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Ecological stability depends on interactions between different levels of biological
organization. The insurance effects occur when increasing species diversity leads to
more temporally invariable (i.e., more stable) community-level properties, due in part
to asynchronous population-level fluctuations. While the study of insurance effects
has received considerable attention, the role of dominant species that contribute with
particular functional traits across different level of organizations is less understood.
Using a field-based manipulative experiment, we investigated how species richness
and different types of parameters at the population level, such as the invariability of
dominants, population invariability, and population asynchrony, influence the community
invariability. The experiment involved the repetitive removal of the canopy forming
alga Mazzaella laminarioides (hereafter “Mazzaella”) during 32 months in two rocky
intertidal sites of northern-central Chile. We predicted that the invariability of dominants
enhances community invariability, that the effect of multispecies population-level
parameters on community invariability are dependent on species richness, and that
subdominant algae are unable to fully compensate the loss of canopies of the dominant
species. Biomass of algae and mobile invertebrates was quantified over time. We
observed independent effects of Mazzaella removal and community-wide asynchrony
on community invariability. While canopy removal reduced community invariability,
population asynchrony boosted community invariability regardless of the presence of
canopies. In addition, filamentous and foliose algae were unable to compensate the
loss of biomass triggered by the experimental removal of Mazzaella. Canopy removal
led to a severe decrement in the biomass of macrograzers, while, at the same time,
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increased the biomass of mesograzers. Asynchrony stemmed from compensatory
trophic responses of mesograzers to increased abundances of opportunistic algae.
Thus, further work on consumer-resource interactions will improve our understanding
of the links between population- and community-level aspects of stability.

Keywords: canopy-forming species, facilitation, habitat loss, community stability, disturbance, understory
seaweeds, seaweed ecology

INTRODUCTION

Biodiversity loss represents a major disturbance impacting the
functioning of ecosystems worldwide (Hooper et al., 2012).
Stability encompasses multiple attributes or dimensions that
allow us to understand the ability of ecosystems to remain
relatively invariable over time in the face of environmental
disturbances (Grimm and Wissel, 1997; Tilman, 1999; Lehman
and Tilman, 2000; Donohue et al., 2016; Van Meerbeek
et al., 2021). These attributes can be assessed for aggregate
properties subsumed across populations in the community, such
as community biomass, productivity, metabolism, and carbon
storage among others (Yachi and Loreau, 1999; Tilman et al.,
2006; Loreau and De Mazancourt, 2008; Kéfi et al., 2019).
Since these properties support several ecosystems’ “good and
services” provided to society, understanding the stability of
ecosystems across ecological scales is relevant to predict negative
consequences of biodiversity loss for human welfare (Cardinale
et al., 2012; Loreau et al., 2021).

Among the multiple attributes of stability, invariability is a
key aspect because it reflects the magnitude of a community’s
response to unpredictable environmental changes (Pimm, 1984;
Grimm and Wissel, 1997; Tilman, 1999; Donohue et al., 2016; Van
Meerbeek et al., 2021). This metric can be estimated, for example,
as the inverse of temporal variation in an aggregate community
property like biomass or carbon storage (e.g., Tilman et al., 2006),
and integrates the whole recovery process of a dynamic system
exposed to disturbances (Arnoldi et al., 2016). Invariability (and
other stability dimensions) has been suggested to be strongly
related to the number of species in the community, partly
depending on the amplitude and asynchrony of population-
level fluctuations (Tilman, 1999; Stachowicz et al., 2007; de
Mazancourt et al., 2013; Gross et al., 2014; Kéfi et al., 2019; Kigel
et al., 2021). Particularly, species richness has an insurance effect
that allows dampening the effects of disturbances on populations,
maintaining relatively invariable community-level functions
(Yachi and Loreau, 1999; Langenheder et al., 2012; Haughey et al.,
2018). This buffering effect of richness involves the asynchrony
in the temporal fluctuations of populations abundances as the
result of competition and different population responses to
environmental fluctuations (i.e., “population asynchrony”): the
increase (decrease) in abundance of a certain populations can
be compensated by the decrease (increase) in the abundance of
others (Ives et al., 2000; González and Loreau, 2009; Leary and
Petchey, 2009; de Mazancourt et al., 2013). In this line, species-
rich communities usually include species with extreme functional
trait values, such as large body sizes (Loreau and Hector, 2001;
Polley et al., 2003). Consequently, these species can account for

a large proportion of the magnitude of aggregated properties
across the community, for example community biomass (Loreau,
2000). In addition, as species richness increases, the variance of
an aggregated community property becomes smaller than the
summed variance of individual populations (Doak et al., 1998;
Cottingham et al., 2001; van Ruijven and Berendse, 2005). Thus,
the responses of populations to environmental changes have
profound consequences for the invariability of the community as
a whole (Loreau, 2000).

