence; however, their overall performance
depends highly on the specific model of speciation assumed to
characterize dynamics of taxa under examination (Pons et al.,
2006; Monaghan et al., 2009; Puillandre et al., 2011; Fujisawa

and Barraclough, 2013; Zhang et al., 2013; Kapli et al., 2017).
For example, rapid adaptive radiation events having occurred
recently in the evolution of a taxon (such as Annelida) are known
to complicate both local and global barcode gap detection since
allopatrically-speciating populations would show comparable
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nucleotide makeup in the absence of gene flow (Kvist, 2017).
Hubert and Hanner (2015) noted a deep connection between the
coalescence of two distinct evolutionary lineages within a given
gene tree and the observation of a barcode gap reliably separating
intra-specific from interspecific sequence variation. Specifically,
once lineages have effectively sorted, both specimen identification
and species discovery tasks become easier.

In 2011, Puillandre et al. (2011) introduced the widely-popular
Automatic Barcode Gap Discovery (ABGD), a nonparametric
statistical method to discriminate species based on the existence
of the barcode gap, using avaliable DNA sequence data, as
opposed to generating taxon phylograms beforehand. Prior
to this, heavy reliance fell upon the Generalized Mixed Yule
Coalescent (GMYC) and its many variants (Pons et al., 2006;
Monaghan et al., 2009; Reid and Carstens, 2012; Fujisawa and
Barraclough, 2013). GMYC is an extremely parameter-sensitive,
time- and memory-consuming model-based approach to species
delimitation based on branching patterns observed within ultra-
metric phylogenies. Resulting trees are generated using third-
party software such as Bayesian Evolutionary Analysis Sampling
Trees (BEAST; Drummond and Rambaut, 2007) or MrBayes
(Huelsenbeck and Ronquist, 2001), and analyzed using the
splits (SPecies LImits by Threshold Statistics) R package
(Ezard et al., 2017). Since then, other methods to delimit species
have been introduced to analyze barcode data (e.g., Poisson
Tree Processes (PTP) and its relatives (Zhang et al., 2013;
Kapli et al., 2017), Haplowebs (Dellicour and Flot, 2015), ASAP
(Assemble Species by Automatic Partitioning) (Puillandre et al.,
2021)) more efficiently. Earlier approaches such as haplotype
parsimony networks (Templeton et al., 1992), constructed using
software like TCS (Clement et al., 2000), have found their
way into DNA barcoding, despite known interpretational issues
such as the tendency to form disconnected subnetworks, or
the inclination to group species together within the same node
(Hart and Sunday, 2007; Phillips et al., 2019). In addition, the
default 95% detection limit (i.e., the probability of parsimony)
employed within TCS is largely arbitrary; users can set this
value to range anywhere from 90–99% (Clement et al., 2000).
Thus, the choice of distance cutoff can have a large effect
on the outputted network topology. The above methods can
differ greatly in the number of species delimited. Both Dellicour
and Flot (2018) and Luo et al. (2018) note that GMYC tends
to overestimate (overspilt) species, whereas underestimation of
species (i.e., undersplitting) is evident for ABGD. The Barcode
Index Number (BIN) approach (Ratnasingham and Hebert,
2013) seems to be a good compromise to its predecessors as
it is fast to run, straightforward to implement and resulting
output is easily interpreted (Kekkonen and Hebert, 2014). A
BIN comprises a unique alphanumeric code corresponding
to a tight cluster of closely-related haplotypes. The BIN
framework employs hierarchical clustering (via the REfined
Single Linkage (RESL) algorithm), along with Markov clustering,
and often suggests species numbers between the extremes
of ABGD and GMYC through partitioning DNA sequences
into four mutually exclusive groups largely reflective of actual
species: MATCH, MERGE, SPLIT, and MIXTURE, on the
basis of genetic distances (Ratnasingham and Hebert, 2013).

