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In evolutionary ecology, an “ecotype” is a population that is genetically

adapted to specific environmental conditions. Environmental and genetic

characterisation of livestock ecotypes can play a crucial role in conservation

and breeding improvement, particularly to achieve climate resilience.

However, livestock ecotypes are often arbitrarily defined without a detailed

characterisation of their agro-ecologies. In this study, we employ a novel

integrated approach, combining ecological niche modelling (ENM) with

genomics, to delineate ecotypes based on environmental characterisation of

population habitats and unravel the signatures of adaptive selection in the

ecotype genomes. The method was applied on 25 Ethiopian village chicken

populations representing diverse agro-climatic conditions. ENM identified six

key environmental drivers of adaptation and delineated 12 ecotypes. Within-

ecotype selection signature analyses (using Hp and iHS methods) identified

1,056 candidate sweep regions (SRs) associated with diverse biological

processes. While most SRs are ecotype-specific, the biological pathways

perturbed by overlapping genes are largely shared among ecotypes. A few

biological pathways were shared amongst most ecotypes and the genes

involved showed functions important for scavenging chickens, e.g., neuronal

development/processes, immune response, vision development, and learning.

Genotype-environment association using redundancy analysis (RDA) allowed

for correlating ∼33% of the SRs with major environmental drivers. Inspection
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of some strong candidate genes from selection signature analysis and RDA

showed highly relevant functions in relation to the major environmental

drivers of corresponding ecotypes. This integrated approach offers a powerful

tool to gain insight into the complex processes of adaptive evolution including

the genotype × environment (G × E) interactions.

KEYWORDS

environmental adaptation, ecological niche modelling, Ethiopian village chicken,
redundancy analysis, selection signature analysis

Introduction

Livestock genetic diversity is an essential prerequisite
to achieve resilience to the challenges arising from climatic
changes, and the ever-changing dynamics of production systems
and consumer demands. Indigenous livestock populations
surviving in diverse geographic areas exhibit unique genetic
adaptations to their local environmental conditions. In
evolutionary ecology, such locally adapted populations of a
species are referred to as “ecotypes.” With their extant genetic
and adaptive diversity, different ecotypes may hold genetic
solutions for many present and future challenges facing the
global livestock sector.

Delineating livestock ecotypes in practice, however, has
been challenging. Arbitrary and loose criteria have often been
applied for defining ecotypes, such as the geographic origin of
populations, broad agro-climatic conditions of the populations
or some major morphological features (Tadelle et al., 2003;
Keambou et al., 2014; Sanarana et al., 2016). Such classifications
are not only arbitrary but also are over-simplistic in that they
neither take into consideration a detailed characterisation of
the ecotype agro-ecologies nor do they attempt to decipher
the key environmental drivers and their interactions in shaping
ecotypes’ genomes. When a livestock species is introduced into
a new environment, a wide range of bioclimatic conditions will
interact with the standing genetic variations of the introduced
population. Local agro-climatic conditions will exert different
selection pressures in different environments and contribute to
creating new ecotypes. This complex scenario is resonated in
the ecotype definition provided by Lowri (2012) who described
the term as “a non-static adaptive variation over many traits
across the natural landscape with no discernible boundaries.”
This emphasises the need for adopting a “systems” approach,
such as environmental modelling, for defining ecotypes that
would allow considering complex interaction of a large number
of environmental predictors. Integrating such an approach with
genomic characterisation will have major implications for the
characterisation and conservation of livestock adaptive diversity
and will help provide genetic solutions for developing “climate
resilient” livestock breeds.

Ecological niche modelling (ENM) – also called species
distribution modelling (SDM) – has been extensively applied
for predicting distribution of wild animal species and crop
plants. One of the most widely used ENM/SDM approaches
is implemented in the program MaxEnt (Phillips et al.,
2006). Using environmental data from known species-presence
locations, MaxEnt predicts the potential geographical range of
a species across a landscape and estimates the contribution
of environmental variables in shaping the species’ habitats.
As a consequence, the method has been a powerful tool in
the conservation efforts of wild species (Thorn et al., 2009)
and has found applications for other diverse purposes such
as assessing the risk from invasive species (Jiménez-Valverde
et al., 2011), epidemiological studies (Cardoso-Leite et al.,
2014), and estimating the effect of climate change on future
distribution of a species (Jeschke and Strayer, 2008). In livestock,
however, the use of ENM is still in its infancy with only
a few available examples (Pitt et al., 2016; Lozano-Jaramillo
et al., 2018; Vajana et al., 2018; Gheyas et al., 2021; Kebede
et al., 2021). Pitt et al. (2016) used MaxEnt for inferring
the actual and historical distributions of early domestic fowl
by modelling the environmental conditions of extant Red
Jungle Fowl (RJF) with important conservation implications.
Lozano-Jaramillo et al. (2018) used MaxEnt to predict the
environmental suitability maps for successful introduction of
two exotic chicken breeds across the Ethiopian landscape.
Vajana et al. (2018) integrated landscape genomics and ENM
to investigate local adaptation of indigenous Ugandan cattle to
East Coast Fever. In a recent study (Gheyas et al., 2021), we
applied MaxEnt for identifying the key environmental drivers in
the agro-ecologies of Ethiopian indigenous chickens, followed
by genomic analyses in relation to these variables to identify
candidate adaptive genes. In another recent study, Kebede
et al. (2021) integrated ENM with phenotypic distribution
modelling to study phenotypic differentiation among Ethiopian
indigenous chicken populations and used this characterisation
for delineating potential ecotypes. The study, however, did not
consider the genomic basis of adaptation.

Based on the insights from the above studies, here we
present a novel application of ENM for delineating livestock
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ecotypes. Our approach considers “ecology” as the main driving
force for adaptive evolution and hence as the focal point for
characterising ecotypes. The ENM-based ecotypes are then
used as units of analysis to dissect the underlying genetics
of adaptation. We exemplify the application of this approach
using the same set of Ethiopian village chicken populations
used in our previous study (Gheyas et al., 2021). Ethiopian
indigenous chicken populations are an excellent model to
demonstrate the utility of this novel approach for a number of
reasons. In Ethiopia, indigenous chickens account for 78.85%
of the total poultry population (Central Statistical Agency
[CSA], 2021) and are predominantly reared in scavenging/semi-
scavenging rural agro-ecologies, where the birds are directly
exposed to various environmental pressures. A great deal
of phenotypic diversity (Wilson, 2010) and genetic plasticity
are observed in these indigenous chickens (Bettridge et al.,
2018), even though their ancestral gene pool is not very
diverse (Gheyas et al., 2021). Ethiopia’s agricultural landscape
also varies widely due to its altitudinal topography and
climatic variations, with one or two rainy seasons separated
by dry seasons. As a result, the country displays diverse
agro-climatic zones (n = 18) (Ministry of Agriculture [MoA],
1998). Indigenous chicken populations are found in most agro-
ecologies where there is human settlement, indicating their
adaptive diversity. The novel method introduced here offers
an excellent platform for characterising these populations in
relation to their environmental adaptation.

The major steps in our analysis include characterising
the agro-ecologies of the investigated chicken populations
using ENM, followed by clustering the populations based
on their niche similarity to define distinct ecotypes. Within-
ecotype selection signature analyses are then performed to
identify genomic loci at different stages of positive selection –
ongoing and/or near fixation – using iHS (Integrated Haplotype
Score) and Hp (Pooled heterozygosity) approaches. Variants
overlapping the putative selective sweep regions (SRs) are then
analysed using redundancy analysis (RDA) approach to find
their correlation with key environmental variables.

