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Subterranean termites depend nutritionally on their gut microbiota, which includes
protozoa as well as taxonomically and functionally diverse bacteria. Our previous
metavirome study revealed a high diversity and novel families of bacteriophages
in the guts of Coptotermes formosanus workers from New Orleans, Louisiana,
United States. Two assembled bacteriophage genomes (Phages TG-crAlp-04 and 06,
family Podoviridae) existed in all colonies and showed similarity to a prophage (ProJPt-
Bp1) previously sequenced from a bacterial endosymbiont (Candidatus Azobacteroides
pseudotrichonymphae, CAP) of protozoa in the gut of a termite species of the genus
Prorhinotermes from Taiwan. In this study the genomes of Phage TG-crAlp-04 and
06 were subjected to detailed functional annotation. Both phage genomes contained
conserved genes for DNA packaging, head and tail morphogenesis, and phage
replication. Approximately 30% of the amino acid sequences derived from genes in
both genomes matched to those of ProJPt-Bp1 phage or other phages from the crAss-
like phage group. No integrase was identified; the lack of a lysogeny module is a
characteristic of crAss-like phages. Primers were designed to sequence conserved
genes of the two phages and their putative host bacterium (CAP) to detect their
presence in different termite species from native and introduced distribution ranges.
Related strains of the host bacterium were found across different termite genera and
geographic regions. Different termite species had separate CAP strains, but intraspecific
geographical variation was low. These results together with the fact that CAP is an
important intracellular symbiont of obligate cellulose-digesting protozoa, suggest that
CAP is a core gut bacterium and co-evolved across several subterranean termite
species. Variants of both crAss-like phages were detected in different Coptotermes
species from the native and introduced range, but they did not differentiate by
species or geographic region. Since similar phages were detected in different termite
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species, we propose the existence of a core virome associated with core bacterial
endosymbionts of protozoa in the guts of subterranean termites. This work provides
a strong basis for further study of the quadripartite relationship of termites, protozoa,
bacteria, and bacteriophages.

Keywords: subterranean termite, gut bacteria, crAss-like phage, phylogeny, Candidatus Azobacteroides

pseudotrichonymphae

INTRODUCTION

Termites are social insects (Thorne, 1997; Harrison et al.,
2018) and play an important role in the environment as
the main decomposers of plant material (Noble et al., 2009;
Brune, 2014). A typical mature termite colony contains three
castes: reproductives consisting of seasonal winged alates and
permanent egg-laying queens and kings as well as soldiers
and workers. Mature colonies develop alates during swarming
season, which disperse to establish new colonies. Soldiers defend
the colony and workers are responsible for nest maintenance,
brood care, foraging for food and water and feeding the other
colony members (Boomsma, 2009). Termite workers produce
endogenous enzymes in their guts, including cellulases (Inoue
etal., 1997), but lignocellulose digestion by the termites’ enzymes
alone is incomplete (Slaytor, 1992; Lo and Eggleton, 2010).
Therefore, all termite lineages developed a relationship with
specialized symbionts that aid in lignocellulose digestion.

The Formosan subterranean termite Coptotermes formosanus
Shiraki and the Asian subterranean termite, Coptotermes gestroi
Wasmann, both native to Southeast Asia, are two notorious
invasive species that have spread around the globe including
to the United States (Austin et al., 2006; Li et al., 2009;
Husseneder et al., 2012; Evans et al., 2019; Blumenfeld and Vargo,
2020). Subterranean termites harbor a complex community of
symbionts consisting of protozoa, bacteria, and archaea in the
guts of their workers to ensure adequate nutrition (Cleveland,
1923; Brune and Dietrich, 2015; Benjamino and Graf, 2016).
Protozoa are responsible not only for the hydrolysis of cellulose,
but also for the generation of the bulk of the fermentation
products that are eventually resorbed by the host (Hungate,
1979). Studies showed that colonies of subterranean termites
starved to death if the cellulolytic protozoa were removed
(Ohkuma, 2003; Sethi et al., 2014; Peterson et al., 2015).
Subterranean termite species have different numbers of protozoa
species with recent genetic sequencing studies suggesting a higher
diversity than previously described (Koizumi, 1921; Su et al,
2016; Jasso-Selles et al., 2020).

In addition to protozoa, subterranean termite worker guts
contain a diverse bacteria community (Husseneder et al., 2010;
Brune, 2014). In previous studies based on cloning of 16S rRNA
gene amplicons, 213 different bacterial operational taxonomic
units (OTUs), ie., species defined by DNA similarity, were
reported from the gut of workers of C. formosanus (Shinzato
et al, 2005; Husseneder et al., 2010). This was most likely
an underestimation since next-generation sequencing of the
16S rRNA gene uncovered 1,460 different OTUs in the closely
related species, C. gestroi (Do et al, 2014). The dominant

bacteria taxa, richness and diversity were similar when comparing
C. formosanus workers from the native (China) and introduced
(Japan, United States) range suggesting a tight co-evolutionary
relationship of termites with their core bacteria and only minor
effects of location and environment (Husseneder et al., 2010).
Bacteria can be free-living in the gut lumen, attached to the gut
wall, or associated with the protozoa as endo- or ectosymbionts
(Brune, 2014). Bacteria play important roles for termite nutrition,
such as nitrogen-fixation, uric acid recycling, sulfate-reduction,
acetogenesis, and sustaining an anaerobic environment for
protozoa, among others (Brune and Friedrich, 2000; Inoue et al.,
2000; Ohkuma, 2003).

The bacteria diversity in the termite gut makes termites
good models to investigate the roles of gut bacteriophages
(Ottesen et al., 2006; Tikhe and Husseneder, 2018; Schmidlin
et al., 2019). Bacteriophages, or phages, are viruses that infect
only bacteria and are the most abundant organism in the
biosphere (Wommack and Colwell, 2000; Rodriguez-Brito et al.,
2010). Typical phages follow a lytic (virulent) cycle characterized
by immediate lysis of the host after infection or a lysogenic
(temperate) cycle, when the phage integrates into the bacterial
chromosome as prophage and replicates with the host bacterium
until the lytic cycle is induced (Hobbs and Abedon, 2016;
Howard-Varona et al., 2017). Other more unusual phages exist
as extrachromosomal elements and behave like temperate phages
but without integrating into the host genome (Kirsch et al., 2021).

