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The tug-of-war model was developed in a series of papers of McFarland and co-authors

to account for existence of mutually counteracting rare advantageous driver mutations

and more frequent slightly deleterious passenger mutations in cancer. In its original

version, it was a state-dependent branching process. Because of its formulation, the

tug-of-war model is of importance for tackling the problem as to whether evolution of

cancerous tumors is “Darwinian” or “non-Darwinian.” We define two Time-Continuous

Markov Chain versions of the model, including identical mutation processes but adopting

different drift and selection components. InModel A, drift and selection process preserves

expected fitness whereas in Model B it leads to non-decreasing expected fitness. We

investigate these properties using mathematical analysis and extensive simulations,

which detect the effect of the so-called drift barrier in Model B but not in Model

A. These effects are reflected in different structure of clone genealogies in the two

models. Our work is related to the past theoretical work in the field of evolutionary

genetics, concerning the interplay among mutation, drift and selection, in absence of

recombination (asexual reproduction), where epistasis plays a major role. Finally, we use

the statistics of mutation frequencies known as the Site Frequency Spectra (SFS), to

compare the variant frequencies in DNA of sequenced HER2+ breast cancers, to those

based on Model A and B simulations. The tumor-based SFS are better reproduced by

Model A, pointing out a possible selection pattern of HER2+ tumor evolution. To put

our models in context, we carried out an exploratory study of how publicly accessible

data from breast, prostate, skin and ovarian cancers fit a range of models found in

the literature.

Keywords: Moran model, cancer evolution, drivers and passengers, drift and selection, simulation, breast cancer,

DNA sequencing

1. INTRODUCTION

Determining the type of selection prevailing in evolving populations of cancer cells is still an open
issue. There are many different models and views on the patterns of tumor evolution (McFarland
et al., 2014; Sottoriva et al., 2015; Williams et al., 2016; McDonald et al., 2018; Dinh et al., 2020b;
Tung and Durrett, 2021). In this paper, we plan to study clonal evolution patterns, produced by
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different mutation, drift and selection models. The topic is of
current interest, as it is believed that deciphering the past of
tumors leads to understanding of the causes of their growth and
progression. We also hypothesize that inference from molecular
data can be tied to the timeline of cancer progression before
diagnosis, which is not observed. The outcome may impact the
policies of early detection and prevention, which have public
health importance.

Much of the modeling work is based on classical models
of population genetics, generalized to accommodate time-
varying cell population size. Reverse-time, genealogical, views
of such models, commonly known as coalescent theory
(Griffiths and Tavaré, 1998), have been used to infer aspects
of the past of growing populations. Another approach is
using branching processes, the simplest scenario being the
linear birth-death process (lbdp), a binary fission Markov age-
independent branching process (McDonald and Kimmel, 2017).
A genealogical view of such models is also available (Lambert,
2008).

Variant allele frequency (VAF) spectrum, is the histogram of
relative frequency of variant reads based on bulk sequencing of
DNA extracted from tumor cells. This is the most frequent type
of data affordable in large quantities. Inference from evolutionary
models of DNA often exploits summary statistics of the sequence
data, a common one being the so-called Site Frequency Spectrum
(SFS), being an idealized version of VAF. In a sequencing
experiment with a known number of sequences we can estimate,
for each site at which a novel somatic mutation has arisen, the
number of cells that carry that mutation. A very simple example
is presented in Figure 1.

Cancer evolution is driven by two types of events: point
mutations (and deletions/insertions) and copy number
alterations, including major genomic rearrangements (Watkins
et al., 2020). In bulk sequencing data, these events are reflected
by changes in numbers of reference and variant reads. Existing
mathematical and computational approaches include mostly
techniques to estimate clusters of clones representing major
genome transformation events and their evolution. We recently
published a methodological paper (Dinh et al., 2020b) in
which we provide a method of rigorously inferring parameters
characterizing tumor evolution, based on analysis of site
frequency spectra (SFS) computed using sequencing data from
human tumors.

Our primary focus in the current paper is another approach
(McFarland, 2014; McFarland et al., 2014, 2017), the tug-of-war
model of evolution of cancer cell populations. The model became
quite popular as a conceptual paradigm, explaining in an elegant
manner the joint effect of rare advantageous and frequent slightly
deleterious mutations, which may be identifiable with driver and
passenger mutations in cancer (McFarland et al., 2017). Other
approaches include a series of models by McDonald and Kimmel
(2015) and McDonald et al. (2018), recently discussed among
other by Cheek and Antal (2020) and Tung and Durrett (2021).