Materials and methods

Study samples and environmental data

The Ethiopian landscape is characterised by its altitudinal
topography ranging from 126 m below sea level to 4,620 m above
sea level and climatic variation with one or two rainy seasons
separated by dry seasons. As a result, the country displays
diverse agro-ecological zones (AEZ) and subzones (Mengistu,
2006). The data set included in this analysis comprised 245
chicken samples (Gheyas et al., 2021) from across these different
environments. Sampling was carried out as part of the African

Chicken Genetic Gains project1 to represent diverse agro-
climatic conditions in Ethiopia. The samples originated from
25 villages or Kebeles across 12 districts and six national
regions (Supplementary Table 1). During sampling of the
chicken populations, a single geographic coordinate registry was
recorded for each sampled village. As described in Gheyas et al.
(2021), for each of these populations, nine additional geographic
coordinates in different grids (separated by 1.2 km2) were
selected using Google Earth Pro 7.3.1.4507 (2016). Thereby, for
each population 10 geographic coordinates were used to allow
ENM-based characterisation of population habitats and from 25
populations, a total of 250 geographic coordinates were used as
“presence points.”

Thirty-four environmental variables – 21 climatic, 1
elevation, 8 soil, and 4 vegetation and land cover conditions –
were initially chosen for ENM as these were deemed important
for chicken biology. Geo-referenced environmental data for
these variables were extracted from public databases – viz.
WorldClim (Fick and Hijmans, 2017), SoilGrids (Hengl et al.,
2014), Spatial Data Access Tool of NASA (ORNL DAAC,
2017), Harmonized World Soil Database (Fischer et al., 2008),
and Global Food Security-Support Analysis Data (GFSAD30,
2017) – at a spatial resolution of 30 s (∼1 km2) using the
“raster” R package. Based on geodetic datum WGS84, the grids’
dimension and extension were corrected and homogenized for
1 km2 using “rgdal,” “maptools,” “rgeos,” and “raster” packages
in RStudio v1.1.419 (R Core Team, 2018).

Ecological niche modelling

Prior to ENM, several complementary approaches were
applied to evaluate the properties and relationship of the
environmental variables and their relative contributions in
explaining chicken agro-ecologies. This included a normality
test, a Spearman’s rank correlation, and Principal Component
Analysis (PCA). MaxEnt v3.4.1 (Phillips et al., 2006) was
used for executing ENM. Model optimization was performed
by removing highly correlated (Spearman r > 0.6) and
low contributing (<4%) environmental variables using
“MaxentVariableSelection” (Jueterbock et al., 2016) and
choosing the best combination of model parameters –
Regularization Multiplier (RM) and Feature Classes (FCs) –
using ENMeval (Muscarella et al., 2014), considering all
populations together (see Gheyas et al., 2021 for details).

Based on the optimization process, six environmental
variables were shortlisted, namely, minimum temperature of
coldest month (bio6 – minTemp), precipitation seasonality
(bio15 – precSeasonality), precipitation of wettest quarter
(bio16 – precWQ), precipitation of driest quarter (bio17 –
precDQ), soil organic carbon (SoilOrgC), and land use

1 https://africacgg.net/
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(LandUse). The best combination of model parameters included
Hinge (H), Quadratic (Q) and Product (P) FCs and RM = 3.5.
A sub-sample of 25% was used as test data while the remaining
75% was used as training data for model execution. Habitat
suitability maps were created in the logistic scale.

Assessing niche similarity between
populations and delineating ecotypes

Using the shortlisted variables and the optimal model
parameters, habitat suitability maps were generated for
individual populations. Similarity between suitability maps
were assessed in ENMtools (Warren et al., 2010) using two
methods: (i) pairwise Pearson correlation (r) and (ii) niche
overlap statistic “I.” The r co-efficients capture correlation of
corresponding grids between two suitability maps, where +1
indicates total positive linear correlation, 0 is no correlation,
and −1 indicates complete negative correlation. Contrarily,
the “I” values ranges from 0 indicating no overlap to 1
suggesting identical niche models between corresponding grids
(Warren, 2018). The populations were grouped based on
their habitat similarity by hierarchical clustering using the R
package “cluster.” Both values (“I” and “r”) were converted
into “Euclidean” distance. Different hierarchical clustering
approaches (minimum and maximum linkage, UPGMA, and
Ward method) were evaluated to measure the cluster strength
based on their agglomerative coefficients. Dendrograms and
heatmaps for each similarity dataset were produced using the
“gplots” R package. Population clusters generated by these
methods were considered as ecotypes when all population pairs
within the cluster showed both the I and r values ≥0.6.

Genome sequencing, SNP calling, and
investigating population genetic
structure

Whole-genome sequencing of individual samples was
performed on an Illumina HiSeqX platform with an average
coverage of ∼45X. Mapping of sequencing reads was performed
against the GRCg6a (Galgal6) reference using the BWA-
mem algorithm and variant calling was performed following
GATK’s best practice protocol for short variant discovery for
germline (Broad Institute, 2015). The protocol involved using
GATK’s HaplotypeCaller function which is capable of calling
short variants simultaneously via local de novo assembly of
haplotypes. The GATK function GenotypeGVCF was then
applied for joint genotyping across a cohort of samples followed
by variant filtration using the VQSR (Variant Calling Score
Recalibration) approach. Refer to Gheyas et al. (2021) and
Gheyas et al. (2022) for details of sequence data processing,
mapping, and variant calling.

Several analyses were performed to summarise the genetic
diversity and population structure, as presented in Gheyas
et al. (2021). The previous results showed a mean nucleotide
diversity between 0.28 and 0.34 per population, very low levels
of population differentiation (based on pairwise Fst), a weak
genetic sub-structure across populations (based on PCA analysis
using SNP data) and the contribution of three different ancestral
gene pools (based in Admixture analyses).

Selective sweep analysis

Selection signature analyses were carried out on the ENM
defined ecotypes by calculating pooled heterozygosity (Hp)
following the method described by Rubin et al. (2010) and iHS
using the Hapbin package (Maclean et al., 2015). Both metrics
were calculated in overlapping sliding windows of 20 kb with a
step size of 10 kb.

For iHS calculation, phasing was performed (after removing
missing genotypes) using Beagle v5.1 (Browning and Browning,
2007). Chromosome-specific mean recombination rates
(cM/Mb) based on Groenen et al. (2009) or Elferink et al. (2010)
(for Chr16) were used for calculating genetic map positions
of SNPs. Since no information was available for Chr30–33, a
mean rate of 5.4 cM/Mb from across other micro-chromosomes
(based on Groenen et al., 2009) was used. iHS analyses were
first performed for individual SNPs by setting the minor allele
frequency (maf) option as 10% and cut-off value for Extended
Haplotype Homozygosity (EHH) equal to 0.1. Afterward, mean
values were calculated within windows for standardised iHS
(iHS_std) and the absolute value of iHS_std.

Empirical P-values were calculated for both standardised Hp
(ZHp) and iHS (iHS_std) by ranking the windows in descending
order according to their scores and then dividing the ranks by
the total number of windows. The criteria for selecting outlier
windows (i.e., potential sweeps) for iHS analysis included:
windows with at least 10 SNPs, P-value ≤ 0.01, window mean
of | iHS_std| ≥ 2.0, and at least 90% of SNPs in a window with |
iHS_std| value ≥ 2.0. For Hp analysis, the criteria were: windows
with at least 10 SNPs, P-value ≤ 0.01, and ZHp ≤ −4.0.

Genotype-environmental association

Genotype-environment association analysis was performed
with an LD-pruned set of SNPs overlapping the SRs (from
iHS and Hp analyses) using RDA in Vegan v2.5-4 (Oksanen,
2015) following Forester (2019). LD pruning was performed
with PLINK v1.9 (Purcell et al., 2007), using the following
parameters: –indep-pairwise, window-size = 10 kb, step-
size = 10 SNPs, and r2 = 0.5. Genotype was fitted as
a response variable and environmental data (six variables)
as the explanatory variables with conditioning on latitude
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and longitude. Ancestry co-efficients from Admixture analysis
were included as covariates to correct for any population
structure effect.