Previous studies of microbiota of subterranean termites
showed a high taxonomical and functional diversity of bacteria
and bacteriophages (Husseneder et al., 2010; Benjamino and
Graf, 2016; Tikhe and Husseneder, 2018). However, detailed
knowledge about the existence, composition, and influence of
core microbiota on termite biology is lacking. Our lab was the
first to sequence full genomes of bacteriophages from termite
guts. We previously isolated and sequenced a lytic phage (Tikhe
et al,, 2015), a temperate phage (Tikhe et al., 2018a) and a phage
with a defective integrase pseudogene (Tikhe et al., 2018b) from
hindguts of C. formosanus workers. Metagenomic profiling
of C. formosanus workers gut bacteriophage community
identified a taxonomically diverse phage community in
workers from three colonies of C. formosanus collected in
New Orleans, Louisiana, United States (Tikhe and Husseneder,
2018). Two of the assembled phage genomes (NCBI Genbank
number: LSPY01000004) and LSPY01000006 existed in all
collected colonies and showed similarity to a phage previously
sequenced from a bacterium (Candidatus Azobacteroides
pseudotrichonymphae, CAP) associated with cellulase digesting
protozoa (Pseudotrichonympha sp.) in the gut of a subterranean
termite species Prorhinotermes japonicus from Lanyu island
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(Taiwan) (Pramono et al., 2017). Phylogenetic analysis by Yutin
et al. (2018) characterized both phages as crAss-like phage
(Caudovirales, Podoviridae). Therefore, LSPY01000004 was
named “Termite Gut CrAss-like phage 04” abbreviated as “Phage
TG-crAlp-04” and LSPY01000006 was named “Termite Gut
CrAss-like phage 06” abbreviated as “Phage TG-crAlp-067).
CrAssphages were first identified in 2014 as the most abundant
virus in the human gut microbiome (Dutilh et al., 2014; Yutin
et al,, 2018, 2021; Koonin and Yutin, 2020). Although hundreds
of crAss-like phage genomes have been identified in silico, few
crAssphages have been isolated in pure culture (Shkoporov et al.,
2018, 2021; Guerin et al., 2021).

Research into the core microbiota, which is likely crucial in
termite gut functionality, and its role in invasive termite pest
species, such as C. formosanus and C. gestroi is expected to
shed light on an important part of the symbiotic biology of
subterranean termites and might lead in the future to novel
pest control methods by disrupting the core symbiosis and
thereby possibly impacting nutrition and reproduction of termite
colonies (Sethi et al., 2014; Husseneder et al., 2016). In this study
we fully annotated the genomes of the two crAss-like phages. We
also screened for the presence of these phages and their putative
host bacteria species (CAP) in C. formosanus and C. gestroi
specimen across their native and introduced range to test whether
these phages and their host belong to the core microbiota.

MATERIALS AND METHODS

Collection of Subterranean Termites

Workers and soldiers from 18 Coptotermes formosanus colonies
were collected from their native range (Taiwan) and from
their introduced range in the United States (3 colonies from
Florida and 4 colonies from New Orleans and Baton Rouge,
Louisiana). In addition, 17 Coptotermes gestroi colonies were
collected from Taiwan and 6 from Saipan. Eighteen C. formosanus
alates, i.e., winged reproductive, were collected in Baton Rouge
with light traps consisting of buckets with black lights as
described previously (Husseneder and Simms, 2008). All samples
from outside Louisiana were preserved in 95% EtOH or
DNAlater solution (Thermo Fisher Scientific, Inc., Waltham,
MA, United States) immediately after collection from the field
and sent to our lab at Louisiana State University Agricultural
Center. Termite samples from Louisiana were transported to
the lab alive and processed within 24 hours. Termite species
were identified based on morphological characteristics of soldiers
(Scheffrahn and Su, 2000) by using a stereomicroscope (LEICA
MZ16, Meyers Instruments, Houston, TX, United States). Sample
details were listed in Supplementary Table 1.

DNA Extraction

Individual alates and workers were rinsed with 70% EtOH to
clean the surface of the body. Then, the gut was removed
using sterile forceps and homogenized in phosphate buffered
saline with a sterile pestle (Husseneder et al., 2010). Total DNA
was extracted from five pooled worker guts per colony and
from individual alate guts by using the DNeasy Blood and

Tissue kit (Qiagen, Valencia, CA, United States). High molecular
weight DNA was confirmed visually on 1% agarose gels and
concentration was measured with Qubit™ assays (protocol
provided by Invitrogen™, life technologies ™).

Bacteriophage Genome Annotation

The genomes of two crAss-like bacteriophages (Phage TG-
crAlp-04 and TG-crAlp-06) from our previous study (Tikhe
and Husseneder, 2018) were retrieved from NCBI (Genbank
Accession numbers: LSPY01000004.1, and LSPY01000006.1).
Putative genes were predicted by performing auto-annotation
with GeneMarkS and Glimmer gene prediction programs
(Besemer et al., 2001; Delcher et al., 2007) and the PHANOTATE
program downloaded from GitHub (McNair et al., 2019). The
Phage Evidence Collection and Annotation Network (PECAAN)
server (Rinehart et al., 2016) was utilized to evaluate genes
predicted by GeneMarkS and Glimmer. Both PECAAN and
PHANOTATE produced a list of predicted protein-encoding
genes for both genomes. For each genome the two gene
prediction lists were compared, and all start positions identified
in PHANOTATE and PECAAN were manually checked.
PHANOTATE and PECAAN gene calls were mostly identical.
Multiple criteria were utilized for finalizing called genes and
gene starts. These included agreement between the various gene
calling programs, coding potential data (generated by host-
trained GeneMarkS), sequence similarity matches, gene overlap,
and length. In cases where two genes on the forward and reverse
strands occupied the same genomic position, one gene was
deleted from the final list. In this situation, the genes associated
with the best coding potential, and/or those that had the strongest
functional call or homology to other phage genes were kept for
the final gene list.