These presumptive groups or operational taxonomic units
(OTUs) are biologically interpretable: MATCHES conform to
established Linnean taxonomy; MERGES indicate that distinct
species are indistinguishable through DNA barcoding and
should be combined under a single species name; SPLITS
reflect the presence of multiple species under a common
Linnean name (i.e., cryptic species diversity); finally, MIXTURES
reveal possible specimen misidentifications or instances of
introgression/hybridization (Ratnasingham and Hebert, 2013;
Serrao et al., 2014). A direct relationship exists between BIN
categories and quadrant plot categories mentioned previously:
MATCHES correspond to Quadrant I; SPLITS make up
Quadrant II; MERGES fall into Quadrant III and MIXTURES
lie in Quadrant IV. However, despite its promise, several major
drawbacks to the use of the BIN system as a suitable species
proxy exist. First, it is a black box whose underlying algorithm is
not well-understood by researchers outside the DNA barcoding
community, such as regulatory scientists. Secondly, BINs are
inherently dynamic and therefore unstable over time. As more
records are added to barcode libraries, new BINs are formed
and existing once are coalesced. This behavior mirrors that of
OTUs and their gradual replacement within the metabarcoding
community by Amplicon Sequence Variants/Exact Sequence
Variants (ASVs/ESVs). Part of these problems may stem from
the fact that the RESL algorithm remains unpublished (though
aspects of the BIN framework have been successfully patented),
making dataset collation and comparison difficult. Currently,
there is functionality within BOLD’s Workbench to cluster DNA
sequences into OTUs via RESL, but no easy and direct way to
compare species delineation methods using both simulated and
real taxon barcode data since sequences must already reside in
BOLD in some form (i.e., as a public or private dataset).

4.3.1. Framing the DNA Barcode Gap as a Statistical

Hypothesis
There is a need to define the barcode gap more formally as a
composite (one-sided) statistical hypothesis test. An analogy here
can bemade to testing the hypothesis that a gene evolves neutrally
in a species population. Such hypotheses can be assessed using
a wide variety of tests such as Tajima’s D (Tajima, 1983). In the
present case, the null hypothesis of no barcode gap for a species
would be tested against the alternative hypothesis that a barcode
gap exists. Mathematically,

H0 :minimum interspecific distance – maximum intra-specific

distance ≤ d0

vs.

H1 :minimum interspecific distance – maximum intra-specific

distance > d0.

where d0 is a predefined cutoff for species separation (say, d0
= 2%). Here, the null hypothesis (H0) is assumed to be true,
unless unsupported by the observed data. In this case, one fails
to accept the null hypothesis in favor of the alternative. That is, it
is assumed that present DNA sequence data do not support the
existence of a barcode gap at the species level. Under this scheme,
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it is easy to distinguish between Type I errors (false positives)
and Type II errors (false negatives). A false positive is analogous
to taxonomic oversplitting (i.e., nearest neighbor distance <

maximum intra-specific distance); whereas, excessive lumping of
species (i.e., nearest neighbor distance > maximum intraspecific
distance) strongly indicates that a false negative error has been
made (Meyer and Paulay, 2005; Hubert and Hanner, 2015). A
one-tailed test is chosen here, as opposed to the more widely
employed two-sided test since between-species genetic variation
usually exceeds that seen within species, with few exceptions.
Such an approach leads to a more powerful test with greater
flexibility than would be allowed using a two-sided test.

An immediate challenge exists in formulating an appropriate
hypothesis test statistic for the barcode gap. Test statistics are
usually of the form

T =
d − d0

SE[d]

where d is the observed difference between minimum
interspecific distance and maximum interspecific distance and
SE denotes estimator standard error. For already well-sampled
species (i.e., those with a large number of collected specimens),
the above test statistic would approximately follow the standard
Normal distribution whenever H0 is true. Unfortunately, in
the case of small specimen sample sizes, deriving an expression
for the standard error of the estimated barcode gap would be
difficult and the distribution of said test statistic would also not
be obvious.

Framing DNA barcoding in a statistical way is clearly needed,
since for densely-sampled clades, a barcode gap is almost surely
to exist. Through employing deep taxon sampling schemes, DNA
barcode researchers will be able to more easily detect a true
species’ barcode gap when one is actually present.