For each canonical RDA axis, ANOVA analysis was
performed. The significance of the partial model and each axis
was calculated with 999 and 99 permutations, respectively.

Functional annotation

Candidate regions/variants from selection signature and
RDA analyses were investigated for their overlap with chicken
genes from Ensembl (release 98). SNPs were annotated
using Variant Effect Predictor (VEP) (McLaren et al., 2016).
Candidate genes were checked for their overlap with chicken-
QTLs from AnimalQTLdb (release 45) (Hu et al., 2013).
Only QTLs with P-value < 0.05 and size <1 Mb were
considered. Molecular functions, biological processes, and
metabolic pathways associated with the candidate genes
were analysed using the Panther classification system v.14.0
(Huaiyu et al., 2019).

Results

An overview of our framework for ENM-based
delineation of livestock ecotypes and their use for
dissecting genomic-environmental adaptation is presented
in Figure 1 with summary results from its application on
Ethiopian chickens.

Established agro-ecological zones are
not sufficient for classifying
populations into ecotypes

Different classifications of Ethiopian AEZs are available.
Since altitudinal topography constitutes a major feature
of the Ethiopian landscape, traditional classifications were
driven by this and 4–6 different AEZs were defined,
e.g., Berha (lowlands, <500 meters above sea level,
m.a.s.l.), Kolla (lowlands, 500–1,500 m.a.s.l.), Weyna Dega
(midlands, 1,500–2,300 m.a.s.l.), Dega (highlands, 2,300–
3,200 m.a.s.l.), Wurch (highlands, 3,200–3,700 m.a.s.l.), and
High Wurch (highlands, >3,700 m.a.s.l.) (Hurni, 1998).
Many other classifications have combined rainfall and
crop pattern information with these traditional elevation-
based zonation for the purpose of crop management,
but their denominators were often relative and lacked
precision (Hurni, 1998). The FAO/IIASA-defined “Global
AEZ 16-class” classification (HarvestChoice/IFPRI, 2009)
has also been applied on Ethiopia and identifies eight
different zones (Figure 2A). While this classification

considers temperature, elevation, and rainfall, still it
suffers from lack of precision. For example, it provides
only two broad classifications based on temperature –
either cool or warm.

The most elaborate zoning is from Ethiopia’s Ministry of
Agriculture and Rural Development (Ministry of Agriculture
and Rural Development [MoARD], 2005) with the identification
of a staggering 32 different AEZs2 (Figure 2B), taking into
account climate, physiography, soil properties, vegetation,
and crop patterns. Although this provides a high-resolution
classification, the system is developed mainly for agricultural
crop management and therefore may not be directly relevant for
livestock species.

The MaxEnt based ecological modelling (ENM) for
characterising livestock agro-ecologies offers a number
of advantages over these established classifications. ENM
provides the opportunity to incorporate species-relevant
environmental variables and allows examination of a large
number of variables. In our study, we initially examined
34 different variables (Figure 3A). Elevation and climatic
parameters representing temperature, rainfall patterns,
and atmospheric humidity were included, as these may
challenge the physiological tolerance of chickens. Soil
property variables were included as these could affect
food availability for scavenging birds. Vegetation and land
use variables were incorporated due to their potential
effects on the type of food chickens have access to, as
well as their role in providing shelter from predators
and inclement weather. Figure 3A shows the relative
contribution of these variables in explaining Ethiopian
chicken agro-ecologies and marks the most important
uncorrelated variables selected by MaxEntVariableSelection
for final modelling. ENM’s ability to examine individual
variable contribution is extremely important for gaining
insight into which variables may play key roles in driving
adaptation. Shortlisting of the variables on the other hand
is important to avoid “overfitting” of the models and to
remove collinearity from the model predictors that can
otherwise increase model uncertainty and reduce efficiency
(De Marco Júnior and Corrêa Nóbrega, 2018).

Figure 3B compares the partitioning of the populations
based on the six key environmental factors selected by
ENM to FAO/IIASA AEZ classification. Some populations
clustered together in the PCA plot are from different
FAO/IIASA AEZs (e.g., Kido from the cool-arid zone and
Gesses from the warm-semiarid zones or Bekele Girissa and
Shubi Gemo from the cool-subhumid and Jarso, Hadush
Adi and Mihquan from the cool-semiarid zones). Others
from the same AEZ are far apart in the PCA plot. For

2 https://www.yieldgap.org/ethiopia
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FIGURE 1

A framework for defining livestock ecotypes based on ENM approach and exploring genomic adaptation to the environment.
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FIGURE 2

Ethiopian agro-ecological zones and sampling locations. (A) Population locations against Global 16-Class AEZ classification (courtesy of Gheyas
et al., 2021), and (B) population locations against the elaborate agro-ecological zonation by MoARD. A1, hot arid lowland plains; A2, warm arid
lowland plains; A3, tepid arid mid highlands; SA1, hot semi-arid lowlands; SA2, warm semi-arid lowlands; SA3, tepid semi-arid mid highlands;
SM1, hot sub-moist lowlands; SM2, warm sub-moist lowlands; SM3, tepid sub-moist mid highlands; SM4, cool sub-moist mid highlands; SM5,
cold sub-moist mid highlands; SM6, very cold sub-moist mid highlands; M1, hot moist lowlands; M2, warm moist lowlands; M3, tepid moist mid
highlands; M4, cool moist mid highlands; M5, cold moist sub-afro-alpine to afro-alpine; M6, very cold moist sub-afro-alpine to afro-alpine;
SH1, hot sub-humid lowlands; SH2, warm sub-humid lowlands; SH3, tepid sub-humid mid highlands; SH4, cool sub-humid mid highlands; SH5,
cold sub-humid sub-afro-alpine to afro-alpine; SH6, very cold sub-humid sub-afro alpine to afro-alpine; H2, warm humid lowlands; H3, tepid
humid mid highlands; H4, cool humid mid highlands; H5, cold humid sub-afro-alpine to afro-alpine; H6, very cold humid sub-afro-alpine; PH1,
hot per-humid lowlands; PH2, warm per-humid lowlands; PH3, tepid per-humid mid highland; WB, waterbody.

FIGURE 3

Environmental variables used in ENM for characterising Ethiopian chicken agro-ecologies. (A) Relative contribution of the 34 agro-climatic
variables examined in Ethiopian chicken agro-ecologies. Asterisks mark the variables that were shortlisted for final modelling. (B) PCA plot of
populations based on six shortlisted variables. The colour coding shows the population classification based on Global AEZ-16. Arrow direction
shows the contributing variables in spreading the samples and arrow length indicates relative contribution.

example, 14 of the 25 populations belonging to the broad
cool-subhumid AEZ are split into 3–4 major clusters (e.g.,
Loya, Alfa Midir, and Ashuda, with different environmental
parameters playing key roles in their habitat structures). This
signifies the importance of ENM in characterising the agro-
ecologies and identifying the key environmental drivers in
population habitats.

Ecological niche modelling
characterises Ethiopian village chicken
agro-ecologies

As described in section “Materials and methods,” MaxEnt
models were executed first on all populations combined and
then on individual populations using the six selected variables
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and the best parameter settings. The predictive power of all the
models, as assessed by AUC (area under ROC curve) values,
were high (>0.99) for both training and test data. Similarly,
the AUC values for the individual environmental variables for
each population were generally higher than 0.6, with several
exceptions, like bio6 (minTemp) and bio15 (precSeasonality),
which in some populations had values less than 0.6 but greater
than 0.5, which still represent moderate potential in predicting
suitable conditions (Supplementary Table 2).