To assign putative functions to the predicted genes, the protein
sequence encoded by the genes was subjected to BLASTP analysis
using default settings. For the majority of genes from both
genomes, there was no significant protein sequence similarity
detected by BLASTP. In cases where similarity with other
proteins in the database was detected we used a minimum cutoff
of 1.0E-7 or less when BLASTP data was used as supporting
evidence for a putative functional call. Protein sequences were
also evaluated using HHpred to identify the probability of
structural homology to three-dimensional protein structures
found in the Protein Data Bank (wwPDB!) (Sussman et al., 1998).
We used a 50% probability when HHpred data was used as
supporting evidence for a functional call. In cases where BLASTP
and HHpred did not identify the same predicted function, the call
with the strongest support was used as the predicted function.
In cases where the HHpred output was the only supporting
evidence, a functional call was not made if the alignment coverage
was < 10%, even if probability values were > 50%. We avoided
making functional calls from HHpred alone if the function was
only relevant to eukaryotes. However, in the case of the latter,
a functional call was made if a conserved protein domain, or
general protein function (e.g., hydrolase) could be identified
in the HHpred output. Membrane proteins were identified

'wwpdb.org
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TABLE 1 | Primer pairs designed for phage signature genes and 16S rRNA gene region of host bacteria Candidatus Azobacteroides pseudotrichonymphae (CAP).

Primer name Annotation Primer sequence (5’ to 3') Annealing temperature (°C) Product length (bp)
04-g13 Large Terminase of Phage TG-crAlp-04 F- GCT ACA CGG TCA AAG TTC GC 54 538
R- GCATTG GTT GTT TGG GAG CA 54
06-g43 Large Terminase of Phage TG-crAlp-06 F- TCG TCA AGC AGC GAT AGC AT 55 400
R- CAC TGT CCT TAA CCT GCC GT 55
06-g54 Portal protein of Phage TG-crAlp-06 F- TAC AGG AAT GGC TGC ACA GG 55 421
R- TCG TTC CTG CGA GGT CTC TA 55
CAP-bacteria 16S V3 region of CAP F- GTG AGG TAA CGG CTC ACC AA 52 495
R- CGC RTA CCT CGT CCARTC TC 52

using TMHMM?. All TMHMM calls were confirmed by using
the SOSUI transmembrane prediction program’. Aragorn* and
tRNAscan-SE® were utilized to search for tRNA genes (Laslett and
Canback, 2004; Chan et al., 2021).

Detailed genome annotation information was provided in
the Supplementary Table 4 for Phage TG-crAlp-04 and
Supplementary Table 5 for Phage TG-crAlp-06. Genome maps
based on all combined results were drawn using CGView server
(Grant and Stothard, 2008).

Primer Design and Phylogenetic Analysis

The genomes of Phage TG-crAlp-04 and TG-crAlp-06 were
aligned with other crAss-like phage genomes in the NCBI
database, including the prophage discovered in CAP (Pramono
et al., 2017) to identify conserved regions. Multiple primer pairs
were designed from Geneious software to target signature genes,
such as the Large Terminase and Portal Protein gene. In a similar
approach, the 16S rRNA gene region of the host bacterium
CAP was aligned with closely related sequences (Supplementary
Table 4) from NCBI GenBank to design species specific primers
for partial amplification of the 16S gene V3 region. Primer
sets that resulted in successful amplification of the phage and
CAP target region are shown in Table 1. Polymerase chain
reactions (PCR) for phage and bacteria DNA templates were
performed using One Taq 2X Master Mix with standard buffer
(New England BioLabs Inc., Ipswich, MA, United States) on
a thermal cycler (Bio-Rad, Hercules, CA, United States). For
each reaction, 15 pl of 2X Master Mix, 1-4 pl of DNA (10-
15 ng) and 1 pl of each primer (0.5 wM) were combined.
Nuclease free water was added to reach a final volume of 30 L
The amplification protocol was 5 min of activation at 94°C,
25 cycles of 1 min at 94°C, 1 min of annealing at 52-55°C
depending on the primer set (Table 1), 1 min of extension
at 68°C, and 5 min for final elongation at 72°C. Each PCR
product’s size and concentration were estimated by quantitative
marker ladder (1 kb DNA ladder, NEB, MA, United States) in
1% agarose gels and concentrations were confirmed by QubitTM
4 fluorometer (ThermoFisher, Waltham, MA, United States).
Samples with negative results (referring to the wrong size of PCR

Zhttps://services.healthtech.dtu.dk/service.php? TMHMM-2.0
3https://harrier.nagahama-i-bio.ac.jp/sosui/mobile/
*http://www.ansikte.se/ ARAGORN/
>http://lowelab.ucsc.edu/tRNAscan-SE/

product and amplification failures) were repeated with higher
DNA concentration and lower annealing temperatures. Negative
results (absence of phages) were not included in further analyses.
Successfully amplified products were subjected to bidirectional
Sanger sequencing (Applied Biosystems™ 3130xl, LSU Genome
facility). The forward and reverse sequences were assembled
into single contigs. All contigs of each gene region were
aligned and truncated to the same length. MUSCLE (v.3.8.425)
was used for alignment with the Geneious Prime software’s
(version 2020.2) default settings: kmer4_6 (iteration 1) and
pctid_kimura (subsequent) for distance measure; UPGMB for
clustering method; pseudo for tree rooting; CLUSTALW for
sequence weighting scheme (Kearse et al., 2012). The alignment
files were then exported in PHYLIP format for phylogenetic
tree analysis. Maximum likelihood phylogenetic trees were
constructed by using IQtree web server® with auto substitution
model and ultrafast bootstrap analysis (Trifinopoulos et al., 2016;
Minh et al.,, 2020) with 1,000 bootstrap alignments. Bacteria
and phage reference sequences of Coptotermes species and
closely related genera were downloaded from NCBI GenBank
in December 2021 to analyze evolutionary diversification of
bacteriophages and host bacteria across geographical regions
and closely related species (Supplementary Table 2). For the
tanglegram tree shown in Figure 3, cytochrome oxidase II (COII)
gene sequences of subterranean termites from similar geographic
regions (Supplementary Table 3) as our samples were selected
from NCBI GenBank. The COII tree was generated using the
same method as described above and aligned to the CAP bacteria
phylogenetic tree for comparison.