4.3.2. The Use of Nonparametric Bootstrapping to

Estimate the DNA Barcode Gap
In addition to simple point estimates (and associated standard
errors) of the barcoding gap for varying taxa which are widely
reported [e.g., Wiemers and Fiedler (2007)] future studies
should also report confidence interval (CI) estimates around
the estimated population (or “true”) maximum intra-specific
distance, minimum interspecific distance and the barcode
gap using sample data of intra- and interspecific distances.
Confidence intervals, unlike p-values, are more strongly favored
within the statistical literature. A simple but naïve solution in
this regard is to form CIs using the data at hand; however,
this requires the strong assumption that genetic distances are
drawn from a large normally-distributed population; in reality,
the sampling distribution of pairwise distances is unknown
since it is likely to be highly taxon-dependent. This should
come as no surprise since genomic markers employed to
assign taxon-level matches to unknown specimens using DNA
barcoding show varying rates of molecular evolution both within
and across taxonomic groups. These observed differences in
taxon molecular evolutionary rates strongly affect fundamental
processes at both the microevolutionary (e.g., random genetic

drift, mutation, natural selection) and macroevolutionary (e.g.,
speciation) scales.

Thus, a better approach to reporting parameter estimates,
which does not require the sampling distribution to be known a
priori, and relaxes distributional assumptions through allowing
for reasonably small sample sizes, is to employ nonparametric
bootstrapping to continually resample from observed distances
a large number of times (say, 10000 times) uniformly (i.e., with
equal probability) with replacement (Efron, 1979). Sampling
with replacement ensures that drawn observations are both
independent and identically distributed; that is, sampling a
given observation has no bearing on the occurrence of a
future observation and all observations are generated from the
same underlying statistical population. The idea here is that,
for a large number of bootstrap replicates, the distribution of
resampled distances (i.e., the bootstrap sampling distribution)
mimics the actual distance distribution for the taxon under study
quite closely. Such a scheme is analogous to bootstrapping in
phylogenetic inference to assess how well nodes within neighbor-
joining trees support the observed data (Felsenstein, 1985; Efron
et al., 1996). Because a test statistic need not be known in
advance, bootstrap results can be immediately used to form
appropriate level (e.g., 95%) bootstrap confidence intervals for
the population barcoding gap. Statistical interpretation of such
constructed intervals is relatively straightforward: if the intervals
contain the value d0, then the hypothesis that the maximum
intra-specific distance does not differ significantly from the
minimum interspecific distance at the hypothesized value d0
cannot be rejected at the stated significance level (e.g. α = 5 for
95% confidence). Put another way, if d0 falls within the obtained
CI, then the hypothesis that no barcode gap is present cannot be
rejected at the chosen level of statistical significance.

Nonparametric bootstrapping is known to perform poorly in
certain situations. One such failure of the traditional bootstrap
is in the estimation of extreme order statistics such as the
population minimum or the population maximum. Standard
bootstrapping, sometimes termed the n-out-of-n bootstrap,
works by drawing resamples of the same size as the original
sample. As the “revised” DNA barcode gap is defined in terms of
the maximum intra-specific distance and minimum interspecific
distance, the usual bootstrapping procedure detailed above is not
applicable. It is worth mentioning that the n-out-of-n bootstrap
would indeed work as expected under the “old” definition of
the barcode gap, used prior to Meier et al. (2008), since that
definition involved only statistical means. Fortunately, there is
an immediate remedy available. The trick is to take resamples
of a smaller size than the original dataset (Bickel et al., 1997).
This technique is known as the m-out-of-n bootstrap, where
m < n. In employing such a method, the variability of
corresponding estimates will be higher (larger) than in the regular
bootstrapping procedure whereas the bias will be low (Chernick,
2007, 2011). While this result may appear counterintuitive
at first, assuming the variance of an estimator of interest is
both constant and finite, said estimator’s standard error will
be smaller for a larger number of observations and larger for
smaller sample sizes. Since m < n, another approach worth
examining is random subsampling, which involves sampling
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without replacement (Politis et al., 1999). The optimal choice of
m however is not obvious and can have a significant impact on
obtained results. Therefore, algorithms for selecting appropriate
values of m [such as that presented in Bickel and Sakov (2008)]
must be investigated. In any case, m should be chosen such that
it along with n both approach infinity, while at the same time
ensuring that the quantity m