The combined analysis of populations allowed assessment of
the effect of individual variables on the predictive power of the
model (Figure 4). The jackknife result of test and training gains
is an important metric for assessing variable contribution and
model performance (Figures 4A,B). Jackknife results indicated
that, in our model, bio6 (minTemp), bio16 (precWQ), LandUse,
and soilOrgC were the variables that had the most useful
information when used in isolation of other predictors. On
the contrary, bio15 (precSeasonality) decreased the gain most
when excluded from the analysis, indicating that this variable
contained the most information that was not present in any
other predictors.

We also inspected the marginal response curves (Figure 4C)
from the overall model to examine how the predicted suitability
varies as each environmental variable changes while keeping all
the other variables at their average sample value. The curves for
minTemp and LandUse show that the probability of suitability
decreases with rise in these parameters. On the other hand, when
precSeasonality and soilOrgC increase, the likelihood of chicken
presence increases. For precWQ, the response curve drops
sharply with increase in the variable’s value until 600 mm/m2

but then rises sharply again, indicating its potential interaction
with other environmental variables. In contrast, the likelihood of
chicken presence increases when precipitation in precDQ rises
to 90 mm/m2 and drops slowly until 200 mm/m2.

In the combined population model, the contributions
of the six variables ranged between 10% for LandUse and
24% for SoilOrgC. The remaining 66% of contributions
came from climatic variables: minTemp (21%), precWQ and
precSeaonality (both 16%), and precDQ (13%). The relative
contributions of the variables in different populations, however,
varied widely as shown in Supplementary Figure 1 and
not all variables contributed to the characterisation of every
population agro-ecology. Supplementary Figure 2 shows the
environmental suitability maps for individual populations
across the Ethiopian landscape.

Delineating ecotypes based on niche
similarity

Pearson correlation (r) and Niche Overlap (I) statistics
were generated by pairwise comparison of the suitability maps
for clustering the populations with similar niche for defining

ecotypes (Supplementary Tables 3a,b). These two metrics
provide complementary information. The Niche Overlap metric
is a measure of similarity of occurrences between two
populations. In contrast, correlation statistic compares the
underlying models (Warren and Seifert, 2011). The correlation
metric is generated by comparing all corresponding grid cells
between two maps. On the other hand, the Niche Overlap
statistic only checks for the proportion of overlap of grid cells
that were predicted as suitable (i.e., with logistic suitability
score = 1) between two maps. In our study, the results of these
two metrics were significantly correlated (Spearman correlation
coefficient = 0.6; P < 0.0001).

Among the different hierarchical clustering approaches
evaluated, the Ward method was selected as it had the largest
agglomerative coefficient (0.746). Clustering of the populations
based on the above two similarity metrics showed different
overall topography (Figures 5A,B). For delineating ecotypes,
we considered the clustering based on one or both approaches
as a guide but the definitive criterion was that all pairwise
comparisons within an ecotype showed niche overlap (I) ≥ 0.6
and correlation co-efficient (r) ≥ 0.6.

Both approaches grouped identically 16 out of the 25
populations. Consistent clusters were: (1) Amesha Shinkuri,
Gafera, Surta, and Batambie; (2) Ashuda and Dikuli; (3) Bekele
Girissa and Shubi Gemo; (4) Gesses and Kido; (5) Kumato and
Loya; (6) Hugub and Jarso; and (7) Hadush Adi and Mihquan.
The first five clusters were used to define individual ecotypes
whereas the last two clusters were merged into a single ecotype,
as both niche similarity matrics fulfilled the criterion of ≥0.6 for
all population pairs after merging.

For the remaining nine populations, an examination of
(r) and (I) values was performed to resolve their ecotype
membership. Only three populations – Arabo, Metkilmat,
and TzionTeguaz – could not be grouped with any other
populations and hence were considered as separate ecotypes.
Thereby, 12 ecotypes were identified for the 25 populations
studied (Figures 5C,D), reflecting the large heterogeneity
of the Ethiopian agro-ecological landscape. Notably, even
though many populations belong to the same broad AEZ,
multiple ecotypes were delineated from them based on
ENM, e.g., the cool/sub-humid zone overlaps ecotypes E1–
5 and E7 (Supplementary Table 1). Contrarily, populations
in E6 originate from two broad AEZs – cool/semi-arid and
warm/semi-arid. Although in most cases, geographically close
populations were clustered into ecotypes (E1–E3, E5, E7–
E9), that did not hold true in all cases. For instance, the E4
populations – Adane and Horro – are far apart geographically
(∼300 km). Similarly in E6, Mihquan and Hadush Adi
populations are geographically close (∼40 km) but are far from
Hugub and Jarso (∼570–660 km). In contrast, Adane and Arabo
are geographically close (∼10 km) but were placed in separate
ecotypes. These results demonstrate the large heterogeneity
in environmental conditions in Ethiopia even within a short
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FIGURE 4

Predictive powers of individual environmental variables in ENM. Results from the combined model based on all 25 populations using 6 selected
environmental predictors showing (A) Jacknife of training gains for models with or without a variable, (B) Jacknife of test gain for models with
or without a variable, and (C) marginal response curves for individual variables. The X-axis in the response plots shows the environmental values
and Y-axis shows the logistic output for probability of presence.

geographic distance, and thereby shows the importance of
ENM-based characterisation of agro-ecologies. The relative
contributions of the 6 environmental variables in the 12 ecotypes
are presented in Supplementary Figure 3.

Genomic analyses identify candidate
selective sweep regions within
ecotypes

About 14M autosomal SNPs detected in Gheyas et al. (2021)
were used for selection signature analyses in the present study.
Genetic variant data from all populations constituting each
ENM-defined ecotype were combined, resulting in 11M to
13M SNPs per ecotype. Selection signature analyses were then
performed within each ecotype using Hp and iHS approaches.

The genome-wide mean values of Hp were similar across all
the ecotypes, ranging from 0.29 ± 0.06 for E7 and 0.33 ± 0.05
for E10 (Table 1). However, the number of Hp candidate
windows varied widely from only 7 for E7 to 279 for E10.
Adjacent or overlapping candidate windows were merged to
define the SRs. This resulted in 2 to 77 SRs per ecotype and a
total of 365 regions from all ecotypes combined (Table 1 and
Supplementary Table 4).

The genome-wide mean values of iHS were also similar
among the ecotypes, ranging from 0.75 ± 0.5 (E11) to 0.81 ± 0.4
(E9) but again the number of candidate sweep windows showed
large variation, ranging from 58 (E6) to 549 (E11) (Table 1).

Interestingly, although E10 produced the largest number of
candidate signals with Hp analysis, this ecotype produced
one of the lowest number of candidate windows (only 81)
with iHS analysis. Merging the overlapping candidate iHS
windows resulted in 24–196 SRs in different Ecotypes (Table 1).
A complete list of unique SRs (n = 1,056) from both methods
can be found in Supplementary Table 4 along with overlapping
genes. The SRs vary in size from 20 to 360 kb and together cover
roughly 4% of the chicken genome.

Shared sweeps between methods and
among ecotypes

We found a weak negative correlation between Hp and
iHS (−0.043 ± 0.06, P-value = 0.00), and ZHp and iHS_std
(−0.18 ± 0.06, P-value = 0.00) values (Supplementary
Figures 4a,b). This shows a complementarity of the methods,
which is expected as Hp identifies regions that are fixed
or near fixation (Rubin et al., 2010), whereas iHS detects
ongoing selection (Voight et al., 2006). Despite this, we
found a few SRs (n = 17) which were commonly detected
by both methods either within the same ecotype (n = 8)
or from different ecotypes (Supplementary Table 5 and
Supplementary Figure 5). Regions commonly detected by
both methods within the same ecotype would indicate it
is close to reaching fixation but not yet fixed. In contrast,
the same SR detected by Hp in one ecotype and iHS
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FIGURE 5

Delineation of ecotypes based on niche similarity among 25 Ethiopian chicken populations examined. (A) Dendrogram and heatmap of pairwise
Pearson correlation (I) among 25 populations; (B) dendrogram and heatmap of pairwise niche overlap statistic (r) among 25 populations; (C) 12
delineated ecotypes and their population composition; and (D) suitability maps of 12 delineated ecotypes.

in another, may pinpoint different levels of selection in
different ecotypes.