Dominant species are those with the largest abundances in
the community and usually have a large direct contribution
to community biomass (Grime, 1998). Dominant species, such
as canopy-forming plants and algae, often possess complex
morphological structures and large body sizes, which can reduce
the magnitude and variability of abiotic environmental factors
underneath them. Canopy sheltering provides an ameliorated
physical environment for the recruitment and persistence of
a potentially diverse set of understory species (Bruno and
Bertness, 2001; Stachowicz, 2001; Miller et al., 2018). Therefore,
the population dynamics of dominant species can be expected
to impact the whole community dynamics (Paine, 1974;
Menge, 1976; Grime, 1998; Hillebrand et al., 2008). While the
large contribution of dominant’s demographic stochasticity to
community-level dynamics can reduce community invariability
(de Mazancourt et al., 2013), empirical evidence indicates
that larger dominant’s invariability leads to more invariable
community biomass (e.g., Grman et al., 2010; Sasaki and
Lauenroth, 2011). Therefore, dominant species are expected
to contribute to community invariability by enhancing species
richness, population invariability, population asynchrony, or the
interaction among these attributes (Lamy et al., 2020).

Marine intertidal rocky ecosystems provide an opportunity
to investigate the interdependent effects of dominant species
and population-level dynamics on community invariability.
For example, the experimental removal of dominant canopy
forming algae usually results in an increase in light and substrate
availability that allows opportunistic or rare species to spread
over primary substrata (Benedetti-Cecchi and Cinelli, 1993;
Stachowicz et al., 2008; Bertolini, 2018). Subordinate species, such
as branched or foliose algae, can become “alternative dominants”
that support the invariability of disturbed communities
(Bertolini, 2018). However, the expansion of subordinates may
be often a short-term and season-dependent response to the local
extinction of canopy forming algae (Stachowicz et al., 2008). In
these ecosystems, the constant movement of tides generates a
sharp increase of environmental stress from low to high intertidal
elevations—this stress is related to wide ranges of temperature,
irradiance, and desiccation, among other factors (Harley and
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Helmuth, 2003; Harley et al., 2006; Harley et al., 2012; Zwerschke
et al., 2013; Kordas et al., 2014; Kordas and Harley, 2016; Petraitis
and Dudgeon, 2020). Population responses to disturbances in
intertidal habitats (e.g., heat waves, swells) can be modulated
by, for example, ecological interactions (e.g., competition for
settlement space), the order of colonization in disturbed patches
(Benedetti-Cecchi et al., 1999; Berlow, 1999), colonization-
competition trade-offs (Sousa, 1979; Sousa, 1980; Underwood,
2000; Maggi et al., 2011), density-dependent recruitment, growth,
and survival (Underwood et al., 1983, Navarrete et al., 2005), and
strong consumer–resource interactions (e.g., Tejada-Martínez
et al., 2016; Aguilera et al., 2020). Anthropogenic impacts
also have profound effects on rocky ecosystems. For instance,
overexploitation of large herbivores (i.e., macrograzers like fish,
sea urchins, and large mollusks) has led to an increase in the
abundance of smaller consumers (i.e., small snails, amphipods,
and juvenile limpets collectively called as mesograzers), likely due
to competitive release (Moreno, 2001; Aguilera and Navarrete,
2012). These unbalances can have consequences on community-
wide invariability after the loss of habitat-forming canopies.
Populations of mesograzers can exert a strong consumptive
pressure on sessile species, particularly subordinate species like
filamentous and foliose opportunistic seaweeds (Poore et al.,
2012). The magnitude of such effects on seaweeds populations
can be similar or even larger than those of larger consumers
(Díaz and McQuaid, 2011). Therefore, consumer–resource
interactions can mediate the ability of subordinate species to
compensate the loss of larger canopies. Indeed, subordinate
species has been shown to be unable to achieve the level of
functionality of dominants (e.g., gross primary productivity or
biomass; Crowe et al., 2013). Therefore, subordinate species
might not compensate the community attribute provided by
the function of the otherwise dominant algae species (Crowe
et al., 2013; Filbee-dexter and Wernberg, 2018). Across marine
and terrestrial ecosystems, most studies on stability target one
level of organization, usually the community (Kéfi et al., 2019).
Thus, understanding the interplay of invariability across scales
of ecological organization can enhance our ability to predict the
functional consequences of biodiversity loss (Kéfi et al., 2019).

Here, we use a field-based manipulative study to analyze
invariability at two scales of biological organization: populations
and communities. We assess the associations among the
invariability of dominants, species richness, multispecies
population invariability and asynchrony, and community
invariability. We analyzed the dynamics of a temperate rocky
shore community disturbed by the experimental removal of
canopy-forming alga that dominates the mid intertidal shore.
We removed the corticated red alga Mazzaella in a species-rich
community of algae and mobile invertebrates (mostly grazers)
of northern-central Chile, where direct harvesting of algae
constitutes a common press disturbance. Canopy-forming
algae allow the persistence of populations of environmentally
sensitive species such as red and brown understory algae—which
are negatively affected by excessive solar radiation (Santelices
et al., 1981; Jara and Moreno, 1984; Steneck and Dethier,
1994)—and grazer gastropods that find shelter under the fronds
(Aguilera et al., 2013). Therefore, we analyzed population- and

community-level dynamics of the biomass of both algae and
grazers. We used a model selection approach to test the following
hypotheses:

(H1) Higher invariability of dominants enhances community
invariability,

(H2) greater population invariability and population
asynchrony enhance community invariability, but these
effects depend on mean species richness, and

(H3) subordinate species, as alternative dominants in
a disturbed community, are unable to compensate the
“stabilizing” role of the dominant canopy forming species
(see Table 1 for literature support).