n approaches zero (Chernick, 2007,
2011). For instance, letting m =

√
n or m = log(n) would satisfy

this condition. In general, the value ofm should be much smaller
than that of n. This raises an interesting point in the context
of DNA barcoding: bootstrapping is only reliable when clades
have been sufficiently sampled; that is, the bootstrap is not a
cure for the small sample size problem. Regardless, the above
bootstrapping approach should be used to report point estimates
and desired level CIs for “true” maximum intra-specific distances
and interspecific distances, as well as population barcoding gaps
in any and all future taxon-specific DNA barcoding studies
(especially reference sequence library publications).

5. CRITICALLY EVALUATING THE
CONCEPT OF THE DNA BARCODE GAP IN
CONSERVATION AND REGULATORY
CONTEXTS

Over the years, several publications cited herein (and elsewhere)
have successfully harnessed and exploited the awesome power
of DNA barcoding in biodiversity and regulatory settings. On
the flip side, numerous biodiversity-focused studies have clearly
demonstrated the performance of DNA barcoding on the basis of
the observed difference between intra-specific and interspecific
genetic variation—the DNA barcoding gap. What appears to
be missing however are more studies lying at the intersection
of these two extremes, recent examples of which include Lee
et al. (2019). The statistical approaches put forth and explained
in detail here, in addition to existing bioinformatic tools that
directly compute estimated barcode gaps (i.e., ABGD, ASAP)
can greatly aid in providing strong support for the in-depth
assessment of the DNA barcoding gap as a foundationally-
rigorous concept, something that is nonexistent within most
studies bearing a socioeconomic flavor.

Below, some specific use cases of DNA barcoding as they
relate to characterizing both global and local barcode gaps in
conservation and regulatory contexts are highlighted. Language
is explicitly borrowed from Collins and Cruickshank (2014),
who categorize taxon sequences into four independent groups:
“known knowns,” “known unknowns,” “unknown knowns,” and
“unknown unknowns.” “Known knowns” are well characterized
and curated species in existing barcoding libraries, whereas
“known unknowns” are formally described species, yet lack full
library representation. Conversely, “unknown knowns” reflect
possibly divergent/cryptic lineages among described species
found in reference databases like BOLD. Lastly, “unknown
unknowns” pertain to undescribed or cryptic species without
records in existing libraries. The goal here is to dispel the
perceived subtleties associated with employing DNA barcodes
for such applications, especially in light of reference sequence

libraries reflecting an incomplete sampling of natural variation.
While scenarios mentioned here do not form an exhaustive
list, they nevertheless cover a broad range of possibilities
necessary for adequately conceptualizing the notion of a DNA
barcoding gap.

Scenario I: A geographic region in the Pacific has a
well-known fish species biodiversity. Several barcoding
campaigns dedicated to monitoring fisheries bycatch over the
years have resulted in a hypothetical library that is 98% complete.
All species in the library comprise more than 20 sequences.
In this case, the DNA barcode gap is probably almost entirely
redundant. A given specimen query will likely be identical (or
differ by only a few basepairs) to one already in the library. A
nearest neighbor assignment with an arbitrary 1–2% threshold
(or none at all) will correctly identify most queries to the species
level, except in the case of barcode haplotype sharing. Here, only
detection of the local barcode gap is of interest. Adjusting and
recalculating the global DNA barcoding gap is unlikely to affect
taxon classifications since observing rare species or new lineages
is extremely unlikely with increased sampling intensity. Thus,
the library mostly consists of “known knowns” and “unknown
knowns.” The takeaway here is that as reference library coverage
increases, estimating the barcode gap becomes less relevant.
Incorporation of sample size estimation tools like that of Phillips
et al. (2020) will add extra reassurance that specimen sampling
is sufficient.