Wewill discuss two different versions of the tug-of-warmodel,
both formulated as time-continuous Markov chains (TCMC).
Both are phrased in the terms similar to the multitype Moran
model. Moran model philosophy can be viewed as “competitive
replacement,” by which individual cells face each other and

inhibit each other’s right to be replaced by a direct descendant,
under pressure from restrictive environment. This is opposed
to the branching process “crowding out” in which a faster-
growing clone makes the slower-growing one rare to the extent
of nonexistence. Historically, a version interpolating between the
two approaches is the very influential Gerrish and Lenski model
(Gerrish and Lenski, 1998). The original tug-of-war model is
a state-dependent multitype branching process. We employ the
constant-population Moran framework, to exploit the mutation-
drift-selection interaction in a pure form. We will relate the
process to the SFS of breast cancers and their lymph-node
metastases.

As mentioned, we are among other interested in the testable
differences between the so-called Darwinian and non-Darwinian
mode of tumor evolution. We structure our models in such way
that in one of the models (Model A) expected fitness in absence
of mutations remains constant, while in the other (Model B) it is
only non-decreasing.

We begin with mathematical definitions of the Moran model
and branching process versions of tug-of-war. Then, in the
Section 3, we present mathematical and simulation results, which
demonstrate the differences between the long-term behavior
of the two versions. We also use some typical population
genetics non-neutrality tests to see how the effects of tug-of-war
competition are reflected in testing. Finally, we match the site
frequency spectra (SFS) obtained by simulation to the variant
allele frequency spectra (VAF) obtained from sequencing of
cancer DNA samples. Analysis will be based on the breast cancer
data at our disposal as well as on data from The Cancer Genome
Atlas (TCGA).

As pointed out by one the reviewers, for the last 10 years,
asexual evolution including complex linkage effects, random
mutation, and random genetic drift, has been described by the
traveling wave theory; see Good et al. (2012), which includes
a number of fundamental references. We also identified a
recent paper (Grossmann et al., 2020) which concerns using
the traveling waves theory to compare superdrivers to drivers
in cancer models. Although our approach is based on discrete
stochastic models, genealogies and direct simulations, linking it
with traveling waves seems to be an interesting possibility.

2. MODELS AND DATA

2.1. Site Frequency Spectrum
As mentioned in the Introduction, in a sequencing experiment
with a known number of sequences, we can estimate for each site
at which a novel somatic mutation has arisen, the number of cells
that carry that mutation. Inference from evolutionary models of
DNA often exploits summary statistics of the sequence data, a
common one being the so-called Site Frequency Spectrum. In a
sequencing experiment with a known number of sequences, we
can estimate for each site at which a novel somatic mutation
has arisen, the number of cells that carry that mutation. These
numbers are then grouped into sites that have the same number
of copies of a mutant. Figure 1 gives an example; time is running
down the page. The genealogy of a sample of n = 20 cells includes
13 mutational events. We can see that mutations 4, 5, 7, 10, 11,
12, and 13 (a total of 7 mutations) are present in a single cell,
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FIGURE 1 | The Site Frequency Spectrum (SFS). (A) Genealogy of a sample of n = 20 cells includes 13 mutational events, denoted by black dots. Mutations 4, 5, 7,

10, 11, 12, and 13 (total of 7 mutations) are present in a single cell, mutations 1, 2, and 3 (total of 3 mutations) are present in three cells, mutations 8 and 9

(2 mutations) are present in six cells, and mutation 6 (1 mutation) is present in 17 cells. (B) The observed site frequency spectrum, S20(1) = 7,S20(3) = 3,S20(6) = 2,

and S20(17) = 1, other Sn(k) equal to 0.

mutations 1, 2, and 3 (total of 3 mutations) are present in 3 cells,
mutations 8 and 9 (a total of 2 mutations) are present in six cells,
and mutation 6 is present in 17 cells. If we denote the number of
mutations present in k cells by Sn(k), we see that in this example,
Sn(1) = 7, Sn(3) = 3, Sn(6) = 2, and Sn(17) = 1, with all other
Sn(j) equal to 0. The vector (Sn(1), Sn(2), . . . , Sn(n − 1)) is called
the (observed) Site Frequency Spectrum, abbreviated to SFS. It
is conventional to include only sites that are segregating in the
sample, that is, those for which the mutant type and the ancestral
type are both present in the sample at that site. Mutations that
occur prior to the most recent common ancestor of the sampled
cells will be present in all cells in the sample; these are not
segregating and are called truncal mutations.