RESULTS

Genomic Features of Bacteriophage

Phage TG-crAlp-04 and Phage

TG-crAlp-06

The genome of Phage TG-crAlp-04 consisted of 100,626 bp
(GC content of 39.4%) with a total of 85 protein coding
genes predicted by PHANOTATE and 74 genes predicted by
GeneMarkS and/or Glimmer (Supplementary Table 4). Seventy-
two genes were called by both sets of analyses with complete or
partial agreement in genomic position. Phage TG-crAlp-06 had

Chttp://www.igtree.org
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a similar genome size with 98,173 bp (GC content of 39.8%)
and 82 protein coding genes predicted by PHANOTATE and 68
genes predicted by GeneMarkS and/or Glimmer (Supplementary
Table 5). Sixty-eight genes were called by both analyses with
complete or partial agreement in genomic position. While most

gene predictions were identical or similar with the different gene
prediction tools PHANOTATE predicted more genes. All genes
and gene starts from PHANOTATE, GeneMark, and Glimmer
were manually evaluated to generate a final gene list of 79 genes
for Phage TG-crAlp-04 and 77 genes for Phage TG-crAlp-06. No
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75-DNA-dependent
RNA Polymerase

71-Memt Protein
70-dUTPase

69-DNA Binding Protein

68-Hypothetical Protein
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FIGURE 1 | Genome maps of Termite gut crAss-like Phages (TG-crAlp 04 and 06).

and S5 (for Phage TG-crAlp-06).

12-RecR

18-Dihydrofolate Reductase
13-DNA Directed DNA Polymerase

20-Exonuclease

22-DNA Primase
23-AAA domain Protein/Adenosylcobinamide Kinase

/’ \\ 24-Hypothetical Protein
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of homology: green > 95%, purple 70-95%, blue 50-70%, white < 50%. The middle ring represents phage functional modules (Keary et al., 2014;
Koonin and Yutin, 2020). The inner ring displays the GC content. Detailed annotation information is provided in Supplementary Table 4 (for Phage TG-crAlp-04)
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tRNA genes and integrase genes were identified in both genomes.
The final gene set was used for functional annotation and drawing
of genome maps (Figure 1).

Predicted gene functions were determined by sequence
homology from BLASTP analysis and/or structural homology
using HHPred. Predicted functions were assigned for 37 Phage
TG-crAlp-04 genes and 34 Phage TG-crAlp-06 genes. Phage TG-
crAlp-04 and Phage TG-crAlp-06 shared 12 common predicted
gene functions, such as large terminase, portal protein, major
capsid protein, DNA-dependent RNA polymerase and DNA
binding protein, etc. (Table 2). Additionally, 25 genes encoded in
Phage TG-crAlp- 04 and 22 encoded in Phage TG-crAlp-06 had
similarity to the CAP phage ProJPt-Bp1 or other crAassphages.
Both genomes had similar genome structure and contained the
three discernible blocks typically found in all bacteriophages:
“DNA packaging/head module”, “Binding/tail related module”
and “Transcription/replication module”.

The “DNA packaging/head module” was overall the most
conserved region and consisted of genes encoding for large
terminase, portal protein, major capsid, recombination protein
A (RecA), along with genes that could not be functionally
annotated. All 12 protein encoding genes in the “DNA
packaging/head module” of Phage TG-crAlp-06 and 9 out
of 13 genes in Phage TG-crAlp-04 showed homology to
hypothetical proteins from Azobacteroides phage ProJPt-Bpl
or other crAssphages through BLASTP analysis. Of the three
modules, the “DNA packaging/head module” had the highest
gene content similarity across the whole genome of both phages
when compared to all other crAssphages (69% for Phage TG-
crAlp-04; 100% for Phage TG-crAlp-06).

The  “Binding/tail  related module” was located
between the “DNA packaging/head module” and the
“Transcription/replication module”. The majority of the proteins
encoded by genes in this module for both Phage TG-crAlp-04

TABLE 2 | List of genes with similar function in both phage genomes.

Gene# in phage Genetit in phage Predicted gene Notes

TG-crAlp-04 TG-crAlp-06 function

18 55 Large terminase DNA

5 66 Portal protein Packaging/

10 61 Major capsid Head module

9 62 RecA

31, 45, 69 8, 53 DNA binding protein

1,2,3,19, 34, 61, 5,11,17, 27, Membrane protein

71,72, 79 36, 67, 69,72

75 13,74 DNA-dependent RNA  Transcription/

polymerase Replication

42 25 Replicative DNA module
helicase (DNAB-like)

70 6 dUTPase

60, 61, 77 10, 33 Hydrolase

52 22 Primase

55 20 Exonuclease

These genes have a > 50% HHpred probability or homologous genes were
detected in phage/virus related organism.

and TG-crAlp-06 could not be assigned predicted functions by
similarity searching or structural homology. However, based on
structural homology, Phage TG-crAlp-04 Gene_27 was predicted
to encode a Fiber protein that could be associated with the tail
and Phage TG-crAlp-06 Gene_42 was predicted to encode a
fibritin protein that functions in connecting the tail and capsid.

In the “Transcription/replication module” of both genomes,
we identified several putative enzymes involved in nucleotide
metabolism, such as DNAB-like replicative helicase (Gene_42
in Phage TG-crAlp-04, Gene_25 in Phage TG-crAlp-06), DNA
primase (Gene_52 in Phage TG-crAlp-04, Gene_ 22 in Phage
TG-crAlp-06), exonuclease (Gene_55 in Phage TG-crAlp-04,
Gene_20 in Phage TG-crAlp-06), hydrolase (Gene_60 and 77
in Phage TG-crAlp-04, Gene_10 and 33 in Phage TG-crAlp-
06), dUTPase (Gene_70 in Phage TG-crAlp-04, Gene 6 in
Phage TG-crAlp-06), and DNA-dependent RNA polymerase
(Gene_75 in Phage TG-crAlp-04, Gene_74 in Phage TG-crAlp-
06). Furthermore, in Phage TG-crAlp-04, 14 of 39 (35.9%)
genes in this module showed homology to hypothetical proteins
from Azobacteroides phage ProJPt-Bpl or other crAssphages. In
comparison, only 9 of 48 (18.75%) genes in this this module for
Phage TG-crAlp-06 genome were homologs to crAssphages.