The percentage of shared sweep windows among ecotypes
varied from 1 to 13% (Supplementary Figure 6). E11 generally
showed the lowest level of shared sweeps (1–2%) with any other
ecotypes whereas E3 generally shared the largest proportion
with many other ecotypes (e.g., it shared 10–13% of its sweep
windows with five other ecotypes).

We also investigated the shared SR genes among ecotypes.
About 22% (n = 125) of the genes overlapping Hp-based
SRs were shared by at least two ecotypes (Supplementary
Table 6a). The TSHR (Thyroid Stimulating Hormone Receptor)
gene was detected ubiquitously in all ecotypes. This gene
has previously been detected as a selection signal (Rubin
et al., 2007; Gheyas et al., 2015), and therefore represents an
old sweep possibly associated with chicken domestication
(Rubin et al., 2007; Karlsson et al., 2016). Several other
Hp candidate genes were detected in the majority of the

ecotypes, e.g., ENSGALG00000047413 (11 ecotypes) and
ENSGALG00000052351 (10 ecotypes) – both LncRNAs with
possible cis-acting regulation on nearby genes (e.g., TSHR and
FUT8, respectively), TSNARE1 (9 ecotypes) and SCN2A (8
ecotypes) – both neurobehavioral genes, and CACNA2D3 (7
ecotypes) with voltage-gated calcium channel activity regulating
ion transmembrane transport. In comparison to the Hp analysis,
only 10% (122 of 1,180) of the iHS-genes were shared by 2 to 5
ecotypes at most (Supplementary Table 6b).

Candidate sweeps are related to
diverse biological functions and
phenotypes

Genes overlapping the SRs from different ecotypes were
checked for their functional classification according to Panther
Pathways (Supplementary Figure 7). Although only 1,253
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TABLE 1 Genome-wide pool heterozygosity (Hp) and integrated haplotype score (iHS) for the 12 proposed chicken ecotypes in Ethiopia.

Pool heterozygosity (Hp) statistics Integrated haplotype score (iHS) statistics

Ecotype No. of
samples

Mean±

SD
No. of

candidate
windows*

No. of
sweep
regions$

Mean±

SD
No. of

candidate
windows*

No.
sweep
regions$

Common
overlapping
candidate
windows

E1 37 0.30 ± 0.05 108 (14) 37 0.813 ± 0.36 191 (67) 44 0

E2 20 0.31 ± 0.05 115 (22) 35 0.797 ± 0.40 243 (161) 57 4

E3 20 0.32 ± 0.05 250 (59) 64 0.804 ± 0.38 132 (56) 33 8

E4 16 0.31 ± 0.05 127 (9) 30 0.809 ± 0.39 98 (54) 29 0

E5 20 0.31 ± 0.05 146 (30) 39 0.816 ± 0.40 420 (178) 83 7

E6 43 0.30 ± 0.05 167 (38) 49 0.811 ± 0.33 58 (35) 24 9

E7 20 0.29 ± 0.06 7 (0) 2 0.788 ± 0.39 205 (130) 47 0

E8 18 0.30 ± 0.06 64 (8) 13 0.808 ± 0.41 264 (144) 65 1

E9 19 0.32 ± 0.05 267 (70) 63 0.818 ± 0.41 441 (263) 85 12

E10 10 0.33 ± 0.05 279 (65) 77 0.815 ± 0.40 81 (44) 28 0

E11 10 0.31 ± 0.06 59 (20) 18 0.752 ± 0.50 549 (435) 196 0

E12 10 0.32 ± 0.06 141 (38) 37 0.791 ± 0.43 159 (102) 52 0

*Unique ecotype specific windows. $Candidate (sweep) regions were determined after merging overlapping or adjacent windows.

genes (∼5% of all chicken genes) intersected SRs from
different ecotypes, they showed a hit for 55% (98 of 177)
of the Panther pathways, indicating their involvement in
a vast array of physiological processes. About 77% (75 of
98) of these pathways are represented by SR genes from
multiple ecotypes but the number of genes contributed by
the ecotypes varied. A few pathways are represented by
genes from all or most ecotypes. For instance, Alzheimer
disease-amyloid secretase pathway (P00003), and Heterotrimeric
G-protein signalling pathways (P00026 and P00027) had hits
from all 12 ecotypes with representation by 1–6 genes
per ecotype. Similarly, Integrin signalling pathway (P00034)
and PDGF signalling pathway (P00047) have hits from 10
different ecotypes. Investigation of the individual genes from
these ubiquitous pathways shows involvement in a myriad
of biological processes, but prominently in processes which
are expected to be necessary for the survival of scavenging
chickens, irrespective of ecotypes; for instance, roles in
nervous system development, neurological processes and/or
cognitive functions (APBA2, MAPK6, MAPK13, MAPK14,
PCSK2, CACNA1C, BACE2, PKN2, GPSM1, MTNRIB, DRD3,
HRH1, GRM5, GRB2, CRKL, MAP2K2, MICALL1, NTN4,
RND2, FOS, MTOR, PRKAR2B, and DLC1); eye development,
visual perception, and visual learning (MTNRIB, GRK7,
DRD3, HRH1, and COL5A1) – important for foraging for
food; immune response, inflammatory response, and wound
healing (MAPK14, RASGRP1, GRB2, HRH1, CREB3L3, CHUK,
CRKL, FOS, and MTOR); and apoptotic process (MAPK14,
PKN2, DRD3, ACTN1, VAV2, and DLC1) – an important
stress response (Kawamata et al., 1998; Chen et al., 2017;
Yan, 2017; Huentelman et al., 2019; Asih et al., 2020;

Genecards Database, 2021; Uniprot Consortium, 2021). Other
notable involvements include regulation of cardiovascular and
renal development and functions (CACNA1C, VAV2, MAPK14,
DLC1, PCSK2, COL5A1, CRKL, MTOR, PRKAR2B, DRD3,
NTN4, RND2, and ADCY2) (Uniprot Consortium, 2021).

About 12% (n = 128) of the SRs overlapped with known
chickens QTLs (Figure 6 and Supplementary Table 7),
indicating potential association with different phenotypic traits,
e.g., reproductive efficiency (n = 28 hits), egg quality (n = 21),
growth (n = 20), feather pecking behaviour (n = 14), feed
conversion efficiency or FCR (n = 12), immunity and health
(n = 11), body fat (n = 10), body temperature (n = 4), feed intake
(n = 4), and feather pigmentation (n = 4).

Finally we closely inspected the strongest signalling SR from
each ecotype to see if a functional relevance can be drawn
between the overlapping genes and the ecotype’s environment
(Supplementary Tables 8a,b). Strikingly, in most cases a strong
relevance is observed through the involvement of the genes in
various stress responses, neuronal processes, immune responses
and transcriptional regulations. The environmental association
of the gene functions is more prominent for ecotypes where only
a few environmental variables act as major driving forces. E7
perhaps offers the most striking example where the minTemp
contributes ∼99% in characterising the ecotype’s agro-ecology.
This ecotype has the lowest temperature environment (as low as
near 0

◦

C) due to its very high-altitude location (>3,000 m.a.s.l.).
The strongest iHS-sweep from this ecotype overlaps several
genes: TEAD3 – involved in organ size control (and therefore
may have a crucial role in determining the size of heart and
lung for maximising oxygen utility at high altitude); TULP1 –
has photoreceptor function (possibly important for adaptation
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FIGURE 6

Overlap of the sweep regions from Hp and iHS analyses with chicken QTLs.

to intense light and UV radiation stress at high altitude);
and FKBP5 – an important modulator of stress response
(including acute stress) due to its crucial role in the regulation
of the hypothalamic-pituitary-adrenal (HPA) axis. Similarly, in
E2, with minTemp contribution of 76%, the strongest iHS-
sweep overlaps the DDIT3 gene which is a multifunctional
transcription factor in endoplasmic reticulum and plays an
essential role in the response to a wide variety of cell stresses.