Scenario II: A poorly-sampled tropical region in Costa Rica
has three times as many lepidopterean species as North America.
Barcoding efforts have resulted in a library that is only 60%
complete, where most species are represented by less than three
sequences. Further, the taxonomy of many groups is uncertain.
Due to low library coverage, there are many “known unknowns”
and “unknown unknowns” which are likely to be encountered in
real samples. Here, quantifying the barcode gap parameter space
is critical to establishing a threshold by which queries can be
assigned correctly as unknowns, thus limiting the rate of false
positives (Hickerson et al., 2006; Dasmahapatra et al., 2010).

Scenario III: The Canadian Border Security Agency (CBSA)
has intercepted a shipment of fish fins from a potentially
endangered shark species being trafficked for illegal sales.
To guarantee a conviction, a confirmed scientific name is
needed. Unfortunately, specimens cannot be matched to any
publicly-available sequence records in BOLD or GenBank. Thus,
the presence of “known unknowns” in the seized samples
greatly complicates matters. DNA barcode gap and sample
size estimation would become key pieces of evidence capable
of providing statistical uncertainty of species assignment in
this case.

Scenario IV: A research team wishes to characterize
alpha diversity between habitats or environments within an
unexplored region in Madagascar for the purpose of completing
a biodiversity survey. The goal is to infer broad endemicity
and phylogeographic trends, as opposed to individual-level
diversity; however, little in way of a DNA barcode reference
library currently exists to aid this effort. There are many
“known knowns,” “known unknowns,” “unknown unknowns,”
and “unknown unknowns.” De novo species delimitation tools
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based on phylogenetic trees, such as GMYC and PTP, as
well as those approaches utilizing genetic distances, including
ABGD, ASAP and RESL, are necessary to addressing problems
with specific methods and breakdown of statistical model
assumptions. Here, local barcoding gaps are less important as no
single method will be solely relied upon for any individual taxon.
However, crude estimation of a global barcode gap is possible.

Scenario V: A taxonomist wishes to discover new species
from samples of recently-collected specimens comprising many
“known knowns,” “known unknowns,” “unknown knowns,”
and “unknown unknowns.” As a first step, established single-
locus delimitation algorithms are used to triage individuals
into species-like units. Next, specific species hypotheses are
tested through combining aspects of integrative taxonomy with
more sophisticated Bayesian multi-locus delineation approaches
based on the multi-species coalescent (e.g., *BEAST Heled and
Drummond, 2010, BPP Yang and Rannala, 2012, Bayes factors
Grummer et al., 2014). In this case, the global barcoding gap
is of no real concern, except as a rough calibration/benchmark
against known members at the genus level. Multigene species
demarcation approaches will be superior in this respect because
speciation events will be more readily ascertained.

Scenario VI: It is suggested that DNA barcoding could be
applied to inventory diversity in a poorly-understood family of
invertebrates. Since there are only “unknown unknowns,” the
global DNA barcode gap could be employed to justify that genetic
and morphological characters are congruent; thus, conducting
further sequencing is worthwhile.

6. NEW AVENUES FOR ESTIMATING THE
DNA BARCODE GAP

Finally, it is important to draw upon future promising avenues
for continued work on accurately estimating the DNA barcoding
gap. One potential application in this regard includes statistical
mixture models which can account for genetic differences
observed within and among species for the purpose of molecular
specimen assignment. Mixture models offer great flexibility when
it comes to accomplishing this task because correlations in
haplotype diversity existing at the species level can be easily
incorporated into such modeling frameworks. Much effort has
gone into the development of easy to use computational tools to
fit mixture models to a wide variety of data. A notable example in
this regard that may prove valuable for barcode gap estimation
is the R package mclust (Scrucca et al., 2016), software that
has seen widespread use for the task of parametric model-based
clustering in recent years.