MATERIALS AND METHODS

Study System
The experimental field study was carried out in two sites
separated by ca. 22 km on the wave-exposed rocky shores of
northern-central Chile (“Limarí” and “Punta de Talca”, ∼30◦43′
S and 30◦55′ S, respectively). In both sites, we assessed the effect
of the experimental extinction of the dominant canopy-forming
alga Mazzaella on community invariability. This red corticated
alga inhabits the mid and low intertidal rocky shore between
Coquimbo and Punta Arenas (Hoffmann and Santelices, 1997;
Montecinos et al., 2012). Mazzaella can be highly dominant, with
canopies covering up to ∼65% of secondary space (Santelices,
1990; Hoffmann and Santelices, 1997; Valdivia et al., 2021).
The thallus can reach near to 30 cm in maximum length
and the thick fronds can ameliorate environmental conditions
beneath them (Hoffmann and Santelices, 1997). Particularly in
our study sites, common sizes range from 5 to 15 cm in length
(Supplementary Figure 1).

Direct harvesting of Mazzella constitutes a strong
anthropogenic disturbance that drives abundance change
in intertidal communities of the southeast Pacific coast
(Buschmann et al., 2001). This activity occurs for the extraction
of carrageenans used in food and pharmaceutical industry
(Buschmann et al., 2001). Landings data from 2002 to 2017
shows that near to 3 tons of dry alga are extracted annually in
Chile (Lopez, 2019).

Underneath Mazzaella canopies, a diverse assemblage of
algae is observed, including the red algae Nothogenia fastigiata,
Corallina officinalis var. chilensis, Gelidium sp. and Pyropia
sp., and the green Chaetomorpha firma and Ulva spp. Also,
the canopy proves habitat for macro and mesograzers such as
the chitons Chiton granosus and C. barnesii, keyhole limpets
(Fissurella spp.), the gastropod Siphonaria lessoni, the littorinid
Austrolittorina araucana, and at least six species of the genus
Scurria (Moreno and Jaramillo, 1983; Jara and Moreno, 1984;
Moreno et al., 1984; Rivadeneira et al., 2002).

The experiment was established and monitored from January
2015 to August 2017, covering a sampling period of 32 months
and at least three full seasonal cycles. The observations were
conducted on 20 experimental plots equally distributed across
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TABLE 1 | Empirical support of hypotheses proposed to explain invariability in our experimental community.

Hypothesis Explanation

Hyp. 1. Higher invariability of dominants enhances
community invariability

Dominant species provide a large direct contribution to community biomass (Grime, 1998). Also,
the abundance of dominant species has been shown to be more consistent over time than that of
rarer species (Grman et al., 2010; Valdivia et al., 2012). In addition, dominants such as canopy
forming species, provide an ameliorated environment for the establishment of sensitive species,
avoiding local extinctions and supporting more persistent (more invariable) understory populations
over time (Bennett and Wernberg, 2014; Miller et al., 2018; Roberts and Bracken, 2021). Therefore,
we predicted a positive effect of dominant species’ invariability on community invariability.

Hyp. 2. Greater population invariability and population
asynchrony should enhance community invariability, but
these effects depend on mean species richness

In a species-rich community, the multiplicity of environmental responses will induce asynchronous
temporal fluctuations among populations, reducing variability at the community level (Loreau and de
Mazancourt, 2013). Also, in species-rich communities, resource partitioning and facilitation increase
both population and community invariability (Tilman, 1999; Loreau et al., 2012; Loreau and de
Mazancourt, 2013; Chesson, 2018). Therefore, population asynchrony and population invariability
should enhance community invariability.

Hyp. 3. Subordinate species, as alternative dominants in a
disturbed community, are unable to compensate the
“stabilizing” role of the dominant canopy forming species

Dominant algae and low-biomass, morphologically simple subordinate algae provide different
functions in terms of contribution to community biomass and support of a relatively invariable abiotic
environment (Filbee-dexter and Wernberg, 2018). Thus, the removal of dominants should mediate
the effects of population invariability, asynchrony, and species richness on community invariability.

TABLE 2 | List of models to analyze community invariability as response variable.

