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Vegetation is essential for maintaining urban ecosystems, climate regulation, and
resident health. To explore the variations in city-level vegetation greening (VG) and
its relationship to urban expansion, VG in 439 Chinese cities was extracted using
the Theil–Sen and Mann–Kendall algorithms based on Moderate Resolution Imaging
Spectroradiometer EVI (enhanced vegetation index) data from 2001 to 2020. The spatial
variations in VG and its patterns, as well as its relationship with urban expansion, were
then analyzed. The following results were obtained: (1) cities with larger greening areas
were primarily located in the central and eastern provinces of China, followed by the
southeastern, southwestern, and western provinces. The 48 cities with the largest
greening areas accounted for 60.47% of the total greening area. (2) VG patches in
northern China exhibited better integrity. (3) The centralization trend of VG was evident;
the location of VG patterns was influenced by the form of urban expansion. (4) The
intensity of artificial impervious area expansion had a weak negative correlation with the
VG. Therefore, we must enhance vegetation in new urban areas to improve the spatial
balance of VG. The present results of this study can provide a foundation for developing
effective policies for the construction and management of urban greenery projects.

Keywords: urban greening, urban expansion, landscape metrics, artificial impervious area, enhanced vegetation
index

INTRODUCTION

Urbanization continues worldwide, particularly in cities with growing economies. As a result of
urbanization, urban ecosystems face enormous pressure. Vegetation plays an important role in
improving urban air quality, mitigating and adapting to climate change while increasing disaster
resilience; it is an important foundation for achieving Sustainable Development Goals 11 (SDGs 11)
adopted by the United Nations (UN) in 2015 (United Nations [UN], 2016). However, urbanization-
induced artificial impervious area (AIA) expansion and increasing landscape fragmentation
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affect the spatial patterns and ecological functions of urban
vegetation. In response to future urban development, a timely
and accurate description of the urban vegetation status and its
spatial variation is the foundation for understanding the supply
of ecosystem services and urban sustainability (Gan et al., 2014).

Remote sensing satellite vegetation indices, such as the
normalized difference vegetation index (NDVI) and enhanced
vegetation index (EVI), are commonly used as proxies for
vegetation greenness (Yao et al., 2019), where high vegetation
indices represent high vegetation greenness (Huete et al., 2002)
to reflect characteristics such as vegetation growth, vegetation
productivity, and green biomass (Jeong et al., 2017). Vegetation
greening (VG) is defined as a statistically significant increase
in the annual or seasonal greenness of vegetation at a given
location (Piao et al., 2019). Previous studies based on satellite data
have revealed trends in the greening of Earth’s vegetation (Zhu
et al., 2016; Hua et al., 2017; Chen et al., 2019; Lamchin et al.,
2020; Liu et al., 2021). Urbanization, a complex process involving
spatial and temporal changes in different cities (Torrens, 2011),
may enhance or inhibit VG depending on the location of a city
and its background climate (Imhoff et al., 2004). Zhao et al.
(2016) concluded that the enhancement of vegetation greenness
is prevalent in 32 major Chinese cities. Zhong et al. (2019)
suggested that the indirect effects of urbanization have led to an
increase in the EVI, compensating for 24.6% of all vegetation loss.
Based on the limited number of current studies, the city-level
spatial variations in VG and eco-geographic regional differences
in China should be the focus of further research.

Studies have found that population growth and urbanization
contribute to changes in urban vegetation (Tan et al., 2013).
Urban expansion is typically responsible for the degradation
of existing vegetation in urban centers and fringe areas
(Abutaleb et al., 2020). To balance urban ecosystems and social
welfare, many urbanized areas have increased the number
of greenery projects and improved greenery management
(Tan et al., 2013). In Chinese cities, the public green space
per capita (m2), green coverage rate of built districts (%),
and green space rate of built district (%) areas increased
by 167.75, 39.53, and 45.83%, respectively, from 2002 to
2019 (Ministry of Housing and Urban-Rural Development
of the People, 2020). However, owing to the differences in
urbanization rates and variations in the levels of greenery
project construction and management (Zhou and Wang,
2011; Qian et al., 2015), urban vegetation is typically highly
fragmented and heterogeneous, characterized by a large number
of fragmented patches (Qian et al., 2015). These fragmentation
characteristics have a significant impact on the livelihoods
of urban residents and the maintenance of biodiversity.
Satellite remote sensing provides reliable data and methods for
quantifying and tracking VG during urbanization. Landscape
metrics can characterize VG fragmentation because they allow
for the quantification of the spatial structural characteristics
of VG. After nearly 20 years of rapid urbanization, the
VG fragmentation characteristics in China remain poorly
understood. Therefore, combining remote sensing and landscape
metrics can provide valuable information on the intercity
fragmentation characteristics of VG.