Statistical methods for delineating species can inherently be
viewed as “mixture models.” All proposed species delimitation
approaches to date find the optimal partition of DNA sequences
into mutually-distinct groups that are highly reflective of actual
species. Thus, the problem of species separation boils down
to that of a simple clustering/classification task. The majority
of methods generate these clusters on the basis of estimated
phylogenetic relationships (e.g., GMYC, PTP), along with an

assumed parametric model of species generation (e.g., birth-
death process, Yule process), whereas others simply use the
DNA sequences themselves (i.e., ABGD, ASAP) to arrive at
a plausible solution in a nonparametric fashion. In recent
years, novel “hybrid” approaches to tease out species have
been published. Notably, algorithmic methods such as (Fujisawa
et al., 2016) and (Jones, 2017) stray away from objective single-
locus likelihood inference to also include subjective multi-locus
Bayesian inferential frameworks. Regardless, these and other
related approaches may prove valuable in aiding better detection
of the DNA barcoding gap.

Another approach that should be investigated and applied
to address questions about the DNA barcode gap is the
employment of nearest-neighbor and other machine learning
methods used in clustering and classification tasks [e.g., van
Velzen et al. (2012)]. However, the widespread success of
machine learning methods is due greatly to the availability of
large amounts of training data that feed and nurture artificial
intelligence (AI) algorithms, a factor that poses problems for
undescribed species, rare taxa and those with narrow geographic
distributions (e.g., endemic species, monotypic taxa). With an
arsenal of statistical tools like mixture models and nearest-
neighbor methods in hand, practitioners will be better equipped
to estimate important quantities central to DNA barcoding,
including species separation thresholds.

Although not a statistical issue per se, the increased need
for the sequencing of multiple genetic loci, particularly nuclear
genes, to solidify confidence in specimen assignment and aid
resolution of taxon boundaries, cannot be stressed enough
(Eberle et al., 2020). Much like the adoption of the rbcL and
matK chloroplast genes for DNA barcoding of land plants, a
similar case can be made for a dual, or better yet, multiple,
mitochondrial-nuclear gene system for barcoding of metazoan
taxa. COI has been demonstrated to lack sufficient discriminatory
power for identification in groups such as sharks and the aptly
named “problem children” (Cnidaria and Porifera) (Bucklin
et al., 2011) to name a few—all which show remarkably low rates
of molecular evolution. In the case of animal DNA barcoding,
several molecular regions (preferrably both mitochondrial
and nuclear) should be sequenced across the same sampled
specimen whenever possible; in reality however, this is rarely
done. International Barcode of Life (iBOL) member nations (e.g.,
those in Canada and Europe) are moving toward multilocus
DNA barcoding with open arms. The largest hub for DNA
barcoding, the Centre for Biodiversity Genomics (CBG), still
primarily employs single-marker barcoding for the construction
of reference sequence libraries and for the progression of
biodiversity science as a whole. One can even argue that
Canadian DNA barcoding’s staunch position on maintaining the
status quo is warranted, due to the fear of becoming irrelevant.
However, this has not greatly hindered the timely transition
into the vast and exciting realm of “next-generation” DNA
barcoding (Taylor and Harris, 2012). This is clearly evident
from the fact that the majority of specimen sequence records
found in BOLD are derived from just a single marker (COI).
Within BOLD, substantially fewer specimen records orginate
from other mitochondrial markers like cytochrome b (cytb) and
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the mitochondrial D-loop; even fewer come from nuclear gene
regions such as ribosomal DNA (rDNA) and rhodopsin (rho).
Thus, sequence reference databases should strive to incorporate
genetic information from multiple genomic sources to better
aid specimen identification to the species level, especially since
the DNA barcode gap is nonexistent in most taxonomic groups
outside animals (Kolter and Gemeinholzer, 2020). This is
unfortunately easier said than done. Only quite recently have
sequencing technologies such as Pacific Biosciences’ SEQUEL
platforms and genome skimming (Coissac et al., 2016) enabled
the rapid and broad characterization of biodiversity at multiple
taxonomic levels, due to the ability to accommodate both higher
numbers of reads produced, as well as greater marker read
length resolution (Marcus, 2018). The widespread adoption
of a multi-marker approach for DNA barcoding has several
limitations including the need for greater funding, as well as
improved community standards. An ideal world is one where
genomes for all taxa are available; however, currently only
wealthy nations can afford to generate such massive amounts
of data. This has led researchers within the community-at-large
to forgo accomplishing goals “the right way” at the expense
of upholding reproducibility. Global initiatives like Genome
10K (G10KCOS, 2009; Koepfli et al., 2015), which specifically
seeks to sequence the entire genomes of over 10,000 vertebrate
species, have provided biodiversity researchers with a glimpse
into what will be possible once set data standards are adopted
an strictly adhered to within the community-at-large (Koepfli
et al., 2015). The proposal for DNA standards such as that for
obtaining high-quality DNA barcodes from previously-collected
specimens based on the reserved keyword “BARCODE”
(Hanner, 2009) has been highly conducive in pushing DNA-
based identification, albeit at a much smaller scale. Perhaps
most importantly, Genome 10K points to a growing need for
guidelines on the proper collection of specimens and the recovery
of adequate amounts of specimen genetic information, the deep
sequencing of specimen genomic DNA, as well as the timely
deposition and curation of genome records to the International
Nucleotide Sequence Database Collaboration (INSDC) through
publicly-accessible online molecular sequence databases
such as the National Center for Biotechnology Information
(NCBI)’s GenBank for easy retrieval, visualization and
downstream analysis.