Model Model description Associated hypothesis

1 Intercept H0

2 ID H1

3 IP H2

4 φP H2

5 ID + IP + (ID * IP ) H1

6 S + φP + (S * φP ) H2

7 S + IP + (S * IP ) H2

8 ID + RD H3

9 ID + RD + (ID * RD) H3

10 IP + RD H3

11 IP + RD + (IP * RD) H3

12 φP + RD H3

13 φP + RD + (φP * RD) H3

14 ID + IP + RD + (ID * IP * RD) H3

15 S + φP + RD + (S * φP * RD) H3

16 S + IP + RD + (S * IP * RD) H3

We indicate model number, model notation, the associated hypothesis (see section
“Introduction”). For model notation, ID, invariability of dominants; φP, population
asynchrony; IP, population invariability; S, mean species richness; RD, dominant
species removal. H0 is a “null hypothesis”. *Denotes interactive effects.

both sites. Both sites were open access areas, where local
fishermen and visitors are allowed to harvest marine resources
directly (Buschmann et al., 2001). Also, both sites are exposed to
similar environmental and oceanographic conditions (Aguilera
et al., 2013; Valdivia et al., 2013, 2015).

Experimental Design and Sampling
Protocol
In each site, we deployed at the mid intertidal zone ten 30
cm× 30 cm experimental plots, which were permanently marked
with stainless-steel bolts. The size of the plots was chosen
to minimize the impact on the local intertidal community.
Experimental plots were placed within areas of high secondary

cover (ca. 20–65% percent cover) of the locally dominant alga
Mazzaella, and on flat and horizontal rocky surfaces, avoiding
crevices and tide pools to reduce variability associated to
substrate heterogeneity. Half of the experimental plots were
haphazardly selected for the experimental treatment in which
Mazzaella was completely removed with scrappers and chisels,
leaving all the understory species intact (i.e., disturbed plots).
The remaining half of the plots were kept unmanipulated (i.e.,
controls plots). Therefore, considering both sites together, our
experimental design included a total of 10 control plots and
10 dominant species-removed plots. All settlers of Mazzaella
were removed every three months in the disturbed plots. Three
months between manipulations has been shown earlier to be an
appropriate timespan to functionally exclude dominant species
from intertidal communities in these sites and elsewhere (Bulleri
et al., 2012; Aguilera et al., 2013; Valdivia et al., 2015).

All plots were sampled immediately before the removal of
dominant canopies of Mazzaella, then two months after and
then every three months until the end of the experiment in
August of 2017. During each monitoring we estimated species
abundance using a 30 cm× 30 cm frame divided in 25 fields with
a monofilament line, following protocols described elsewhere
(e.g., Broitman et al., 2011; Valdivia et al., 2020). All algae and
invertebrates (c.a. >5 mm) occurring on each plot were identified
in situ and the organisms were classified at the species level
whenever possible. Abundance of algal species was estimated
as substrate percentage cover (1% resolution), while grazers
were registered as density (number of individuals per m2). All
manipulations and observations were conducted during diurnal
low-tide hours (ca. 1.5 m tidal range).

Abundance data of algae and grazers (percent cover and
density, respectively) were transformed to biomass (dry weight
g m−2). This allowed us to analyze together mobile and sessile
species. For algae, biomass was estimated through calibration
curves generated from destructive samples obtained in the
field (10–20 replicates for each of the 19 species identified in
experimental plots). For algae whose abundances in the field
were too low to generate a calibration curve, we used published
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TABLE 3 | AICc table results of top model set selected in the evaluation of the role of invariability of dominants, mean species richness, population invariability and
population asynchrony on overall community invariability in an intertidal community exposed to a press disturbance.

Model df logLik AICc 1 AICc AICc weight

(12) φP + RD 4 −13.93 38.54 0 0.759

(13) φP + RD + (φP * RD) 5 −13.64 41.57 3.04 0.166

(15) S + φP + RD + (S * φP * RD) 9 −4.13 44.26 5.73 0.043

1 AICc is the difference between a model’s AICc score and the lowest AICc score. For model notation, ID, invariability of dominants; φP, population asynchrony; IP,
population invariability; S, mean species richness; RD, dominant species removal. *Denotes interactive effects. Based on 20 experimental plots (10 control and 10
disturbed plots). The full AICc table results are available in Supplementary Table 6.

linear and nonlinear models of percentage cover-dry weight for
morphologically similar taxa (Ko et al., 2008). In addition, the
biomass of grazer species was estimated as the product between
each species’ density (ind. m−2) and the average individual dry
weight (g) obtained from Camus et al. (2013) and in situ samples
(5–7 replicates for each of the main group of grazers: Littorinid
snails, Scurria spp., Chiton spp., and Fissurella spp.). For biomass
estimation, we excluded crustose algae due to logistic constraints,
sessile invertebrates because their cover was always less than
1%, and predators because their frequency of occurrence and
densities were very low (e.g., starfish and crabs). Community
biomass was calculated for each plot as the sum of all individual
species biomasses.

Measures of Community Invariability and
Drivers of Stability
Community invariability was estimated for each plot as the
inverse coefficient of variation (µ/σ) in community biomass
over the 32 months of monitoring. This included together
the biomass of the dominant canopy, understory algae, and
grazers. This measure of invariability standardizes the temporal
mean of community biomass to its temporal standard deviation;
therefore, higher values indicate that community biomass is more
constant over time (Tilman, 1999).