Of the genes with predicted functions, some were found
in the Phage TG-crAlp-04 genome but not in Phage TG-
crAlp-06, and vice versa. For example, the Phage TG-crAlp-
04 genome encoded a predicted anaerobic ribonucleotide
triphosphate reductase (Gene_47), a carboxylesterase (Gene_50),
a methyltransferase (Gene_56), and a peptidyl-prolyl isomerase
(Gene_59). Unique genes encoded in the Phage TG-crAlp-
06 genome, were a C4-discarboxylate transport sensor protein
(Gene_4), a dihydrofolate reductase (Gene_18). While AAA-
domain proteins were identified in both genomes, they were
different types with an AAA-domain/RecA-like recombination
protein (Gene_54) in Phage TG-crAlp-04, and an AAA-
domain/Adenosylcobinamide kinase (Gene_23) in Phage TG-
crAlp-06.

Phylogenetic Analysis of the Bacterium
Ca. Azobacteroides

pseudotrichonymphae

The putative host bacterium of the phages, Ca. Azobacteroides
pseudotrichonymphae (CAP) was successfully amplified in 26
out of 66 samples of C. formosanus and C. gestroi. All
amplified sequences aligned with CAP strain references of
different Coptotermes species found in the NCBI database
(Supplementary Table 2) indicating that the primer design
was specific for CAP. Samples that repeatedly failed to amplify
either did not contain the target bacteria species in detectable
concentrations and/or the primers designed for CAP were
not able to detect all strain variants due to mutations in
primer binding sites.

A phylogenetic tree was constructed with sequences from
our samples consisting of C. formosanus workers and alates and
C. gestroi workers from different geographic regions. Related
CAP strains from other Coptotermes spp. and termite genera
retrieved from the NCBI database were included for reference
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(Figure 2 and Supplementary Table 2). The majority of CAP
sequences of C. formosanus workers and alates from various
locations grouped with the originally described CAP reference
strain of C. formosanus with less than 8 bps (98.25-100%
similarity) nucleotide difference. The adjacent clade formed by
C. curvignathus and C. speratus samples from Malaysia, showed
94-97% similarity to the C. formosanus group. Sequences of
CAP from C. formosanus, C. curvignathus, and C. testaceus
formed a large clade separate from C. gestroi CAP sequences.
The sequences of the C. gestroi samples from Taiwan showed
a 6-7% difference compared to the C. formosanus samples
from various geographic locations, including Taiwan. The
original CAP reference strains (phylotype ProJPt-1) described
from a Pseudotrichonympha sp. in the gut of Prorhinotermes
japonicus formed a clade with a similar CAP strain isolated
from symbiotic protozoa, Pseudotrichonympha sp., in the
rhinotermitids Heterotermes tenuis and Heterotermes longiceps
from Brazil. The interspecific distance of the P. japonicus
CAP strains to those from our C. gestroi and C. formosanus
samples was 10-12%.

In general, CAP sequences from the same termite host species
grouped together and the intraspecific similarity (C. formosanus:
98-100%, C. gestroi: 99-100%, C. curvignathus 97-99%) was
greater than the interspecific similarity of CAP strains of other
termite species (C. gestroi vs. C. formosanus CAP sequences:
93-94%; C. gestroi vs. C. curvignathus CAP sequences: 92-94%,
C. formosanus vs. C. curvignathus CAP sequences: 94-96%).

Intraspecific sequence variation of CAP in C. formosanus
specimens was low and there were only very few base pair
differences among CAP sequences across geographical regions.
Furthermore, we noticed that the amplified bacteria sequence
from a C. gestroi sample from Saipan was considerably different
from CAP sequences of other Coptotermes spp. (only 78-
81% similarity). However, it showed high similarity (98-
100%) to the 16S gene sequence of bacteria Candidatus
Armantifilum devescovinae (Bacteroidales) (NCBI accession
number: FN377755, FN377756 and FN377757). The bacteria
Ca. A. devescovinae is an obligate ectosymbiotic bacterium in
devescovinid protozoa (Devescovina spp.) in dry-wood termites
(Kalotermitidae). Both CAP and bacteria Ca. Armantifilum
devescovinae are associated with protozoa and are involved in
dinitrogen-fixing processes (Desai and Brune, 2012).

The phylogenetic tree of CAP 16S rRNA gene sequences was
compared to a phylogenetic tree of termite hosts constructed
from COII sequences retrieved from NCBI GenBank (Figure 3
and Supplementary Table 3). There was high phylogenetic
congruence between the phylogenies of the termite host species
and CAP. Both trees showed that Coptotermes species evolved as a
monophyletic clade with C. formosanus closer to C. curvignathus
than C. gestroi.

Phylogenetic Analysis of Signature

Genes of Phage TG-crAlp-04 and Phage
TG-crAlp-06

The primers for Phage TG-crAlp-04 large terminase gene
amplified 15 sequences, while primers for Phage TG-crAlp-06
amplified 23 large terminase and 18 portal protein gene sequences

from all 66 samples (Supplementary Table 1). No amplification
was achieved with the primers designed for Phage TG-crAlp-
04 portal protein gene. Despite limited amplification success,
sequences were obtained from both Coptotermes species, castes
and all collected geographical regions (Figure 4).

The Phage TG-crAlp-04 and Phage TG-crAlp-06 large
terminase genes and the portal protein gene of Phage TG-crAlp-
06 from the C. formosanus metavirome (Tikhe and Husseneder,
2018) matched closely (67-72%) to Azobacteroides phage ProJPt-
BP1 (NCBI accession number: AP017903) (Pramono et al., 2017).
Sequences for the Phage TG-crAlp-04 large terminase genes from
C. formosanus and C. gestroi samples showed 67-99% similarity
to the large terminase gene of the Phage TG-crAlp-04 reference
genome assembled from the metavirome, which confirmed target
specific amplification. Similarly, sequences of Phage TG-crAlp-06
large terminase and portal protein genes from both Coptotermes
species mapped with 92-100% (large terminase gene) and 87-
100% (portal protein gene) similarity to the Phage TG-crAlp-06
genome from the metavirome.

Phage TG-crAlp-04 large terminase sequences as well as Phage
TG-crAlp-06 large terminase and portal protein gene sequences
showed variation among our Coptotermes samples (21, 8, and
11%, respectively) and separate clades in the phylogenetic trees
confirmed the existence of gene variants; however, variations in
neither gene were strictly associated with termite host species,
caste, or geographical region of origin (Figure 4).