Although they used various vegetation remote sensing data
and terms with similar definitions as VG, previous studies
have reported differences in VG in different regions of a city.
Zhong et al. (2019) showed that, from 2000 to 2016, the
EVI decreased by 38.0% in the peri-urban and rural areas
of Shanghai, while an increasing trend was observed in the
central urban area. Chang et al. (2020) found that the primary
productivity of vegetation in the Tianjin–Beijing–Hebei urban
agglomeration increased between 1998 and 2018 in built-up
urban areas, with improvements in the vegetation conditions.
Yao et al. (2019) revealed that increased spatial heterogeneity
in VG implies increased differences in vegetation greenness
between urban cores and rural areas; that is, urban core greening
occurs more slowly than that in rural areas. Three main drivers
also affect vegetation growth: climatic factors, human activities,
and natural disturbances (Lamchin et al., 2020). However, the
strength of the association between vegetation and temperature
has decreased in China over the last 34 years, while there has
been a weakened control over the NDVI from temperature
and water conditions (Wang et al., 2021). In contrast, human
activities have greatly contributed to the changes in global
vegetation than climate change (Zhu et al., 2016; Zhang et al.,
2017; Zhang and Huang, 2019; Liu et al., 2021). In cities,
an increase in the AIA is a direct result of human activity,
which is one of the key factors affecting vegetation growth
(Ge et al., 2021), such as, the reduction in vegetation in
the Pearl River Delta, China (Zhao et al., 2012). However,
further investigation is required to determine whether there
are specific patterns of VG in different regions of the city, as
well as the relationship between the changes in the AIA from
urbanization and VG.

This study aims to investigate the following: (1) city-
level spatial variations in VG and eco-geographic regional
differences in China; (2) spatial differences in the fragmentation
characteristics of VG; and (3) VG patterns and the relationship
between the AIA and VG. The remainder of this paper is
organized as follows. Sections “Data and Methods” and “Results”
describe the data and methods, and experimental results,
respectively. Moderate Resolution Imaging Spectroradiometer
(MODIS) EVI data from 2001 to 2020 were collected. The
Mann–Kendall monotonic trend test (a trend detection method
recommended by the World Meteorological Organization
(WMO) (Wu et al., 2008; Shadmani et al., 2012; Zhu et al.,
2016)) was used to calculate the VG of 439 Chinese cities, and
the city-level spatial variations in VG were analyzed. Landscape
metrics were then used to characterize the spatial fragmentation
of patches composed of VG pixels. Next, we analyzed the hotspot
areas in the VG pixels using the kernel density method, thereby
providing a summary of the VG patterns in the 439 cities.
Finally, the relationship between changes in the AIA and VG
was analyzed. Section “Discussion” presents a discussion of
our results and interpretations. Section “Conclusion” concludes
the study with a summary of the key findings. This study
provides two major contributions to the literature. First, unlike
previous studies on the greening characteristics of natural
environments and limited research on urban VG, this study
provides a detailed discussion on VG and its patterns in
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439 Chinese cities. Second, we investigated the relationship
between VG and the AIA.

DATA AND METHODS

Study Area and Data
In this study, four types of data from the 439 cities were used: (1)
MODIS EVI; (2) urban boundary and AIAs; (3) eco-geographic
regionalization data. Global Inventory Modeling and Mapping
Studies (GIMMS) NDVI, Landsat NDVI, SPOT-Vegetation,
and MODIS NDVI/EVI are vegetation remote sensing data
frequently used in current vegetation change-related studies.
Compared with these data, MODIS EVI has improved standards
in terms of the observation time continuity, spatial resolution,
and confidence in the data quality. Moreover, compared with
the NDVI and soil adjustment vegetation index (SAVI), the EVI
can minimize the effect of background reflectance variations.
Kumari et al. (2021) found that the EVI has better correlations
with different hydroclimatic factors. Therefore, the EVI is more
suitable for monitoring vegetation dynamics in sparsely vegetated
areas, such as in urban settings (Huete et al., 2002; Yao et al.,
2019). In this study, Terra MODIS EVI data were used to
indicate the greenness of the vegetation and to describe the
VG fragmentation in cities. We obtained MODIS MOD13Q1
(version 6) data from the United States Geological Survey
website (MODIS, 2021) from January 2001 to December 2020.
MOD13Q1 data, a Level 3 product, were generated every 16 days
at a spatial resolution of 250 m and is a Level 3 product; there
were 8,740 EVI images in the study area.

Previous studies have used definitions such as peri-urban and
rural areas, urban cores and rural areas to distinguish between
different parts of a city. Most of the major cities in China were
studied in this article, and it was difficult to precisely define the
core and non-core parts for each city. Therefore, we downloaded
the global urban boundaries (GUB) dataset (Urban Boundaries
Datasets, 2020) from 1990 to 2018, as well as the global artificial
impervious area (GAIA) data used for generating GUB. The
earlier the year of the urban boundary and AIA, the more it is
located in the center of the city. The GUB dataset provides an
acceptable delineation of urban boundaries and can be used to
examine the impact of urbanization on climate change and urban
health (Li et al., 2020). The GUB has two uses: (a) to provide
an urban boundary reference for VG and its associated index
calculations; and (b) to assist in summarizing VG patterns (i.e.,
the patterns of dense clusters of VG pixels with respect to the
urban boundary). GAIA also has two uses: (c) to determine the
AIA generation year at VG pixel locations; and (d) to analyze
the relationship changes in the AIA and VG. GUB and GAIA
in (a) and (d) use data for 2 years, 2001 and 2018, (b) and (c)
are only the statistical relationships for the VG pixel locations
between GUB and GAIA; serial data from 1990 to 2018 were used.
Owing to a lack of data for GUB and GAIA in 2019 and 2020,
we assumed that GAIA and GUB were characterized by fewer
changes after 2018. After excluding cities with boundary changes
due to administrative adjustments, we selected 439 Chinese
cities (Figure 1).