Population invariability was estimated following Thibaut and
Connolly (2013) as the inverse of the weighted mean coefficient
of variation in the biomass of all populations (species) within a
sampling plot:

Pi =
1∑N

i=1
µi
µc

σi
µi

, (1)

where µi and σi denote the temporal mean and standard
deviation of biomass of each population i, N is the number of
populations, and µc is the temporal mean of community biomass.
Larger values of population invariability indicate that, on average,
population abundances are more constant over time.

Following Sasaki et al. (2019), population asynchrony (ϕP) was
estimated as:

ϕP = 1−
S2

xT(∑N
i=1 Sxi

)2

where ϕP is the variance of community biomass (S2
xT) divided by

the squared sum of the standard deviations of all N individual
populations (Sxi). Values around 0 indicate that biomass
fluctuations among populations are perfectly synchronized, while
values close to 1 will indicate that are perfectly asynchronized.

Invariability of dominants was estimated for control plots
as the inverse coefficient of variation (µ/σ) of Mazzaella’s
biomass over time. For disturbed plots we estimated the
invariability of the “alternative dominants” as the invariability
of the summed biomass of the foliose algae Ulva spp. and
Pyropia sp., which were the most abundant algae when
Mazzaella was absent. The separate estimation of dominant’s
invariability in control and disturbed communities was carried
out to assess, in separate statistical models, the contribution
of dominant and alternative dominants to the invariability of
the whole community, as well in the association among drivers
that support invariability. Finally, mean species richness was
estimated as the temporal mean of the number of taxonomic
identities for each plot.

Additionally, local environmental variability during the
experiment was assessed by analyzing sea surface temperature
(publicly available at http://www.ceazamet.cl/) using OnSet
HOBO R© water temperature dataloggers, which were deployed
in both study sites, Limarí and Punta de Talca, at ca. 1m
below low tide sea level following housed into concrete blocked
anchored to the rocks with chain links. Deployment methods
are extensively described elsewhere (Valdivia et al., 2013, 2015).
Daily minimum, maximum, and average temperature data were
derived from the temperature time series recorded during the
experiment. Seawater temperature is a useful proxy for local
community-wide environmental conditions as it correlates with
other environmental variables such as nutrient and Chlorophyll-
a concentration (Nielsen and Navarrete, 2004; Witman et al.,
2008), and also through its influence on metabolic rates for
ectotherms, animal and plant phenology, and population growth
rates of coastal marine organisms (Strathmann et al., 2002;
Baldanzi et al., 2018; Suárez et al., 2020).

Statistical Analyses
Before testing our working hypotheses, we verified whether it
was possible to pool the data from both sites. This was done
to increase replication and thus statistical power for hypothesis
testing. We used one-way analysis of variance (ANOVA) to
compare mean percentage cover of Mazzaella, mean species
richness, population asynchrony, and community invariability
between both sites. For cover of Mazzaella, we analyzed only the
control plots at each site (10 plots in total). For the other variables,
we used the entire dataset (20 plots in total). Since we did not
detect statistical differences between both sites in any variable (see
Supplementary Table 1), we decided to analyze and report the
result of both sites together.
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TABLE 4 | Summary results of the best performing model (Delta AICc < 6.0), including population asynchrony (φP ) and dominant species removal (RD).

Parameters Estimate St Error t-value P R2

Intercept 0.5796 0.1668 3.475 0.0029 0.75

Population asynchrony (φP ) 0.6744 0.1212 5.567 0.0003

Dominant species removal (RD) −1.1592 0.2362 −4.908 0.0001

Values in bold show statistically significant parameters. Based on 20 experimental plots (10 control and 10 disturbed plots).

We used information theory to assess the strength of empirical
evidence supporting each of our hypotheses (Burnham and
Anderson, 2002). We developed a set of general linear models
(LM) linking community invariability to different combinations
of predictor variables, in accordance with each hypothesis (see
models in Table 2). These models were constructed on the basis
of empirical and theoretical evidence supporting the premises
described in the introduction section (see hypotheses H1, H2,
and H3 in the introduction and Table 1). Model parameters were
estimated through maximum likelihood. All numerical variables
were centered and standardized before fitting.

Models were ranked according to bias-corrected Akaike
Criterion of Information (AICc; Burnham et al., 2011). Model
selection was based on 1 AICc, expressed a AICci −AICcmin, the
Akaike weight, which represents the probability of each model
as wi = Prob{gi|data} = li∑R

j=1 lj
, where gi is model i and li =

L(gi|data = e−0.51i , and the evidence ratio of the top model,
calculated as wtop/wj (Burnham et al., 2011). Among the ranked
models, we selected those with a 1 AICc < 6, as our “top model
set” (Richards, 2005, 2008; Harrison et al., 2018).