DISCUSSION

In this study, we comprehensively annotated two crAss-like
phages from the gut of Coptotermes formosanus workers and
described the diversification of these phages and their putative
host bacteria across geographical regions and subterranean
termite species.

CrAss-Like Phage Genome Annotation
Both phages investigated in this study belong to the crAss-like
phages. Their genome sizes (Phage TG-crAlp-04 - 100,626 bp,
Phage TG-crAlp-06 - 98,173 bp) fell in the general size range
of crAss-like phages which are typically around 100 kb in size
(Guerin etal., 2021). Detailed annotation of the genomes of Phage
TG-crAlp-04 and TG-crAlp-06 confirmed signature genes from
all major phage modules typically found in phages in general
and in crAss-like phages (Keary et al., 2014; Yutin et al., 2018;
Koonin and Yutin, 2020). Protein sequences encoded by the
signature genes in both phages matched to crAss-like phages in
the NCBI database, thus, confirming the phylogenetic placement
of the termite gut phages in the crAss-like phage group (Tikhe
and Husseneder, 2018) similar to crAss-like phages from human
gut and environmental metagenomes (Yutin et al., 2018, 2021).
CrAss-like phages are dsDNA phages of the order
Caudovirales with Podovirus-like morphology (Yutin et al,
2018). Although crAss-like phages are the most abundant phages
in the human gut (Yutin et al., 2018), the effects and roles of
crAss-like phages in the human gut or other environments are
unclear (Guerin et al., 2021). The detection of crAss-like phages
as components of the termite gut microbiota indicates that
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FIGURE 2 | Maximum likelihood tree based on the V3 region of the 16S rRNA gene of Bacteria Candidatus Azobacteroides pseudotrichonymphae (CAP). Reference
sequences downloaded from NCBI GenBank are presented with their accession numbers; samples collected for this study are in bold letters. A code for sample
location [JP (Japan), TW (Taiwan), BZ (Brazil), LAO (Laos), MA (Malaysia), CN (China Mainland), FL (Florida, United States), United States (New Orleans, LA,

United States), BR (Baton Rouge, LA, United States) and LAB (lab reared termites)], termite species [Cf (Coptotermes formosanus), Cg (Coptotermes gestroi), Cc
(Coptotermes curvignathus), Ct (Coptotermes testaceus), Ht (Heterotermes tenuis), Hl (Heterotermes longiceps), Pj (Prorhinotermes japonicus), Rs (Reticulitermes
speratus), Csp (an unidentified Coptotermes sp.), Cs (Cryptotermes secundus), Cb (Cryptotermes brevis) and Cd (Cryptotermes dudleyi)], and caste [W (worker) and
A (alate)] was added to the sequence description if known. In addition, CAP close related bacteria Candidatus Symbiothrix dinenymphae identified in R. speratus
termite and Candidatus Armantifilum devescovinae were included as outgroup. Node support values were obtained from 1,000 bootstrap replications. A detailed
reference sequence list was submitted in Supplementary Table 2.

they may play roles in diverse ecological niches and need to be
investigated further.

There are no phages in the current NCBI database (Dec.
2021) that show close similarity to our termite phages at
genome level. Thus, an in-depth phage genome annotation was
undertaken to decipher the biology of the two phages. The in-
depth annotation in the current study provided evidence for the
functional prediction for 49% of genes in Phage TG-crAlp-04,
and 57% of genes in Phage TG-crAlp-06. These genes include
phage signature genes, which are considered conserved due
to their important function in the phage life cycle (Mitchell
et al., 2002; Hou et al., 2018; Frantzen and Holo, 2019). For
example, packaging of the phage concatemeric DNA is initiated
by phage terminase enzymes (encoded by Gene_18 in Phage
TG-crAlp-04 and Gene_55 in Phage TG-crAlp-06) (Black, 1995;
Rao and Feiss, 2015) with the packaging force moving the DNA
through a ring made by the portal protein (encoded by Gene_5

in Phage TG-crAlp-04 and Gene_66 in Phage TG-crAlp-06) into
the phage capsid (capsid protein encoded by Gene_10 in Phage
TG-crAlp-04 and Gene_61 in Phage TG-crAlp-06). RecA gene
found in both phages in the “DNA packaging/head module”
is considered important for the homologous recombination
process (Le et al., 2017). Other genes like dUTPase, hydrolase,
nuclease, DNA primase, DNAB-like replicative helicase and
DNA-dependent RNA polymerase are considered to be involved
in the phage replication process (Héduser et al., 2012; Kerepesi
et al,, 2016; Afek et al.,, 2018; Drobysheva et al., 2021; Halgasova
et al, 2021). Proteins encoded by all the above-mentioned
genes showed homology to Azobacteroides phage or crAss-
like phage proteins.

A previously conducted preliminary annotation of phages TG-
crAlp-04 and TG-crAlp-06 did not detect typically conserved
genes, like terminase, portal protein, and major capsid (Tikhe
and Husseneder, 2018). However, in the present study, terminase,
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FIGURE 3 | Phylogenetic tanglegram of CAP related bacteria strain and termite hosts. The bacteria tree is a condensed version of Figure 2. The topology of the
termite tree was estimated by maximum-likelihood analysis of the cytochrome oxidase Il (COIl) genes. Dashed lines connect the same termite host species. Node
support values were obtained from 1,000 bootstrap replications. A detailed reference sequence list was submitted in Supplementary Table 3.
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portal protein, and major capsid were confirmed with strong
support in both phages (Yutin et al., 2018). The discrepancy
between former and recent annotation results was likely due to
the previous scarcity of references for well annotated crAss-like
phages. The study of crAss-like phages has been hampered by
the fact that most remain unculturable in lab condition and the
hosts for the majority of crAss-like phages are unknown. Recent
interest in crAss-like phages resulted in increased availability of
references, which helped in the annotation of phages TG-crAlp-
04 and TG-crAlp-06 (Yutin et al., 2021; Gulyaeva et al., 2022). No
tRNA genes were identified in Phage TG-crAlp-04 and 06. The
absence of tRNA genes might indicate a non-virulent life cycle of
Phage TG-crAlp-04 and 06 since the presence of tRNA in phage
genomes genes has been shown to largely coincide with virulent
phages (Bailly-Bechet et al., 2007; Delesalle et al., 2016).