The 439 cities are located in different eco-geographic zones.
To analyze the VG characteristics in different zones, Chinese
eco-geographic regionalization data (Resource and Environment
Science and Data Center, 2020) were collected, which are an
eco-geographic zoning of China based on temperature and dry
and wet conditions. This dataset has three levels: the first level
was delineated by temperature (shown in Appendix Table A1);
second level was divided by the criterion of water/moisture status
(shown in Appendix Table A2); and third level was divided
based on medium geomorphic logic units (Wu et al., 2003). The
2015 administrative boundary data (Resource and Environment
Science and Data Center, 2020) for China were also used for
mapping purposes. Parts of this dataset were re-projected to the
UTM WGS 84 coordinate system for research and computational
purposes. Appendix Table A3 shows all the datasets used in this
study and their sources.

Methods
To explore the spatial variations in VG and their relationships
with urban expansion and AIA change, data processing steps
(Figure 2) were carried out as follows.

City-Level Spatial Variations in Vegetation Greening
First, to avoid the effect of phenology and calculate the VG of
each pixel, we extracted the annual maximum EVI values (i.e.,
EVImax) of each pixel from the MOD13Q1 dataset. The length
of the obtained EVImax time series was 20 years. The VG of
each pixel was then calculated using the Theil–Sen and Mann–
Kendall (TS–MK) methods. The Theil–Sen algorithm was used
to compute the slope for each pixel from the EVImax time series.
Theil–Sen is a robust nonparametric statistical method for trend
calculations, which is computationally efficient and insensitive to
measurement errors and outlier data. A slope >0 indicates an
upward trend, whereas a slope <0 indicates a downward trend.
The Mann–Kendall statistical test was used to quantify the trend
significance. The Mann–Kendall monotonic trend test is a non-
parametric statistical test within which the data do not need to
follow a normal distribution and are less disturbed by outliers.
The final pixels were significant at the 0.05 significance level and
had slope >0 were considered as VG pixels and selected as the
basis for subsequent tasks.

Second, based on the boundary dataset, 439 urban boundaries
at different administrative levels were selected and manually
calibrated using Google Earth images to ensure data reliability.
To analyze the horizontal and vertical differences in VG among
the cities, we proposed the following three indices (as listed
in Table 1). The greening density index (GDi) was used to
eliminate the effect of city size and indicate differences in the
coverage rate of VG pixels among the cities. The greening density
difference index (GDDi) indicates differences in the VG pixel
density between areas with post-2001 boundary expansions and
the 2001 urban boundary. The mean greening slope index (MGSi)
was used to eliminate the effect of city size and indicate the
Theil–Sen slope difference in the VG pixels among the cities.

Finally, the city-level spatial variations in the greening area,
GDi, GDDi, and MGSi of the 439 cities were analyzed and
differences in different eco-geographic zones were clarified.
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FIGURE 1 | Spatial distribution of the selected 439 Chinese cities. Different colors indicate the first level of eco-geographic regional system. Colored zones were the
focus of the statistical analysis. Green dots represent the locations of the 439 cities selected.

FIGURE 2 | Flowchart for the data processing and analysis used in this study.

Intercity Vegetation Greening Fragmentation
Characteristics
To further characterize the spatial fragmentation of VG patches
composed of VG pixels in each city and the differences

among the cities, we selected landscape metrics to quantify
them. The selection of metrics was based on three principles.
First, previous studies have widely used them to analyze
fragmentation characteristics. Second, they should have
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TABLE 1 | Descriptions of VG-related indexes used in this study.

Index Unit Range Equation Description

Horizontal VG Greening density index
(GDi)

None 0 < GDi < 1 ri =
Ag

i
Au

i
ri is the GDi in the i-th city, Ag

i is the total area of VG
pixels in the i-th city, and Au

i is the urban area of the i-th
city in 2020

Greening density
difference index (GDDi)

None GDDi > 0 di =
re
i

ro
i

di is the GDDi, re
i is the GDi in the expansion area, and

ro
i is the GDi in the old urban area. When di is > 1, the
GDi in the expansion area is higher than that in an old
urban area. Conversely, when di is < 1, the GDi in old

urban areas is higher.

Vertical VG Mean greening slope
index (MGSi)

None 0 < MGSi < 1 si =
Sg

i
Ng

i
si is the mean slope of the VG pixels in the i-th city, Sg

i
is the total slope of the VG pixels in the i-th city, and Ng

i
is the number of VG pixels in the i-th city in 2020.

Landscape
metrics for VG
fragmentation
and
aggregation

Number of patches
(NP)

None NP > 0 NP = ni ni = number of patches in the landscape of patch type
(class) i.

Patch density (PD) Number per 100 ha PD > 0 PD =
ni
A × 1000 ni = number of patches in the landscape of patch type

(class) i.
A = total landscape area (m2).

Largest patch index
(LPI)

Percent 0 < LPI < 100 LPI =
max

j
(aij)

A aij = area (m2) of patch ij.
A = total landscape area (m2).

Landscape shape index
(LSI)

None LSI ≥ 1 LSI =
0.25 ×

∑m
k =1 e∗ik√

A
e∗ik = total length (m) of edge in landscape between

patch types (classes) i and k; includes the entire
landscape boundary and some or all background edge

segments involving class i.
A = total landscape area (m2).