In most cancer sequencing experiments, we do not know
the number of cells that were sampled, and, indeed, the DNA
sequence of each cell cannot be determined from bulk sequencing
data. Nonetheless, we can estimate the relative proportion of the
mutant at each segregating site, and so arrive at a frequency
spectrum based on proportions. Accordingly, instead of writing
Sn(k), we write S(x) = S(k/n), with x treated as a continuous
variable, such that x ∈ (0, 1). We continue to use the term SFS
for such a spectrum, as there should be no cause for confusion. In
essence, S(x) is an idealized version of the empirical variant allele
frequency (VAF) graph. In addition, it is convenient for reasons
explained in Section 2.4 to define the cumulative tail of the SFS
S(x)

T(x) =

∫ 1

x
S(ξ ) dξ , x ∈ [0, 1] (1)

The theory that allows computing the expectations of SFS
in populations with a given growth law under the Infinite

Site Model (ISM) of mutation, was developed concurrently by
many researchers, with one of the seminal papers published
in 1998 by Griffiths and Tavaré (1998). The Griffiths-Tavaré
expressions are accurate but quite complicated. A computational
method which works fast even with very large sample sizes,
was developed in a series of papers by Polanski and Kimmel
(2003). Tractable approximations were derived under the
exponential growth hypothesis by Durrett (2013). A related
approach based on linear birth-and-death processes is that
by Lambert (2008).

2.2. Tug-of-War Between Drivers and
Passengers
We describe two versions of the Time-Continuous
Markov Chain tug-of-war process, comparison of which
relates to the question of Darwinian vs. non-Darwinian
evolution in cancer. Both versions describe directional
multiplicative selection. The parameters of the models are
as follows:

• N population size (number of cells),
• µ mutation rate per cell,
• p probability that mutation is an advantageous driver, 1 − p

probability that mutation is a deleterious passenger,
• (1 + s)α(1 − d)β fitness of a cell with α driver mutations

and β passenger mutations, where s is the selective advantage
of the driver, and d is the selective disadvantage of
the passenger

• the total rate of cell death at any given time, 6P , equals the
sum of the fitnesses of all cells in the population.

Further details concerning the transition rules in Models A and
B are provided below.
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2.2.1. Model A
In this version of the model, we put the tug-of-war in
the context of Moran model with multiple allelic types
that differ with respect to selective value, which serves as
mathematical framework for what can be viewed as “competitive
replacement,” by which individual cells face each other and
they compete with each other’s right to be replaced by a
direct descendant.

We consider a population of a fixed number N of cells,
each of them characterized by a pair of integers γi = (αi,βi),
corresponding to the numbers of drivers and passengers in its
genotype, respectively. This pair determines the fitness fi of the
i-th cell by the formula

fi = fi(αi,βi) = (1+ s)αi (1− d)βi , i = 1, . . . ,N, (2)

where s > 0, the selective advantage of the driver and d ∈ (0, 1),
the selective disadvantage of the passenger, are parameters
describing selective advantage of driver mutations over passenger
mutations. These are called the selection coefficients, of driver
and passenger mutations, respectively (see the Natural Selection
chapter of the book by Durrett, 2008). The multiplicative form
of the effect of multiple mutations is used in the population
genetics literature, because it corresponds to lack of biological
epistatic interaction; if one considers infinite population size, one
can show that different sites evolve independently under this
assumption (c.f., McFarland et al., 2014 for references).
There are two possible types of events: death - replacement
and mutation. Under the time-continuous Markov Chain model,
the times to nearest event are exponentially distributed. Briefly,
exponential distributions form a 1-parameter family, with the
parameter equal to the inverse of the expectation. The parameter
of the exponentially distributed time to the next death -
replacement event is equal to 6P =

∑

fi∈P
fi, where P is the set

of fitnesses of cells present before the death - replacement event.
We assume that the dying cell i is drawn from distribution biased
by fitness, i.e., with probability mass function (pmf) {fi/6P , fi ∈
P}. In addition, the replacing cell j is also drawn fromdistribution
biased by fitness, with pmf {fj/6P , fj ∈ P}. The end state may be
the same as the starting state (the replacing cell may be the same
as the dying cell).