We also find genes AGO4 and CLSPN from E9 and
SCARNA7 and TRIM59 from E10 iHS-SRs; both ecotypes with
a major environmental contribution from precSeasonality (84
and 80%, respectively). These ecotypes show major variation
in rainfall between dry (∼10 mm/m2) and wet seasons
(>400 mm/m2). AGO4 is involved in the gene silencing pathway
and has been found upregulated during drought conditions
in plants, CLSNP is involved in DNA repair, SCARNA7 has
role in RNA methylation (and thereby has modulatory effect
on expression of genes) and TRIM59 is involved in innate
immunity. In ecotypes where multiple environmental variables
have large contributions, we find genes involved predominantly
in nervous system development/processes and transcriptional
regulation, possibly to facilitate a concerted regulation of a wide
variety of physiological functions.

While the above examples show genes from iHS analysis,
the strongest Hp-based SRs were often detected from many
ecotypes, possibly representing old sweeps. For instance, the
strongest signals from E1–E3, E5–E7, and E10 overlapped with
either the TSHR gene or its linked gene, GTF2A1. For some
other ecotypes, we find genes involved in neurological processes
(e.g., EFHC2 in E8 and BEGAIN in E9) and immune system
development (CACNA2D3 in E12). The strongest Hp-signal
from E4 overlaps with several genes: GRK7 – with a role in

visual perception, RNF7 – involved in protein ubiquitination
pathway and response to redox state, and ATPIB3 which
serves as an ion pump across the plasma membrane that is
essential for transepithelial transport including nutrient uptake.
These genes appear highly relevant for adaptation to the
major environmental drivers of the E4 ecotype – LandUse
(49%) and SoilOrgC (43%), with both serving as proxies
of food availability for scavenging chickens which require
the ability to find food and assimilate available nutrients
(Gheyas et al., 2021).

Redundancy analysis associates
candidate sweeps with agro-climatic
variables

As a multivariate linear regression approach, RDA allows
simultaneous interrogation of many response variables
(SNP genotypes) with many predictors (environmental
variables) (Capblancq et al., 2018). RDA was performed using
44,716 LD-pruned SNPs (∼9% of the total number of SNPs)
overlapping the SRs.

The RDA model showed highly significant (P-value = 0.001)
deviation from the null hypothesis (no linear relationship
between the SNP data and the environmental predictor). The
model explained 1.9% of the genetic variance indicating that
only a small proportion of the SR-SNPs have an association with
environmental parameters. Each of the six RDA axes explained
10–30% of the variance captured by the model (Figure 7A).
Only the first five axes were significant (P-value ≤ 0.01), and
these together accounted for 90% of the total captured variance.
The SNP loadings (Figure 7B) from these 5 axes were used
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FIGURE 7

Results from RDA analysis. (A) Projection of SNPs and environmental variables into the RDA space RDA1–RDA2 and (B) RDA1–RDA3; (C)
variance (inertia) explained by the six RDA axes; and (D) distribution of SNP loadings for significantly constrained axes (RDA1–RDA5).

to determine outliers, i.e., SNPs showing significant association
with environment.

Redundancy analysis plots show the distribution of the
chicken samples from different ecotypes in relation to the
RDA axes which are a linear combination of the predictor
variables (Figures 7C,D). Some interesting relationships can be
identified. For example, Figure 7C (axis1 vs. axis2) shows that
E1 genotypes are positively related to precDQ and LandUse,
whereas E3 and E8 are negatively correlated with these two
variables. Similarly, E12 genotypes are positively correlated with
minTemp and negatively correlated with precWQ, whereas

an opposite scenario for E7 is observed. By contrast, E9
individuals are positively associated with LandUse in Figure 7D
(axis1 vs. axis3).

Interestingly, individuals from E6 are dispersed in
subgroups in both RDA plots. E6 comprises four different
populations (Mihquan, HadushAdi, Hugub, and Jarso), and this
is indeed one of the few ecotypes where the clustering based on
niche overlap and Pearson correlation gave ambiguous results.
These populations were included in the same ecotypes as all
pairs showed values ≥0.6 for both the similarity metrics. For
other ecotypes, no sub-clustering is evident when RDA plots
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are explored, confirming the overall robustness of our ecotype
delineation. Regarding the E6, however, we need to keep in
mind the limitation of RDA, which can capture only linear
association between genotype and environment. Therefore,
in showing the distribution of the samples in the ordination
space, RDA did not consider any non-linear association due
to G × E interaction. ENM, on the other hand, is blind to
any specific genotype-environment association; instead its
characterisation is entirely dependent on the environmental
conditions of the populations with the assumption that similar
environmental pressure will lead to similar selective pressure on
the genome. ENM-based ecotype characterisation is therefore
expected to capture selective pressure from all sources (linear
and non-linear).

Given a normal distribution of the SNP loadings in all axes
(Figure 7B), SNPs that exceeded SD >3 (P-value = 0.0027) in
both tails were extracted as outliers. With this threshold, 616
SNPs (1.4% of total 44,716 SNPs tested) were found as outliers
(Supplementary Table 9). The number of outliers varied in
relation to the strongest correlated environmental variable, from
72 for precSeasonality to 130 for SoilOrgC. The strength of
the environmental correlation of the outlier SNPs was generally
low to moderate (r ≈ 0.1–0.4) (Supplementary Figure 8). The
maximum correlation value was 0.42, identified for precWQ.

To gain an understanding of the biological functions of
the genes associated with the outlier SNPs in relation to the
correlated variables, a closer investigation was made on 30
RDA-outliers – which showed relatively large environmental
correlation coefficients (r ≥ 0.3 for most predictors and ≥0.29
and ≥0.28 for PrecDQ and LandUse respectively as no outliers
for these passed the first threshold) (Table 2). Notably, all
these SNPs came from iHS-detected SRs. Highly relevant gene
function or phenotypic associations are observed in most
cases. For example, PANK2 gene was detected in association
with minTemp (or elevation). This gene is involved in
neuronal and vascular development and respiration – important
functions for thermo-tolerance and stresses at high-altitude.
Two genes, LDLRAD3 and GPX7, detected in association with
precipitation variables (precSeasonality and precDQ), were
previously reported in association with heat stress in chicken
(Del Vesco et al., 2015; Wang et al., 2020). These results are
in agreement as the ability to cope with heat stress relies not
only on the water availability but also on the environmental
humidity – both factors being affected by rainfall patterns. GPX7
has also been found associated with drought resistance in plants
(Cruz de Carvalho, 2008). LDLRAD3, in our study, has also been
detected in association with SoilOrgC – a proxy of scavenging
conditions and food availability for chickens. Interestingly this
gene has been found associated with lifespan expansion in a
previous mouse study (Tyshkovskiy et al., 2019).