Since AICc tends to favor too complex models (i.e., models
including many variables; Burnham and Anderson, 2002), we
used the “nesting rule” to reduce the number of models used
for inference from the top model set (Harrison et al., 2018). The
nesting rule consists of selecting the model with the strongest
empirical support (lowest AICc) and that is nested within more
complex models with delta AICc < 6 (Richards, 2005, 2008;
Harrison et al., 2018).

In addition, we used LMs to assess the effect of seasons
and treatments on community biomass and that of each
functional group. Model diagnostics were checked by visual
inspection of quantile-quantile plots and fitted vs. adjusted
residual plots. All the graphs and analyses were developed
and fitted in R programming environment 4.0.2, using the
sjPlot, ggplot2 packages (R Core Team, 2020). Community
stability and synchrony were computed with “codyn” R package
(Hallett et al., 2016). Linear models were computed by the
“stats” package (R Core Team, 2020) and the “MuMIn”
package was used to estimate AICc and Akaike weight scores
(Barton, 2020).

RESULTS

Model Selection and Drivers of Stability
Within the top model set (delta AICc < 6; Table 3), we selected
model 12 because it had the strongest empirical support and it

was a more parsimonious version of the others (i.e., nesting rule).
This model included the separate effects of Mazzaella removal
and population asynchrony on community invariability. The
empirical support (evidence ratio) for model 12 was 4.6 times
that of model 13, and 17.6 times that of model 15 (both in the
top model set). Model 12 accounted for 75 % of community
invariability (R2 = 0.75, Table 4). The removal of Mazzaella
decreased community invariability (Figure 1; difference between
means = 1.16 [SE = 0.24], t-value = −4.9). Independent of the
experimental removal, community invariability increased lineally
with increasing population asynchrony (Figure 1; slope = 0.67
[0.12], t-value = 5.6).

Temporal Variability of the Biomass of
Understory Algae and Invertebrates
In control plots, mean biomass of dominant canopies ranged
between 30 and 300 g m−2 during the experiment (see purple
symbols in Figure 2A). Despite the large range of variation,
canopies dominated in biomass most of the time. An initial
decrease in canopy biomass in controls was followed by a
peak increase in biomass of foliose algae; however, foliose algae
biomass remained near to zero afterwards (cyan symbols in
Figure 2A). The biomass of filamentous algae ranged from 0
to ∼70 g m−2 and remained as subdominants during all the
experiment, except when canopies decreased almost to zero in
the early autumn of 2016 (blue symbols in Figure 2A). Branched
algae ranged from 0 to ∼100 g m−2 and fluctuated almost
synchronically with dominant canopies during 2017 (yellow
symbols in Figure 2A; see species composition of each group in
Supplementary Table 2).

When canopies of Mazzaella were experimentally removed,
the community became dominated by foliose, branched
(corticated), and filamentous algae. We observed a large initial
increase in foliose algae, which fluctuated from 20 to 250 g m−2

in biomass and were the group with the highest contribution
to community biomass until mid 2016 for this treatment
(Figure 2B). Filamentous and branched algae were subdominant
in these plots and fluctuated from 10 to 70 g m−2 in biomass,
showing a low contribution to overall community biomass.
After a decrease in mid 2016, filamentous and branched algae
remained in the same range of biomass and did not compensate
the decrease in foliose algae (Figure 2B).

In controls, the biomass of macrograzers ranged from
5 to 55 g m−2, peaking in early autumn of 2015 and
early winter of 2016 (light-blue symbols in Figure 2C).
Mesograzers, on the other hand, were less variable and ranged
from 15 to 25 g m−2 (pink symbols in Figure 2C). When
Mazzaella was experimentally removed, macrograzers almost
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FIGURE 1 | Relationship between population asynchrony and community invariability in control (circles) and disturbed (triangles) experimental intertidal communities
from northern-central Chile. Blue and red lines, and gray areas represent predicted values and standard errors, respectively, of community invariability (see model
parameters in Table 4). Based on 20 experimental plots (10 control and 10 disturbed).

disappeared (0–5 g m−2). An opposite response was observed for
mesograzers, such as Siphonaria lessoni and Scurria spp., which
increased in density and biomass, ranging from 10 to 40 g m−2

(Figure 2D) and sometimes even overshooting the controls (from
mid 2015 to late 2016).

Environmental Variability and Seasonal
Effects on Biomass
Mean sea surface temperature ranged from 12.5 to 16.5◦ C
during the experiment (Figure 3). The lowest temperature was
reached during austral Autumn months, while the maximum
temperature was reached in Summer months, particularly in
January 2016. Community biomass showed no differences
between treatments in the cold seasons (Figure 4). Between-
treatment differences were evident in summer, where control
plots reached almost twice the biomass of disturbed plots
(model R2 = 0.203; Figure 4 and Supplementary Table 3).
The difference in community biomass between treatments
observed in Summer was highly influenced by the increase
in canopy biomass in controls (R2 = 0.490; Supplementary
Figure 2 and Supplementary Table 4). Seasonal effects were also
observed for filamentous algae, in which biomass increased in

Winter regardless of the experimental treatment (R2 = 0.104;
Supplementary Figure 2 and Supplementary Table 4). On
the other hand, foliose algae showed the highest biomass in
Autumn. Also, differences between treatments were observed
in the biomass of foliose algae, with disturbed plots reaching
almost two to three times the biomass of foliose algae in controls
(R2 = 0.206; Supplementary Figure 2 and Supplementary
Table 4). The biomass of macrograzers was not affected by
seasons but only by the experimental treatment (R2 = 0.155),
while the biomass of mesograzers tended to increase in
Spring in the removal treatment (Supplementary Figure 2 and
Supplementary Table 5).