Aggregation index (AI) Percent 0 < AI < 100 AI =
[

gij
max→gij

]
× 100 gij = number of like adjacencies (joins) between pixels of

patch type (class) i based on the single-count method.
max→ gij = maximum number of like adjacencies

(joins) between pixels of patch type (class) i (see below)
based on the single-count method.

different landscape pattern characteristics to reveal complex
fragmentation processes. Third, there was a low redundancy
among the metrics. Considering that only one patch type (patch
composed of VG pixels) was available, whereas other pixels
within the urban boundary were backgrounds, we selected five
class-level metrics (as listed in Table 1). These metrics can be
classified into number (number of patches, NP), area (largest
patch index, LPI), density (patch density, PD), shape (landscape
shape index, LSI), and aggregation (aggregation index, AI). The
LPI describes the percentage of the maximum VG patches in
the landscape area and characterizes the VG direction. The PD
describes the degree of fragmentation in the VG patches. The
LSI describes the shape complexity of the VG patches. The AI
describes the aggregation of the VG patches. These metrics were
calculated using Fragstats 4.2 (FRAGSTATS, 2022) software with
a default eight cell neighborhood rule and no-sampling strategy.
The selected metrics were numerically reliable (i.e., showing
consistent trends) for depicting the spatial fragmentation of VG
patches (McGarigal et al., 2002).

Location Relationship Between Urban Expansion and
Vegetation Greening
The VG distribution balance, reflecting vegetation growth
characteristics, vegetation productivity and green biomass, affects

the well-being of urban residents and the maintenance of
biodiversity. However, the GDi and GDDi only capture the
density information on VG not the spatial location of VG in a
city. Therefore, to further explore the VG balance, we derived the
spatial pattern of VG from the location of the hotspot area (dense
clustering area) of VG pixels relative to the urban boundary
determining whether the new city or the old city was greening by
counting the years of AIA under VG pixels. We first calculated
the mean and median values for the past 20 years within the
first (2001) and last (2020) urban boundaries to analyze the
general trend of vegetation greenness in the 439 cities. We then
counted the year of the urbanized area (AIA) where the VG pixels
were located using GAIA data. Finally, we obtained the hotspot
areas of VG pixels in the 439 cities using the kernel density
method, statistically identifying the spatial location patterns of
the hotspot areas in relation to the boundary footprints left by
cities from 1990 to 2018.

Relationship Between Artificial Impervious Area
Change and Vegetation Greening
Urbanization processes transform vegetated areas into AIA,
whereas urban planning and landscape management create
new green facilities to meet the ecological needs of a growing
population. We used the AIA to represent areas of intense
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human activity and calculated the change in the AIA (CAIA)
and expansion intensity index (EII) (Jiao et al., 2017) of the AIA.
We then analyzed the Pearson correlation between these two
indicators with the VG and VG landscape metrics. The EII is the
ratio of the AIA expansion area to the total area of the region
during the study period. It quantitatively compares the degree
of AIA expansion and measures the intensity and speed of AIA
expansion during different periods. The EII is defined as follows:

EIIi =
U i
t+n − U i

t
Ai

×
1
n
× 100% (1)

where EIIi denotes the EII of the i-th city. U i
t+n and U i

t are
the impervious areas of the i-th city at the beginning and end
of the study period, respectively, n is the time interval, and
Ai is the impervious area of the i-th city. Finally, we used
regression models to further investigate the effect that changes in
the AIA have on the fragmentation of VG patches in provincial,
prefecture-level, and county-level cities.

RESULTS

City-Level Spatial Variations in
Vegetation Greening
Based on the TS–MK results, the greening area of the VG pixels
for each city was obtained from 2001 to 2020 (as shown in
Figure 3A). The results showed that the greening areas of the
439 cities accounted for 17.42% of the total area of the urban
boundaries in 2020. Figure 3B shows the spatial distribution
of the greening area for each city. The greening areas were
classified into five categories using the Jenks’ natural breaks.
From Figure 3B, the first category of cities included Beijing,
Shanghai, Guangzhou, Shenzhen, and Dongguan, which were
located in three economically developed regions: Beijing-Tianjin-
Hebei, Yangtze River Delta, and Pearl River Delta. Cities in
the second category were distributed across 11 provincial cities
(Wuhan, Chengdu, Xi’an, and Urumqi) and two prefecture-level
cities (Daqing and Zhongshan). The third category contained
29 cities scattered in different locations, such as Kunming in
the southwest, Taipei in the southeast, Kuitun and Kelamayi in
Xinjiang in the northwest, and Harbin in the northeast. In the
fourth category, prefecture-level cities had the largest number
(78%) while the fifth category had the largest number of county-
level cities (54.4%). Among the top three categories of greening
areas, 48 cities accounted for 60.47% of the total greening area.
Most of these cities are located in the central and eastern
provinces of China, followed by Fujian, Guangdong, and Taiwan
in the southeast. Provincial-level cities in the southwest had the
highest VG values. To the west, the highest VG was found in
northern Xinjiang.