7. CONCLUDING REMARKS

In this piece, it was demonstrated that DNA barcoding currently
lacks the statistical rigor needed to properly interpret results
of species barcode gap analyses through focusing on three key
areas with respect to Metazoan taxa: (1) the need for larger
specimen sample sizes reflective of standing genetic variation
within species; (2) the misleading display of intra-specific and
interspecific distances, and (3) the absence of formal statistical
inference procedures in DNA barcoding. A past study of Pacific
Canada’s fish fauna by Steinke et al. (2009a) was employed to
illustrate flaws in the presentation of the DNA barcode gap,
as well as the need for larger specimen sample sizes to avoid

biases in the reporting of within- and between-species genetic
distances critical for reliably estimating the gap. First, the routine
use of the novel R package HACSim will allow researchers to
better assess the efficacy of current taxon sampling schemes
and develop more robust collection protocols that will permit
greater statistical power in detecting a true species’ barcode
gap. Next, a more careful consideration of the depiction of
the DNA barcode gap as a frequency histogram is warranted,
as are alternative representations, including density estimation
curves and the half-logarithm dotplot, due to interpretation
issues surrounding default graphical parameters employed by
many popular statistical analysis programs such as R and
Excel. In addition, better ways to reconcile DNA barcoding
with statistical inference include proposing the framing of the
barcode gap as a one-tailed statistical hypothesis test, and backing
the use of the nonparametric bootstrap to compute standard
errors and confidence intervals for maximum intra-specific
distances, nearest-neighbor distances, as well as the barcode gap.
Finally, new directions are offered for thinking critically about
the robust estimation of the DNA barcode gap. While it is
recognized that collecting specimens such as those of deepwater
Pacific fishes is a costly and time-consuming endeavor that are
unlikely to provide necessary genetic resolution deemed critical
for large-scale biodiversity assessment, the introduction and
proliferation of new quantitative methods to address knowledge
gaps and uncertainties pertaining to the diversity of life on
this planet will nonetheless make full use of the rapidly closing
window of available sampling opportunity. Taken together, the
methods outlined herein have the potential to open closed
doors, giving biodiversity researchers and regulatory scientists an
unprecedented view of patterns left in DNA sequences from key
evolutionary mechanisms and processes responsible for shaping
Earth’s biodiversity over millions of years.