In association with precipitation variables we also find
several genes which are candidates for disease response,
e.g., MAPK4 – a candidate for Salmonella resistance in

chicken, LDLRAD3 – associated with Newcastle Disease Virus
infection in chicken, and TNIP2 – involved in immunity
and inflammatory responses (Table 2). Since the rainfall
pattern affects the prevalence of various pathogens, these
detections appear very relevant. Furthermore, some genes
detected in association with climatic factors (i.e., temperature
and rainfall variables) are involved in broad regulatory and
stress response pathways such as MARCHF6 and DET1 –
protein ubiquitination and degradation pathways, LRP6 – Wnt
signalling pathway, ERGIC3 – Endoplasmic Reticulum stress
induced cell death and cell growth process, CTBP1 – co-
repression of diverse transcription regulators, and RDH10 –
Retinoid (Vitamin A) metabolic process with implications in
many physiological processes including growth, development,
immune system, and reproduction. On the contrary, the genes
detected in association with SoilOrgC and LandUse (both
potentially affect the nature and availability of food for foraging
chickens as well as their foraging ability) show involvement
in fat and carbohydrate metabolic processes (LMF1, ADCK1,
SLC2A6, and OSBPL3), growth, development and reproductive
success (GPCPD1, NHLRC2, and THSD7B), and neurological
development (PTPRZ1, AUTS2, and NPAS3).

The 616 RDA outliers intersected 349 SRs (33%), thereby
providing indication of the major environmental variables
exerting selection pressure on these specific SRs. The overlap
of only a minority of SRs with the RDA-outliers can be
explained by the fact that RDA identified only linear genotype-
environment association across all samples. Any SR resulting
from a complex G × E interaction – thereby showing non-
linear association – will not be detected by RDA. Outlier SNPs
associated with all six environmental variables overlapped SRs
from most ecotypes, confirming the combined contribution
of different variables in each ecotype and thereby justifying
the use of ENM for ecotype delineation and adaptation
analysis. Also, some of the SRs overlap with several outliers
associated with different agro-ecological variables. For instance,
the SR on chr1:132930000_132960000 overlaps with RDA-
outliers associated with SoilOrgC, minTemp and precDQ. This
indicates that we are detecting the interaction of environmental
variables that are collectively driving selection pressure on
specific genomic regions. Such observation again highlights
the importance and utility of using ENM-defined ecotypes for
adaptation analysis.

Regressing ecotype allele frequency of
redundancy analysis-outliers with
environmental predictors shows
non-linear trends

The RDA analysis was performed to directly correlate
SNP genotypes from individual samples with environmental
parameters, without considering the ecotype effect. We wanted
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TABLE 2 Selected RDA SNPs outliers overlapping protein-coding genes.

Outlier SNP Gene Ecotype* Gene function/association References

MinTemp

4:88536330 PANK2 E11 Neuronal and vascular development; aerobic respiration Uniprot; Zizioli et al.,
2016

2:78280162 MARCHF6 E10 Involved in protein ubiquitination pathway; metabolic integrator in cholesterol
synthesis

Scott et al., 2021

PrecSeasonality

1:71668364 LRP6 E2 Involved in Wnt signalling pathway Chao et al., 2019

10:9402417 MAPK4 E11 Found associated with early body temperature and Salmonella pullorum resistance in
chickens

Li et al., 2020

4:84643310 CTBP1 E11 Co-repressor targeting diverse transcription regulators Uniprot

5:19554343 LDLRAD3 E12 Association with heat stress and Newcastle Disease Viral (NDV) infection in chicken Jastrebski et al., 2017;
Wang et al., 2020

precWQ

2:117749087 RDH10 E2 Retinoid (Vitamin A) metabolic process Uniprot; D’ambrosio
et al., 2011

10:13599109 DET1 E11 Protein ubiquitination and degradation; associated with salt and osmotic stress in
plant

Uniprot; Fernando et al.,
2018

21:4353990 FBXO42 E8 Protein ubiquitination and degradation Uniprot

4:3627776 HS6ST2 E10 Associated with growth and carcass traits in chicken. Wang et al., 2019

4:82439583 TNIP2 E11 Involved in stress-activated MAPK cascade and immune and inflammatory response.
Detected in Ugandan chicken ecotypes in association with environmental stress.

Uniprot; Fleming et al.,
2016

precDQ

1:197483358 DCHS1 E7 Neurogenesis, cardiac valve formation Uniprot

20:1187011 ERGIC3 E4, E7 Cytoplasmic transport protein; plays role in ER stress-induced cell death and in cell
growth.

Uniprot; OMIM

8:24798255 GPX7 E7 Cellular response to oxidative stress; found associated with heat stress in chickens
and livestock and draught stress in plants

Cruz de Carvalho, 2008;
Del Vesco et al., 2015;
Berihulay et al., 2019

19:1816989 AUTS2 E8 Neurological development Uniprot

SoilOrgC

1:23065714,
1:23140159,
1:23141490,
1:23164664

PTPRZ1 E7 Central nervous system development; associated with learning or memory Uniprot

5:19564424 LDLRAD3 E12 Associated with lifespan extension in mice Tyshkovskiy et al., 2019

19:1819556,
19:1830033

AUTS2 E8 Neurological development Uniprot

10:7190022 MYO1E E11 Intracellular movements and membrane trafficking Uniprot

19:1819556 LMF1 E8 Triglyceride metabolic process Uniprot

3:16891572 GPCPD1 E12 Skeletal muscle tissue development; differential expressed in modern pedigreed
broiler line compared to unselected broiler line

Kong et al., 2017

3:38560061 TARBP1 E6 Transcription regulation; tRNA methylation Uniprot

5:35557653 NPAS3 E7 Neurodevelopment; regulation of glucose metabolism Sha et al., 2012

5:39594296 ADCK1 E8 Involved in mitochondrial functions; lipid homeostasis Uniprot

6:28550216 NHLRC2 E12 Required for normal embryonic development Uniprot

7:30965068,
7:30967748

THSD7B E12 Candidate gene for albumin quality in chicken Qu et al., 2019

8:6198062 STX10 E12 SNARE protein involved in intracellular protein transport Uniprot

LandUse

17:7056075 GFI1B E11 Transcription factor with important role in regulation of hemopoiesis Uniprot

17:7239853 SLC2A6 E11 Regulation of glycolytic process; glucose transporter activity Uniprot

2:31712297 OSBPL3 E4 Regulates hepatic fat metabolism, involved in insulin signalling pathways Yan et al., 2007

*The ecotypes from which the SNPs originally overlapped with sweep regions.
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to further investigate how the ecotype allele frequencies of the
outlier SNPs fluctuate with the ecotype average of the correlated
environmental variables. The aim of this investigation was
to gain an insight into whether the allele frequency shows a
linear or non-linear trend with environmental variation. The
investigation was made on the 30 strongest RDA-outliers (5
per environmental variable) by fitting linear and non-linear
trend lines in scatter plots of allele frequency against ecotype
average of environmental variables (Supplementary Table 10).
Figure 8 shows scatter plots of five example SNPs (one for each
variable). These plots as well as Supplementary Table 10 show
that, in all cases, non-linear regression generated a larger R2

value, i.e., better fit to the data. This result corroborates our
assumption that ENM can capture complex G × E interaction
in delineating ecotypes.

Discussion

By integrating interdisciplinary approaches – ecological
modelling with genomics – this study presents a novel
framework for the identification and characterisation of
indigenous livestock ecotypes showing genetic adaptation
to distinct agro-climatic conditions. Exemplified here
with Ethiopian village chickens, the framework is fully
transferable to any other livestock species, with important
implications for conservation of adaptive biodiversity and
breeding improvement towards achieving climate resilience.
Unlike traditional adaptation studies, our approach directly
models landscape heterogeneity based on a large spectrum of
environmental variables, thereby providing the opportunity to
identify the key environmental pressures in livestock ecologies
as well as capture the complex interplay of major variables in
driving adaptive evolution at the genome level.

The benefits of our approach are visible at different levels.
First, our method offers an opportunity to classify otherwise
non-descript indigenous livestock populations into potential
ecotypes based on a detailed characterisation of their agro-
ecologies. As demonstrated in our results, classical AEZs
are often insufficient in classifying livestock populations into
ecotypes as those either lack resolution and precision or do
not reflect the most relevant environmental predictors for the
species in question. Contrarily, our method, based on ENM,
offers not only the resolution and species specificity but also
flexibility to incorporate any number of environmental variables
in the characterisation process.