DISCUSSION

After 32 months of monitoring covering almost three full
seasonal cycles, our empirical study shows independent effects
of dominant species removal (Mazzaella) and population
asynchrony on community invariability. The greater the
asynchrony, the greater the invariability of the community. At the
same time, invariability was greater when canopies were present,
probably due to an increase in community biomass in summer
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FIGURE 2 | Temporal variation in mean biomass (±SE) of algae (A,B) and grazers (C,D) in control (left panels) and disturbed (right panels) conditions. Algae were
categorized according to morphological functional groups (canopy of Mazzaella, branched, filamentous, and foliose) and grazers according to average adult body
size (Chiton granosus, C. barnesi, Fissurella crassa, F. limbata and Fissurella sp. as macrograzers; Littorina araucana, L. peruviana, Scurria araucana, S. ceciliana, S.
plana, S. variabilis, S. viridula, S. zebrina and Siphonaria lessoni as mesograzers). Each year label is positioned in May of each year (early autumn in southern
hemisphere). Based on 20 experimental plots (10 control and 10 disturbed).

months. Filamentous and foliose subdominant algae were unable
to compensate the loss of biomass following by the experimental
removal of Mazzaella canopy. Causes and consequences of the
separate effects of dominant species-removal and population-
level asynchrony on community-wide invariability are discussed.

Negative Effects of Canopy Removal on
Community Invariability
Following the calculation of invariability (mean divided
by the standard deviation; Tilman, 1999), the removal of
canopies reduced community invariability respect to controls by
decreasing the mean and/or increasing the standard deviation

of community biomass (Bulleri et al., 2012). The removal
of canopies led to a community dominated by low-biomass
opportunistic foliose algae and mesograzers (Supplementary
Table 2). Indeed, the removal of canopies decreased almost to
zero the biomass of macrograzers, which are active consumers
of algae such as the encrusting Hildenbrandia sp., calcareous
branched Corallinaceae, and foliose Ulva spp. (Camus et al.,
2013). Thus, the absence of these macrograzers in the removal
treatment could explain the increase of foliose, branched, and
filamentous species.

The species that became dominant under the canopy-removal
condition were algae characterized by high colonization and
mortality rates, low resistance to grazers, and physiological
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FIGURE 3 | Temporal variation in mean (±SE) sea surface temperature in the experimental sites used in our study. For temperature, we considered monthly
averaged temperature of both sites, Limarí and Punta de Talca. Each year label is positioned in January of each year (early summer in southern hemisphere).

adaptations to environmental stress (Littler and Littler, 1984;
Santelices, 1990; Duffy and Hay, 1994). In agreement with their
opportunistic lifestyle, these algae also display large surface areas
(i.e., foliose algae), which allows high productivity and growth
rates (Littler and Littler, 1984; Steneck and Dethier, 1994).
Consequently, the demographic stochasticity of these species
may increase biomass variability at the community level (i.e.,
reduce community invariability; Stachowicz et al., 2008), as
predicted by theoretical models of invariability (Loreau and de
Mazancourt, 2013). Particularly, species such as Ulva spp. and
Pyropia orbicularis can show high growth rates under broad
environmental fluctuations and abiotic stress, quickly colonizing
available niches as opportunistic species (Rosenberg and Ramus,
1982; Pérez-Mayorga et al., 2011). Also, elevated temperatures
can trigger reproduction and settlement of some Ulva spp.
(Gao et al., 2017). These foliose algae usually characterize
early successional stages of intertidal communities, before the
establishment of larger competitors like canopies or invertebrates
(Foster et al., 2003; Edwards and Connell, 2012). Probably
the absence of Mazzaella allowed constant available space
for recruitment of these foliose algae, but seasonally variable
disturbances—such as Winter extreme waves or enhanced
mesograzer activity in Spring—might have limited their biomass.
In this way, the demographic dynamics of the newly dominant

species may have increased the temporal variance in total
community biomass, decreasing thus community invariability.