Figure 3C shows the spatial distribution of the GDi for each
city. There were 17 cities with higher GDi values, most of which
were located in northern China, such as Geermu in Qinghai
and Qitaihe in Heilongjiang. Shenzhen in Guangdong was the
only city in the south with a high GDi. As shown in Figure 3B,
some megacities did not have high GDi values, despite their large
greening areas, such as Beijing and Shanghai. In contrast, some

prefecture- and county-level cities in the north had high GDi
values, and most of these cities had an area of <100 km2 and
were located in arid and semi-arid regions. Figure 3D shows
the GDDi between the expansion areas after 2001 and the old
urban areas in 2001 for the 439 cities. The GDDi results were
classified into five categories. Cities with a high GDDi in the first
category were Puning and Lufeng in the Guangdong Province.
The second category included eight cities, such as Longkou, Sihui,
and Guixi, which are mostly county-level cities. Based on the first
three categories, the GDDi exhibited clear spatial aggregation.
Cities with the highest GDDi were primarily located in three
regions. One was in North China, Jinzhong, and Jinnan and
the other was in the Pearl River Delta urban agglomeration,
coastal Fujian, and western Taiwan. The third was Taonan in Jilin
and four cities in Heilongjiang Province. In the west, the two
cities with higher GDDi values were Karamay in Xinjiang and
Geermu in Qinghai. Figure 3E shows the spatial distribution of
the MGSi. The MGSi results were divided into five categories.
The first category had 42 cities that showed a relatively notable
agglomeration, such as northern Xinjiang, eastern Sichuan and
Guangdong. Cities in the second, third, and fourth categories
were evenly distributed across all of the provinces. Cities in the
fifth category were primarily distributed in the central and eastern
provinces of China.

To explore the spatial variations in the VG in different level of
eco-geographic zones (as shown in Figure 1 and listed in Tables
A1, A2), Figures 4A,B show a comparison of the average value of
the GDi and MGSi. Due to the small sample size of provincial
cities with different eco-geographic zones, only the differences
in the average values of the GDi and MGSi between prefecture-
and county-level cities were compared here. In Figure 4A, the
average GDi of the prefecture-level cities had a maximum value
in MTZ and a minimum value in NSZ, after which it gradually
increased. Geographically (as shown by the corresponding colors
in Figure 1), the average GDi of the prefecture-level cities
decreased from north to south and then slightly increased. The
maximum value of the average GDi of the county-level cities was
in MTZ and the minimum value was in WTZ. Geographically,
the average GDi of the county-level cities from north to south
showed a W-shaped trend. When comparing the average GDi of
the prefecture- and county-level cities, the average GDi of the
prefecture-level cities was higher than that of the county-level
cities in MTZ, WTZ, CSZ, and SSZ, while it was smaller than
that of the county-level cities in NSZ. In Figure 4B, the average
GDi shows a decreasing trend from AZ to HZ. Interestingly, the
average GDi in the arid and semi-arid zones was larger than
that in the humid and semi-humid zones. Figures 4C,D show
a comparison of the average MGSi for eco-geographic zones.
In Figure 4C, the maximum value of the average MGSi for the
prefecture-level cities was located in MTZ and the minimum
value in CSZ. The maximum value of the average MGSi for
the county-level cities was located in MTZ and the minimum
value in NSZ. However, the differences of the average MGSi
for the county-level cities in WTZ, NSZ, and CSZ were not
significant. In Figure 4D, the cities with the largest average MGSi
in different administrative levels were located in the arid zone and
shows a decreasing trend with increasing humidity. The Chinese
government has developed a number of policies to protect and
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create urban green spaces in recent decades, particularly large-
scale afforestation programs in arid and semi-arid areas. The
positive impact of greenery policies on VG has been preserved
from the results.

Intercity Vegetation Greening
Fragmentation Characteristics
We calculated four class-level landscape metrics to characterize
the spatial fragmentation of patches composed of VG pixels, as
shown in Figure 5. There was a redundancy between the NP
and PD; therefore, the NP is not shown here. From a spatial
variation perspective, the spatial trends in the LPI, PD, LSI, and
AI were different. For the PD (Figure 5A), there were 33 cities
with a PD value >0.59 (59 per 100 ha). Cities with high PD
values were primarily located in central and southern China.
This indicates that these cities had a high degree of VG patch
fragmentation. Cities with low PD values (<0.19) were primarily
located in the downstream provinces along the Yangtze and
Yellow rivers, such as Henan, Anhui, Jiangsu, and Zhejiang.
For the LPI, there were 10 cities in northern China with high
LPI values (>38%), including Xinjiang and Inner Mongolia
(Figure 5B). However, they have a smaller urbanized areas,
resulting in the formation of large VG patches. In Figure 5C, high
AI values >70 were primarily distributed north of 28◦N, such as
in Sichuan, Shanxi, Shaanxi, Gansu, Xinjiang, Inner Mongolia,
and Liaoning provinces. These cities had higher concentrations
of VG patches. Cities with lower AI values (<36) in the coastal
provinces were Qinzhou, Fuqing, Taichung, Weihai, and Linghai.
As shown in Figure 5D, 24 cities with the highest LSI values
were primarily distributed in the coastal cities of Guangdong,
Fujian, Taiwan, Zhejiang, Shandong, and Liaoning. The high LSI
of these cities indicates a complex and diverse VG patch shape,
strongly influenced by human activities. Generally, higher LPI
values provides a better recreational environment for residents
and maintains biodiversity. Cities experienced better VG and
had a higher patch integrity and higher LPI. These cities were
primarily located in the north (Figure 5B). In terms of the
PD, cities with a high PD tended to fragment spatially, such
as those in the Pearl River Delta and Beijing-Tianjin-Hebei
region. To reduce the fragmentation of VG, cites with high PD
values should pay more attention to urban development while
focusing on vegetation maintenance. The VG shape complexity
was influenced by city size, such as Beijing, Shanghai, and
Guangzhou. The economic development and expansion of these
cities were more likely to contribute to the shape complexity
of VG. In terms of aggregation, most cities in China tended
to have a concentration of VG patches, particularly western
and northern cities. Although these cities are located in less
developed areas, enhanced vegetation management may also lead
to a concentration of VG pixels, which is also more conducive to
the formation of dense vegetation areas.