Another major advantage of our approach is its ability
to capture complex interactions of many environmental
variables, including the G × E interaction in shaping
the livestock genome. This is possible through the use
of different feature classes during the execution of ENM;
e.g., we used three FCs: Quadratic (variance), Product
(covariance, i.e., captures interactions), and Hinge (linear

response) (Phillips and Dudík, 2008; Merow et al., 2013). The
consequence of this is reflected in selective sweep detection.
We find that even though the same variables may have a major
contribution in defining multiple ecotypes (e.g., E9 and E10 have
precSeasonality as the major driver with >80% contribution),
the same candidate sweeps were not detected (only 10% of the
candidate sweep windows are shared between these ecotypes),
indicating possible interaction of other drivers in shaping
adaptive evolution. Predicting G × E interaction is challenging
and failure to take this into consideration has resulted in poorer
performance of improved breeds in environmental conditions
different from their original performance setting (Wakchaure
et al., 2016). ENM-based characterisation of the agro-ecologies
offers an interesting opportunity to assess the most suitable
condition for any breed or population across a landscape. This
has recently been tried for predicting suitable agro-ecologies
for the introduction of exotic chicken breeds in Ethiopia
(Lozano-Jaramillo et al., 2018).

While most of the currently available methods of
environmental association analysis (EAA) in landscape
genomics – like RDA – capture only linear correlation between
genotype and environment (Rellstab et al., 2015), our approach
of integrating ENM with selective sweep analysis allowed
capture of both linear and non-linear genetic responses to
environmental pressure. That non-linear association plays a
major contribution in driving adaptive evolution is reflected
by the fact that we only detected a low to moderate level of
correlation in the RDA analysis and found only one-third
of the detected SR to overlap with RDA outliers. Moreover,
a basic inspection of the fluctuation of allele frequency of
RDA outliers with environmental variables (Figure 8 and
Supplementary Table 10) demonstrated a greater power of
non-linear regression in explaining variance compared to the
linear approach. Modelling non-linear response is not yet well
developed (Rellstab et al., 2015). The few available methods
allowing non-linear EAA include SAM (Joost et al., 2007) and
SAMβADA (Stucki et al., 2017), which apply logistic regression
methods. These methods only allow testing association of the
presence/absence of an allele with environmental variables
where interpretation of heterozygous genotypes becomes
difficult. Moreover, unlike RDA, these are univariate analyses,
allowing testing of only one genetic marker at a time, which
fails to account for covariation among environmental variables
and/or genetic markers (Capblancq and Forester, 2021).
Therefore, no attempt was made to apply non-linear EAA in
the present study.

In respect of genomic analysis, our approach has some
added benefits of reducing false discovery rate (FDR) from
the confounding effect of demography (e.g., genetic drift,
founder effect, etc.). This is because multiple populations have
been clustered together into most ecotypes, thereby increasing
heterogeneity across the genome, except around the loci under
selection pressure. To minimize FDR, we also employed a
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FIGURE 8

Allele frequency fluctuation of example RDA outliers with agro-climatic predictors (mean value) across ecotypes. One outlier (with the strongest
RDA r-value) per predictor is shown as an example.

stringent criteria for identifying sweep signals. Instead of taking
only the top 1% windows (empirical P-value < 0.01), as is
frequently applied in selection signature analyses, we employed
further filtration based on standardised score (or Z score) with
the same threshold applied to all ecotypes. This has resulted in

a large variations in detected candidate sweeps from different
ecotypes, indicating differential selection pressures.

The application of the proposed framework requires some
special considerations regarding the demographic history of
the livestock populations involved. In its current form it
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is applicable on indigenous livestock populations which are
raised in extensive farming practices and are not under
any systematic selection effort. However, unlike wild species,
livestock populations like chicken have undergone selection
following domestication, which would be reflected in their
genomes. Furthermore chicken in Africa is an imported
species. Since its introduction in Africa from Asia around a
few thousand years ago (Woldekiros and D’Andrea, 2017),
Ethiopian indigenous chickens have evolved to adapt to their
local agro-climatic conditions, although this timescale may not
be enough for complete fixation of the genomic regions under
adaptive selection. Moreover, the environmental conditions are
also constantly changing due to climate change and human
interventions, creating further dynamism in adaptive selection.
With these factors considered, we deployed two different
approaches (Hp and iHS) for detecting different types of
selection signatures. The Hp method was used to detect genomic
regions which have reached fixation or near fixation, potentially
due to strong selective pressures (either old, e.g., domestication-
related or relatively new), whereas the iHS method was applied
to identify recent ongoing selections which are yet to reach
fixation. As a proof-of-concept our study highlighted the
following: first, the TSHR gene, which is considered an old sweep
and possibly associated with the chicken domestication process
(Rubin et al., 2007; Karlsson et al., 2016), was ubiquitously
detected in all the studied ecotypes by the Hp method. Secondly,
the major RDA outlier SNPs came from iHS-detected SR,
indicating their linear environmental association across all
ecotypes. This is congruent with the effect of ongoing selection
under changing environment.

Notably, the candidate genes detected in the present
study has little overlap with those detected in our previous
study (Gheyas et al., 2021) although both used the same set
of populations for environmental adaptation analyses. The
major reason behind this is that the two studies differed in
their focus and scope. In our previous study, the selection
signatures were detected by comparing extreme populations
for different environmental parameters (e.g., high temperature
vs. low temperature), so that the identified candidates can be
targeted in breeding programmes in relation to these specific
environmental variables either via marker-assisted selection or
gene editing. Multiple populations were combined in each High
and Low groups to minimize spurious signals from population
effect or from other environmental factors. Contrarily, the main
focus of the current study is to consider all key environmental
drivers together and assess their combined effect on genome,
so that ecotypes can be delineated and conserved/managed
effectively. The current analysis can, therefore, capture the
complex interplay of many environmental factors in modulating
adaptive response at genome level and G × E interactions.
Contrary to the previous study, which used Fst and XPEHH to
capture differential selection, the present study applied Hp and
iHS for detecting within-ecotype signatures.

One of the limitations of our study is that we only
used chicken populations that were available to us. Although
the sampling was performed to represent major Ethiopian
AEZs, no specific environmental-gradation approach was
applied to inform the sampling, as has been done in a
recent paper by Kebede et al. (2021). Consequently, though
fully valid, our study may not have surveyed all possible
agro-climatic clines and the ecotypes presented here may
not be an exhaustive list from Ethiopia. Another potential
shortcoming of our approach may arise from gene flow among
ecotypes which may weaken adaptive advantage. For indigenous
livestock species – with limited mobility – gene flow would
generally be restricted among geographically close populations,
which are also likely to be clustered together under the
same ecotype due to their environmental similarity; in such
cases gene flow is not an interference for local adaptation.
However, gene flow among distant populations or ecotypes
may still occur due to human interventions, which will weaken
the genomic signatures of adaptation and our method will
fail to detect them.

Although our study has considered a large array of
environmental data, it could not incorporate some other
potentially important drivers of adaptation, e.g., pathogenic
or parasitic data, due to lack of publicly available data
on such prevalence. Our approach, however, offers the
exciting opportunity for such inclusion in future analyses.
Indeed by integrating ecological concepts with genomics,
our method opens up opportunities for interdisciplinary
research. This approach can be employed to study
the impact of climate change on indigenous livestock
populations or to predict disease pre-disposition based
on environmental conditions. This methodology will
therefore have important implications for sustainable
farming through climate resilience and conservation
programs oriented to small-holder farmers, relying on local
ecosystem production.
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