While focus was placed heavily on animal DNA barcoding
and the importance of sound determination of the barcode gap,
many of the principles that underlie taxon classification and
demarcation algorithms mentioned or discussed in some detail
herein are directly transferrable to targeted species detection
using DNA/eDNA as well as metabarcoding. Species-level
discrimination is challenging (or unreliable) without extensive
reference libraries at hand. Thus, researchers are likely more
concerned with pinpointing higher-level taxonomic matches. As
a result, intra-specific variation and barcode gap thresholds are
largely ignored. In these instances, length variation in retrieved
barcode sequences is widespread; thus, separate bioinformatic
solutions are required like that of Barbera et al. (2019).
Despite this, efforts should be made to better integrate methods
of DNA barcoding with (e)DNA metabarcoding, especially
since many biodiversity researchers and regulatory scientists
nowadays routinely employ elements of both disciplines in
their work.

Before closing, it should be mentioned that the appropriate
use of improved and accessible statistical methods and
recommendations discussed herein can be conveniently
framed in the context of Collins and Cruickshank (Collins
and Cruickshank, 2014) (Table 1). Specifically, when dealing
with “known knowns” and “unknown knowns,” all proposed
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TABLE 1 | Summary of problems, consequences and solutions contributing to the lack of statistical rigor in DNA barcoding as it pertains to accurately estimating the

DNA barcode gap at the species level.

Problem Consequence Solution

Balancing allocation of specimen

sampling effort

Underestimating required sampling depth for taxa of interest due

to reliance on arbitrary sample sizes reflecting practicality (e.g.,

5-10 specimens per species) more so than optimality (i.e.,

potentially hundreds to thousands of individuals) leads to biases

in standing levels of species’ haplotype diversity

Employ the HACSim R package to aid robust estimation of

specimen sample sizes for desired levels of intra-specific

haplotype recovery (e.g., 95%) for already well-sampled taxa

falling in the “known knowns” and “unknown knowns”

categories

Visualization of intra-specific and

interspecific genetic distances

Using traditional histograms and dotplots to depict the barcode

gap can obscure real evolutionary patterns at the taxon level due

to their discreteness, tendency to skew data, and lead

over-reliance on default parameters within popular software

packages like R, especially when sample sizes are low

Generating kernel density estimation plots and half-logarithm

dotplots provides clearer means of display of genetic distances

since such plots are continuous, require minimal tuning, are

grounded more firmly on statistical theory, performing best for

taxa encompassing “known knowns” and “unknown knowns”

Inconsistent, inappropriate use, or

absence of inferential statistical

procedures in DNA barcoding

Reporting only overall summary statistics (minimum, maximum,

mean and standard deviation) of genetic distances can give the

false impression of a real species’ barcode gap when in fact it

does not actually exist

Stating null and alternative hypotheses to test for the barcode

gap’s existence, as well as including some measure of

estimator accuracy reflecting current sampling intensity (e.g.,

standard error) is key to assessing overall variability of genetic

diversity estimates for both “known knowns” and “unknown

knowns”, as is computing confidence intervals based on the

m-out-of-n bootstrap (taking into account sample sizes

estimated via HACSim)

Pros and cons of proposed methods presented herein are framed in the context of “known knowns,” “known unknowns,” “unknown knowns,” and “unknown unknowns” discussed by

Collins and Cruickshank (2014).

methods are presumed to perform well when it comes to reliably
estimating the magnitude of DNA barcode gaps, along with
other important quantities computed of the basis of species’
genetic distances, provided specimen sample sizes are reasonably
large. On the other hand, the abovestated methods cannot
reasonably be expected to work well in the case of “known
unknowns” and “unknown unknowns” since DNA barcodes
within reference sequence libraries will be largely undersampled
despite uncertainties in taxononmic descriptions. Nevertheless,
this limitation does not outright render usage of the proposed
approaches here invalid since there is strong dependence on the
taxa in question.

With these considerations in mind, both biodiversity and
regulatory scientists alike will be well-equipped to constructively
analyze vast amounts of DNA barcode data with greater
confidence and as a result feel more secure in making critical
assessments as to the performance of DNA barcoding on the basis
of the barcode gap. The widespread adoption of the methods
discussed herein will be of great importance in moving forward
with the building of large-scale DNA barcode reference libraries.
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