Community-Level Responses to
Population Asynchrony
The positive asynchrony-invariability relationship has been
previously predicted by theory and has been found in a
wide range of ecosystem across marine and terrestrial habitats
(de Mazancourt et al., 2013; Valencia et al., 2020; Kigel
et al., 2021). The positive effect of population asynchrony on
community invariability has been associated to competitive
interactions, differential species’ environmental tolerances, and
trophic dynamics (Doak et al., 1998; Klug et al., 2000;
Lehman and Tilman, 2000; Loreau and de Mazancourt, 2013).
For example, the feeding activity of grazers can limit the
expansion of subdominant algae after experimental disturbances
such as canopy removal, increased nutrient load, and ocean
acidification (Connell and Russell, 2010; Ghedini et al., 2015).
Similarly, we observed an increase in the abundance of
mesograzers in the canopy-removal plots (Figure 2C), as a
result of milder interspecific competition with macrograzers
and the increased habitat complexity provided by branched
algae (e.g., Nothogenia fastigiata, Gelidium sp., Ahnfeltiopsis sp.
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FIGURE 4 | Seasonal variation in overall community biomass (±SE) on control (red circles, n = 10) and disturbed (blue circles, n = 10) plots. Each season account
with three replications (three seasonal cycles).

and Trematocarpus dichotomus; O’Brien and Scheibling, 2018;
Bertolini, 2018). Mesograzers, in turn, could have “dampened”
the overshoot of foliose algae, which could explain the pattern of
temporal variation observed for these algae (Figure 2B). Indeed,
intertidal mesograzers can exert an important control on the
abundance and diversity of algae and even sessile invertebrates
(Aguilera et al., 2015; Tejada-Martínez et al., 2016). Specifically,
mesograzers like Siphonaria lessoni and Scurria spp. are generalist
consumers that consume algae such as Ulva spp., Ulvella sp.,
Hildenbrandia sp., and Codium dimorphum (Camus et al., 2013).
In general, the feeding activity of (macro and meso) grazers on
propagules and macroscopic stages can alter the dynamics of algal
populations (Iken, 2012). These effects can be particularly strong
during early successional stages, and thus, on the composition of
algal communities (Arrontes, 1999; Aguilera and Navarrete, 2007;
Aguilera, 2011; Iken, 2012). Additionally, moderate levels of
herbivory by mesograzers could be beneficial during succession
of intertidal communities dominated by Mazzaella (Aguilera and
Navarrete, 2007). Therefore, a proportional increase in grazing,
a trophic compensation, could well have counteracted the
expansion of opportunistic algae as a response to canopy removal.

Richness and Dominance Effects on
Community Invariability
Theoretical, laboratory and field-based studies demonstrate that
species richness generates invariability (Romanuk et al., 2006;

Tilman et al., 2006; Loreau and de Mazancourt, 2013; Hallett
et al., 2014). In our study, however, the empirical evidence
supporting the independent effects of canopy removal and
asynchrony on community invariability were ca. 18 times
stronger than that supporting the effects of species richness. In
the same line, a recent study of plant communities at the global
scale has indicated that synchrony could be more relevant than
species richness per se (Valencia et al., 2020). Asynchrony is
indeed one of the three main mechanisms underpinning the
stabilizing effects of species richness (de Mazancourt et al., 2013).
Our results suggest therefore that the other two mechanisms
driving the diversity-stability relationship—overyielding and
reduced observation error—may have been less relevant than
asynchrony in the analyzed community.

In addition to dominants, rare species can have strong effects
on community invariability. For example, recent theoretical work
suggests that perturbations that target rare species can have
disproportionate effects on community dynamics, due to indirect
effects cascading through the assemblage (Säterberg et al., 2019).
In addition, the abundances of rare species are usually highly
variable over time, which can have a strong influence on
invariability averaged across all populations and even lead to
negative diversity-stability relationships at the community level
(Arnoldi et al., 2019). In our study, crustose algae and low-
biomass filamentous and branched algae represented rare species.
Future research could focus on the potential effect of these species
on population and community stability. Our results support the
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idea that multiple factors, in addition to species richness, should
be investigated to understand community invariability and other
aspects of stability (Ives and Carpenter, 2007).

Despite canopy-removal plots exhibited lower invariability
than control plots, this community-level property was
independent from the invariability generated by the canopy
of Mazzaella. Mazzaella exerts indirect effects on community
invariability via trophic links and competitive interactions with
the understory species. Alternatively, it can be the case the
contribution of Mazzaella to mean community biomass was
much larger than the “dampening” effect of this species on
biomass standard deviation. Dominant species have been shown
to influence both, the mean and standard deviation of total
community biomass (Grman et al., 2010; Valdivia et al., 2013).

CONCLUSION

Our experimental study allowed us to empirically demonstrate
that population-level dynamics, such as the experimental
removal of a dominant species and patterns of population
asynchrony, have strong effects on community invariability.
The results suggest that both processes independently and
simultaneously underpin the overall community response to a
major disturbance. Consumer-resource interactions seemingly
led population asynchrony. This may represent a compensatory
“internal” response of the community to the disturbance,
providing a key link between population and community levels of
biological organization in this ecosystem. Further experimental
work of compensatory consumer-resource interactions will allow
us to improve our mechanistic understanding of the role of
species asynchrony in maintaining community stability under the
global biodiversity loss scenario that is unraveling.
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