Location Relationship Between Urban
Expansion and Vegetation Greening
To analyze the trend of EVImax data series within the city
boundary before (2001) and after (2020) urban expansion, we

calculated the mean and median values of EVImax for the past
20 years by referring to the pre-expansion and post-expansion
city boundaries. In Figure 6A, these two values gradually
increased within the 2001 boundary and decreased within the
2020 boundary. A similar conclusion to the Shanghai study
(Zhong et al., 2019) can be obtained from Figure 6A, where
there was an overall decreasing trend of urban vegetation,
but there may be a trend of vegetation improvement in older
urban areas. Therefore, we extracted the AIA (urbanized areas)
generation year in which the VG pixels were located, and counted
the percentage of VG pixels per AIA generation year. From
Figure 6B, the percentage of the VG pixels before the AIA
generation year 1990 is 60.4%. As shown in Figure 6C, the earlier
the AIA was generated (older urban areas), the smaller the VG
slope. However, more recently urbanized areas have a larger VG
slope. To further analyze the VG patterns in urbanized areas,
we computed the hotspot areas of VG pixels in the 439 cities
using the kernel density method and statistically identified the
spatial location patterns of the hotspot areas in relation to the
boundary footprints left by cities from 1990 to 2018. The results
showed that 97.7% of the VG hotspot areas in the 439 cities
were mostly located within the boundary footprint of the cities in
1990. This indicates that the VG hotspots in Chinese cities were
primarily distributed in old urban areas, while the VG density in
new urban areas was sparse. The spatial location patterns of the
VG hotspots in these cities were divided into three types: center-
type, fringe-type, and infill-type (as shown in Figures 6D–F). The
VG in center-type cities (e.g., Changzhou) was scattered from the
center to the periphery; the proportion of this type across the
439 cities was 25.3%. Fringe-type cities (e.g., Changshu) tended
to scatter in certain directions; the proportion of this type was
64.9%. The infill-type cities (e.g., Baotou) were primarily due to
the high growth of VG pixels, which covered most part of the city;
the proportion of this city type was 9.8%. Our study confirmed
the VG in the central city, which covered a wider range of cities
compared with limited urban case observations.

Relationship Between Artificial
Impervious Area Change and Vegetation
Greening
Table 2 lists the correlation results for the CAIA and EII with
the VG indices and the VG landscape metrics. The CAIA was
significantly and positively correlated with the greening area
(r = 0.832), reflecting a strong relationship between increases
in the AIA and greening area. Figure 6 also shows that this
positive correlation had the largest contribution from VG in
old urban areas. The CAIA was also significantly and positively
correlated with the LSI (r = 0.809), indicating that the shape
of the VG patches becomes complex during the urbanization
process. The CAIA was weakly and positively correlated with
the AI (r = 0.177), indicating that the increase in the AIA was
closely related to the concentration of VG patches, which can
be partially explained by the concentration of VG in old urban
areas. However, there was a weak negative correlation between
the CAIA and PD (r =−0.021), suggesting that an increased AIA
was associated with the degree of VG fragmentation. The EII had

Frontiers in Ecology and Evolution | www.frontiersin.org 7 April 2022 | Volume 10 | Article 859542

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-859542 April 8, 2022 Time: 13:39 # 8

He et al. Spatial Variations in Vegetation Greening

FIGURE 3 | Spatial variations in the VG of the 439 cities. (A) Distribution of the VG pixels in the 439 cities; (B) spatial distribution of greening area of the VG; (C)
spatial distribution of the GDi; (D) spatial distribution of the GDDi; and (E) spatial distribution of the MGSi. Dots in the images represent the selected cities; colors
refer to the category of the greening area, GDi, GDDi, and MGSi. The histograms show the distribution of the values of the greening area, GDi, GDDi, and MGSi.

FIGURE 4 | Comparison of the average value of the GDi and MGSi in different temperature and humidity zones. (A,B) the average value of the GDi in temperature
zones and humidity zones; (C,D) the average value of the MGSi in temperature zones and humidity zones; numbers 1 and 2 on the x-axis denote prefecture-level
and county-level cities, respectively.
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FIGURE 5 | Spatial variations in the landscape metrics for VG. (A–D) VG landscape metric for the PD, LPI, AI, and LSI, respectively.

a negative correlation with the six indicators, but the correlation
was less significant. Of these, the EII had the largest negative
correlation with the GDi, indicating that the growth rate of the
AIA had a negative relationship with the VG density within a
city. The EII and CAIA reflected the correlation between the two
state quantities of the AIA, in space and time, and VG. The spatial
changes in the CAIA in the first and last periods were positively
correlated with the shape, aggregation, and slope of VG, which
may be due to the active land use policy. However, the growth
rate of the AIA reflected the intensity of human activities, which
would be negatively correlated with the VG density, differences
in VG between old and new urban areas, and VG fragmentation.