It is believed that bacteria-phage interactions drive co-
evolution that shapes microbial ecology, (Blazanin and Turner,
2021). In general, all phages must adsorb to the bacterial surface
and introduce their genome into the host. Non-temperate phages
replicate and assemble new virions while temperate phages may
integrate into the bacterial chromosome as a prophage or be
maintained as an episome (Kirsch et al., 2021). Most phages in
the termite metavirome study had predicted genes that matched
to bacterial prophages and were, thus temperate (Tikhe and
Husseneder, 2018). However, neither Phage TG-crAlp-04 nor
TG-crAlp-06 contained verifiable genes typically associated with
a classical temperate phage. Once a bacteriophage integrated itself
into the host chromosome, the prophage will produce a repressor,
which self-regulates its own promoter and inhibits all other phage
gene expression in the lysogen to maintain a stable status (Fogg
etal., 2011; Yoshua et al., 2021). No repressor genes and no phage
integrase site-specific recombination sequence were identified in
our phage genomes (Fogg et al., 2014). Moreover, integration
as prophage into the bacteria chromosome requires functional
integrase. Although integrase-like genes were identified in both
Phage TG-crAlp-04 and TG-crAlp-06 genomes, the HHpred

probability value was very low (less than 50%), and the genes did
not have phage/virus related orthologs. Besides, the two major
families of integrases, tyrosine and serine integrases (Groth et al.,
2000; Fogg et al., 2014), have not been identified in any crAss-like
phage genome so far (Shkoporov et al., 2018; Guerin et al., 2021;
Yoshua et al., 2021).

The most closely related phage to Phage TG-crAlp-04
and TG-crAlp-06, the ProJPt-Bpl phage described from the
genome sequencing project of Ca. A. pseudotrichonympha, was
not integrated into the chromosome or the plasmids of Ca.
A. pseudotrichonymphae (Pramono et al., 2017). The phage
showed much higher GC content and little sequence similarity
when compared to the chromosome or plasmid sequences,
was circular or circular permuted and, thus, existed as a
separate extrachromosomal element (episome). The lack of
related prophage sequences in bacteria chromosomes in NCBI
GenBank and the lack of typical genes related to a temperate
life cycle suggests that the crAss-like phages of CAP do not
necessarily integrate into the host chromosome but exist as
episomes. Since the termite gut microbiota comprises a delicate
functional ecosystem essential for the survival of the termite
host (Brune, 2014; Zeng et al., 2020), we expected a prevalence
of temperate over lytic phages in our metavirome study (Tikhe
and Husseneder, 2018). The temperate phages would prevent
rapid changes in bacteria composition and metabolism, and, thus,
maintain the vital balance in the termite gut. In addition, they
would replicate along with their bacterial hosts, be horizontally
transferred among termite colony members via trophallaxis
and vertically to new colonies via alate colony founders.
Nevertheless, the phages infecting the dominant bacteria (CAP)
of an important protozoan symbiont are not following the classic
lysogenic cycle.

Shkoporov et al. (2019) showed that crAss-like phages stably
persist alongside their host bacteria in the human gut to form a
“personal persistent virome” and the phages can be transferred
horizontally via fecal transplants and vertically from mother
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FIGURE 4 | Maximum likelihood trees of (A) Phage TG-crAlp-04 Terminase gene, (B) Phage TG-crAlp-06 Terminase gene and (C) Phage TG-crAlp-06 Portal Protein
gene sequences. Support values were obtained from 1,000 bootstrap replications; values greater than 50% are shown. Sample names in bold indicate samples
collected in this study and consist of location [TW (Taiwan), S (Saipan), FL (Florida, United States), NO (New Orleans, LA, United States), BR (Baton Rouge, LA,
United States)], termite species [Cf (Coptotermes formosanus), Cg (Coptotermes gestroi)], and caste [W (worker) and A (alate)]. Sequences for the Azobacteroides
phage from P, japonicus (Pramono et al., 2017) and Phage TG-crAlp-04 and TG-crAlp-06 from the C. formosanus metavirome (Tikhe and Husseneder, 2018) were
retrieved from NCBI database and included as references.
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to infant (Manrique et al., 2016). In addition, persistence was
confirmed by co-culture experiments of isolated crAss phages
with their Bacteroides host, which showed that phages can stably
coexist with their host over time at high concentrations without
impacting host abundance (Guerin et al., 2021). The mechanisms
by which coexistence is achieved are not entirely clear, but there
are several possible ecological models. As previously suggested
for phages in the termite gut (Tikhe and Husseneder, 2018),
virulent phages that infect well-adapted, dominant and obligate
bacteria might switch from lytic to a lysogenic or other benign
infection mechanism to benefit from the success of the thriving
bacteria host, i.e., they employ the “piggyback-the-winner”
strategy; this strategy results in a low phage-to-bacteria ratio,
which is less likely to cause abrupt population collapse (Knowles
et al,, 2016; Guerin et al., 2021; Shkoporov et al., 2021).

While the crAss-like phages might not be equipped to become
lysogenic via integration due to the lack of integrase genes, they
may employ alternative less aggressive infection methods that
allow them to coexist with the host by sustaining replication
without disrupting the host population. For example, host strain
variations regarding phage receptors would create a mix of phage
susceptible and resistant strain allowing phages to replicate while
keeping the viral load in check to protect susceptible population.
Bacteria have been shown to create herd immunity using phase
variation of receptors to switch between phage-susceptible and
phage-resistant phenotypes (Turkington et al., 2019). Spatial
separation of microbial habitats has been shown to create refuges
for phage susceptible host subpopulations (Lourenco et al., 2020).
Such spatial heterogeneity is provided by the fact that the phages’
host bacteria (CAP) are endosymbionts of protozoa (Noda et al.,
2005). In addition, the existence of Phage TG-crAlp-04 and TG-
crAlp-06 as episomes in the bacteria cell might be a mechanism of
pseudolysogeny to ensure delayed lysis of infected cells (Cenens
et al., 2013; Shkoporov et al., 2021). Such stable and relatively
benign interaction suggests that bacteria and phages associated
with the protozoan endosymbionts in termite hind guts are
in a long-term partnership, maintaining high host population
abundance, which is up to 10> CAP bacteria cells per protozoa
(Noda et al., 2005).