Regression models were used to further investigate the
effect of the CAIA on the fragmentation of VG patches in
provincial, prefecture-level, and county-level cities. However,
after subdividing by city administrative level, the EII and
landscape metrics indicating fragmentation were not significant
in the regression model, while the CAIA was not significant with
the AI and PD; therefore, these results were not presented here.
We only used the CAIA to analyze the effects of urbanization

on the NP and LSI of the VG patches. Here, the NP and PD
had similar fragmentation description characteristics; however,
the NP focused more on the number of patches. As shown in
Figure 7, most of the models for the provincial, prefecture-level,
and county-level cities could explain >68% of the variation in the
NP and LSI, significant at a 0.05 level. In terms of the NP and LSI,
the CAIA better explained the phenomenon of fragmentation
and shape complexity in the VG patches in prefecture-level
cities, whereas it was least interpretable in the county-level cities.
This may be due to the smaller urbanized areas in county-level
cities, where the fragmentation and shape of the VG landscape
are more complex.

DISCUSSION

Characteristics of Urban Vegetation
Greening in China
Urban vegetation status studies can be classified into two
categories. The first category analyzes changes in the number,
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FIGURE 6 | Concentration types for the VG hotspots. (A) Mean and median of EVImax within the urban boundary for the year 1990 and 2020; (B) the percentage of
VG pixels per AIA generation year; (C) the mean value of VG slope per AIA generation year; (D) center-type (Changzhou); (E) fringe-type (Changshu); and (F)
infill-type (Baotou).

TABLE 2 | Correlation coefficients for the changes in the AIA and VG.

Pearson r Greening area Greening slope

Horizontal trend Fragmentation and aggregation Vertical trend

Area GDi GDDi PD LPI LSI AI MGSi

Impervious
surface
expansion

ISC 0.832** −0.021** 0.809** 0.177** 0.241**

EII −0.354** −0.161** −0.220** −0.297** −0.150** −0.113*

N = 439, *p < 0.05 (two-sided test); **p < 0.01 (two-sided test).

area, and patches of urban green space based on land use and land
cover maps. High-resolution remote sensing data are typically
used to extract and summarize changes in green spaces. Previous
studies have shown that there has been a decline in the total
amount of urban green space, particularly in suburban areas, such
as Shanghai (Wu et al., 2019) and Nanchang (Li et al., 2015).
However, urban green spaces are narrowly defined as outdoor
places with a certain amount of vegetation (Zhao et al., 2013),
which typically ignores vegetation on roadsides, rooftops, and
around buildings, accounting for up to 40% of the total urban
vegetation (Haase et al., 2019). However, they provide cultural
and ecosystem services closely related to the health and quality
of life of urban residents. Therefore, assessing changes in urban
vegetation using vegetation indices, such as the NDVI (Chen
et al., 2017), GPP, and EVI (Zhong et al., 2019), is important at an
integrated spatial scale. We examined the MODIS EVI to quantify
and describe urban VG using the TS–MK method. Consistent
with the results of previous EVI (Zhong et al., 2019) and NDVI
(Sun et al., 2011) studies, there was a decreasing vegetation trend
in the urban periphery. We further compared VG according
to the city administrative level, eco-geographic zones, and old

and new urban areas. Greening areas accounted for 17.42% of
the total area across the 439 selected cities. The top 48 cities
accounted for 60.47% of all urban greening areas. This indicates
that the overall trend for improvements to urban vegetation
was not promising. Moreover, 17 cities with a high greening
density (GDi) were located in several northern prefecture-level
and county-level cities, and most of them were located in arid
and semi-arid regions. This could be explained by the fact that,
in arid or semi-arid cities, urbanization may lead to an increase
in vegetation, replacing the original landscape with vegetated
human settlements (Lu et al., 2017).

Patches are typically used as functional units in landscape
ecology, urban planning, and natural resource management
(Zhou et al., 2017). Many studies investigating the dynamics of
urban green spaces at the patch level have identified a trend
in green space fragmentation. As the interiors of building plots
and rooftops are not included in green space management, their
positive impact on human physical and psychological health
cannot be ignored (McNamee, 2009). This indicates a new a
new approach to effectively quantify the spatial patterns of
urban VG. We quantified the spatial pattern of VG pixels in
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FIGURE 7 | Correlations among the CAIA, landscape metrics, and VG. (A–C) Correlations between the CAIA and NP, and LSI in the provincial-level (A,D),
prefecture-level (B,E), and county-level cities (C,F).

each city using landscape metrics to more effectively reveal
differences in urban VG fragmentation or aggregation. The
results showed that the urban patch integrity was better in
northern China, VG was more fragmented in the Pearl River
Delta and Beijing-Tianjin-Hebei, and VG was complex in shape
in cities with better economic development. By analyzing the
landscape characteristics composed of VG pixels that were highly
correlated with vegetation ecology and social functions, refining
our understanding of the vegetation status of each city at the
national level may be crucial.

Under the pressure of urbanization, the expansion of built-
up areas typically destroys a large proportion of the original
vegetation; extensive green areas become impervious surfaces,
which are then replaced with new artificial green patches. Some
studies have reported that older urban areas become greener
while expanded built-up areas generally have a higher green
coverage than older urban areas (Yang et al., 2014). Yang et al.
(2021) found that urbanization has a dual effect on vegetation.
Vegetation degradation has occurred in urban areas, but there
has been improvements to the vegetation in urban centers.
However, no large sample exists for analyzing whether this
phenomenon is widespread across a national region and what
spatial characteristics are involved in vegetation improvement.
The results of our study showed that 60% of the VG pixels
in the 439 cities were located on impervious surfaces before
1990. The spatial aggregation patterns of the VG pixels were
analyzed using the kernel density estimation method. We found
that the fringe-type VG pattern accounted for 64.9% while the
center-type accounted for 25.3% of the 439 cities. Our study
not only confirmed the upward greening trend in old urban
areas, but also further obtained the year of AIA under the VG
pixels. “Planting where possible” (Wang et al., 2018) vegetation
restoration strategies may be one of the factors contributing to

these changes. The difference in the GDDi between old and new
urban areas further confirmed that, as urbanization accelerates,
the VG of old urban areas still cannot offset the green loss in new
urban areas. Therefore, more attention should focus on greenery
management and planning decisions in new urban areas.

Implications for Urban Vegetation
Management
Urban expansion has a two-way effect of promoting and
constraining vegetation growth. Incremental urban expansion
converts cropland and forestland into impervious surfaces. Stock
urban expansion changes the type of land cover within existing
urban boundaries, such as adding new greenery projects and
changing vegetation types. The area, slope, and VG density can be
used as indicators for comparative analyses of changes in urban
vegetation. Moreover, they can be used to adjust urban vegetation
management plans to promote the balanced development of
urban expansion and VG. To improve the spatial structure of
VG, we must analyze the aggregation characteristics of VG and
its degree of fragmentation. Vegetation construction in cities
is typically fragmented; in contrast, land use determines the
type of vegetation, as well as the availability and distribution of
the planting space. Therefore, the above indicators can improve
the effectiveness of green space design and planning. Moreover,
based on the data analysis results, the greening-centered trend in
Chinese cities indicates a need to increase the greening of land in
peri-urban areas, particularly impervious surfaces, and to protect
the surrounding environment.

Limitations and Future Research
The results obtained in this study were limited to areas with
VG, which does not indicate the coverage of urban vegetation.
These results can only be used to assess vegetation growth
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and its patterning. Additionally, several types of vegetation
index data are currently available and used as a proxies for
monitoring vegetation changes (Goetz, 1997; Gianelle et al., 2009;
Tong and He, 2013), such as MODIS and Landsat vegetation
index derivatives. Landsat optical images have sufficient spatial
and spectral resolution to provide information on vegetation
growth characteristics. However, cloud cover and water vapor
typically degrade image quality, which limits the available images
for time-series vegetation vitality measurements (Lee et al.,
2017). Moreover, Albarakat and Lakshmi (2019) used Pearson
correlation analysis for each pixel in Landsat and MODIS
vegetation index data. The results showed that although the
spatial resolutions of Landsat and MODIS were different, the
locations of increasing (positive slope) or decreasing (negative
slope) vegetation were in the same areas. Therefore, in this study,
high-quality and well-documented 250 m MODIS EVI data were
selected to understand urban VG.

Future research should validate and compare VG patterns
with higher-resolution data and analyze the factors influencing
VG. Urbanization is an ongoing process; only VG over the past
20 years were analyzed. Further studies should investigate the
effects of urbanization, particularly urban expansion on VG—
should be further investigated. The influence of urban vegetation
greenery projects and management, and climatic factors on VG
should also be the focus of future research.

CONCLUSION

The objective of this study was to analyze the spatial differences
in VG and its patterns in Chinese cities and the impact of urban
expansion on VG. Based on MODIS EVI, we used the TS–
MK trend test, landscape metric calculation, correlation analysis,
and linear regression for data processing and analysis of the
results. The main conclusions can be summarized as follows:
(1) there was a trend toward VG in urban areas, but it was
not promising. Cities with larger greening areas were primarily
located in central and eastern Chinese provinces, followed by
southeastern, southwestern, and western provinces. The greening
areas of the 439 cities accounted for only 17.42% of the total
urban boundary area. The 48 cities with the largest greening
areas accounted for 60.47% of the total greening area. (2) In the
southern subtropical and warm temperate zones, 33 cities had
a greening PD > 0.59, which was highly dispersed. In contrast,
the VG patches in northern China showed better integrity. (3)
The differences in the greening density and the distribution of
VG hotspots demonstrated a notable centralized trend in cities.
The form of urban expansion influenced the location patterns of

VG hotspots. (4) The intensity of impervious surface expansion
had a weak negative correlation with the greening trend. The
correlations between the greening density and greening slope
were −0.354 and −0.113, respectively. Given that vegetation
is an important foundation for urban sustainability objectives,
enhancing the greening of new urban land, particularly on
artificial surfaces, is important.
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APPENDIX

TABLE A1 | Temperature zones.

Abbreviation Temperature zones Number of prefecture-level cities Number of county-level cities

MTZ Medium temperate zone 33 26

WTZ Warm temperate zone 71 73

NSZ North subtropical zone 32 24

CSZ Central subtropical zone 55 34

SSZ South subtropical zone 29 14

ETZ Edge tropical zone / /

CTZ Cold temperate zone / /

CETZ Central tropical zone / /

EQTZ Equatorial tropic zone / /

HSZ Highland subalpine zone / /

HTZ Highland temperate zone / /

TABLE A2 | Water/moisture zones.

Abbreviation Water/moisture zones Number of prefecture-level cities Number of county-level cities

AZ Arid zone 7 7

SAZ Semi-arid zone 9 6

SHZ Semi-humid zone 70 64

HZ Humid zone 137 101

TABLE A3 | All data sets used and their sources.

Datasets Sources

Global urban boundaries http://data.ess.tsinghua.edu.cn

China eco-geographic regionalization https://www.resdc.cn

MODIS EVI https://lpdaac.usgs.gov/products/mod13q1v006/
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