Although lysis is likely delayed, both phages exist outside the
cell in form of virion particles at some point in their phage
cycle as evidenced by the fact that their DNA was collected
after a filtration process including DNase treatment (Tikhe and
Husseneder, 2018). Further studies are needed to determine how
crAss-like phages are able to penetrate both protozoa and bacteria
cells during the infection process.

Phylogenetic Study of Bacteria CAP and

Termite Phages

The putative host bacterium of both crass-like phages, CAP,
was present in C. formosanus and C. gestroi specimens, and
matched to related CAP strains from three other Coptotermes
spp and rhinotermitid genera retrieved from the NCBI database.
This suggests that CAP is a core bacterium in Coptotermes and
related genera of subterranean termites with the exception of
Reticulitermes. In a pilot study we used the primers developed

in this study to test workers of Reticulitermes flavipes for
CAP-related bacteria; however, amplification consistently failed.
A previous core microbiota study in R. flavipes detected bacteria
related to Azobacteroides with 3.44% abundance (Benjamino and
Graf, 2016). However, when we compared these sequences to
CAP genomes in GenBank the highest similarity was only 88%
indicating a rather distant relationship. To date (Jan. 2022) there
are no CAP sequences for R. flavipes in NCBI GenBank. This is
likely due to the lack of Pseudotrichonympha spp in termites of
the genus Reticulitermes (Song et al., 2021) and, in particular, in
R. flavipes termites (Lewis and Forschler, 2004).

Previous studies showed the Bacteroidales endosymbiont
(later identified as CAP, Ohkuma, 2003) of Pseudotrichonympha
cospeciated with protozoa and rhinotermitid species as part of a
triplex symbiotic system (Noda et al., 2007). Here we confirmed
the phylogenetic congruence between CAP and Coptotermes
species as well as closely related genera of subterranean termites.
A tight association has been shown to exist for the majority
of intracellular endosymbioses in insects (Bandi et al., 1995;
Moran and Telang, 1998; Noda et al, 2007; Ikeda-Ohtsubo
and Brune, 2009; Strassert et al., 2012; Zheng et al., 2015)
and is expected due to the crucial role the endosymbionts
play for their respective hosts. The vital functions of CAP
as nitrogen fixating and recycling endosymbiont that also
imports glucose and xylose as energy and carbon sources for
its protozoan host (Hongoh, 2010) and the obligate relationship
with Pseudotrichonympha protozoa, which are vital for efficient
cellulose digestion of their termite host, strengthen the triple
coevolutionary congruence. Furthermore, due to the strict
anaerobic nature of the protozoa environmental transfer of
symbionts is unlikely; the social lifestyle of termites promotes
horizontal transfer within colonies via proctodeal feeding and
long-term vertical transfer from the colony founders to offspring,
i.e., transfer occurs within a relatively closed system. The
high abundance of CAP bacteria in Pseudotrichonympha grassii
accounting for over 70% of the bacteria in C. formosanus workers
(Noda etal., 2005), facilitates stable transmission during protozoa
cell division. Overall, this important mutualistically adapted
symbiotic partnership supports cospeciation of symbionts and
termites at least in recent coevolutionary history of closely related
species (Bourguignon et al., 2018).

Intraspecific sequence analyses showed variation of only a
few base pairs in CAP sequences of C. formosanus populations
across geographical regions from the native and introduced
range. The lack of differentiation is unexpected, since both
historical and genetic studies showed that native and introduced
C. formosanus populations have been separated for decades if not
centuries (Evans et al., 2013, 2019). Colonies of C. formosanus
were thought to have been transported from the native range
of mainland China and Taiwan to Japan prior to the 17th
century (Su, 1987; Vargo et al., 2003). The first introductions
to the United States (Haverty et al., 1990) likely involved at
least two different sources with Hawaii serving as the bridgehead
for invasion of the United States mainland starting in the
1930s (Blumenfeld et al., 2021). Colonies of C. formosanus were
first described in Louisiana in 1966 (Spink, 1967), but were
likely introduced from the Pacific theater after World War II,
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which is consistent with their genetic similarity to Hawaiian
populations (Husseneder et al., 2012; Blumenfeld et al., 2021);
however, a separate introduction occurred into Florida (ca. 1940)
likely from southcentral China, which later became mixed with
populations from Louisiana and Texas (Blumenfeld et al., 2021).
Although the genotypes of the termite host populations have
clearly changed across their invasion history (Husseneder et al.,
2012; Blumenfeld et al., 2021) there is little distinction between
CAP strains, which indicates that CAP is a core bacterium of
C. formosanus. As a core bacterium, CAP was also found to be
part of the gut symbiont community carried by swarming alates
that become the founders of new colonies. Most likely, CAP gets
transferred to incipient colonies together with its protozoan host
and becomes the starter culture for populating the guts of the
worker offspring.

Unlike the results for the host bacterium, phage diversification
based on the signature genes encoding terminase and portal
protein was not associated with termite speciation. This may
indicate that phages could be evolving independently of their
termite hosts. However, the taxonomic range in the dataset was
limited since crAss-like phages have only been investigated in
two Coptotermes species and a single specimen of Prorhinotermes.
Future studies will determine whether co-cladogenesis of phage
variants and termite speciation occurs when a wider range of
taxa are considered and how evolution of these phages is linked
to their host bacteria. Nevertheless, the wide-spread presence
of phages similar to the crAss-like phages TG-crAlp-04 and
TG-crAlp-06 originally described from C. formosanus colonies
from New Orleans, LA, in both C. formosanus and C. gestroi
specimen across their native and introduced range suggests
that these phages are an important part of the gut microbiota
of Coptotermes spp. Their broad geographical association with
a host bacterium (CAP), which this study identified as a
core bacterium in Coptotermes and related termites, suggests
that the Phage TG-crAlp-04 and TG-crAlp-06 and closely
related variants belong to a core virome. Furthermore, our
study showed that swarming alates carry the phages in their
guts, ensuring propagation and inoculation of the new colony
with these phages.
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