The parameter of the independently distributed exponential
time to the next mutation is equal to Nµ, whereµ is the mutation
rate per cell. The cell, chosen with probability 1/N, undergoes a
mutation event, changing its state to either (α+1,β) or (α,β+1)
with (conditional) probabilities p ∈ (0, 1) and q = 1 − p,
respectively.

In summary, the time to the next event is random and
exponentially distributed with parameter

6P + Nµ (3)

called the total rate of death - replacement and mutation events.
Model B in the version we consider here, is defined similarly

to Model A, with the parameter of the exponentially distributed
time to death - replacement being equal to 6P , but the dying

cell i is drawn from a uniform distribution on all the N
cells before death - replacement (see Figure 2). We allow the
possibility that the end state may be the same as the starting
state (the replacing cell may be the same as the dying cell).
In the original formulation of Model B in Bobrowski et al.
(2021), this possibility was excluded, which lead to notational
differences. In this model, the time to the next event is random
and exponentially distributed with the parameter the same as in
Equation (3).

2.2.2. Model A vs. Model B
The most important difference is that of the expected value of
fitness increment in the population at the moment of death -
replacement in Model A vs. Model B. The fitness increment is
equal to the difference fj − fi, where fi, fj are fitnesses of the dead
cell and of the new cell, in the absence of mutations. The expected
fitness change for Model A is equal to

1fA =

∑∑

fi ,fj∈P
fifj(fj − fi)/6P

3A
= CA

∑ ∑

fi ,fj∈P

fifj(fj − fi) = 0

(4)
where CA is a constant.

However, the expected fitness change for Model B is equal to

1fB =

∑∑

fi ,fj∈P
fj(fj − fi)/6P

3B
= CB

∑∑

fi 6=fj∈P

fj(fj − fi)

=
CB

2

∑∑

fi 6=fj∈P

(fi − fj)
2 ≥ 0 (5)

where CB is a constant. 1fB = 0 if and only if all N cells have the
same fitness.

As a conclusion, trends in trajectories of Model A are expected
to depend only on the balance of drivers and passengers. The
trends in Model B are more complex, as explained in Bobrowski
et al. (2021). The drift and selection pattern in Model B biases it
toward increasing fitness.

2.2.3. Trends of Expected Fitness in the Mutation

Process
As mentioned earlier on, µ is the mutation rate. As a result
of mutation, the cell changes state to either (α + 1,β) (driver
mutation) or (α,β + 1) (passenger mutation) with probabilities
p ∈ (0, 1) and q = 1− p, respectively.

As noted by Bobrowski et al. (2021), the equilibrium condition
for no change of the expected fitness change resulting from a
mutation, has the form

ps = (1− p)d (6)

for both models. As a result, we obtain the expected fitness
unchanged by a mutation event if ps = (1 − p)d, increasing if
ps > (1 − p)d and decreasing if ps < (1 − p)d. For Model A, in
which the death - replacement process leaves the expected fitness
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FIGURE 2 | Graphical depiction of (A) Model A and (B) Model B. Notation: N, count of cells in the process; i, cell dying and to be replaced; j, cell replacing cell i;

t, current time; T, time to death - replacement event; f (α,β), fitness of cell with α drivers and β passengers; 6P =
∑

i f (αk ,βk ).

intact, the expected fitness trend follows the mutation process
trend. In Model B, the outcome is more complex, as explained
mathematically in Bobrowski et al. (2021) and using simulations,
further on.

2.3. Other Models
2.3.1. Site Frequency Spectra Under Neutrality and

Exponential Growth
Griffiths and Tavaré (1998) provide a general coalescent
framework for the expected number ESn(k) of mutant sites
having k copies of the mutant in a sample of size n, drawn
from a Wright-Fisher population model with size changing
deterministically in the past, under the Infinite Sites Model
(ISM). Among other, they showed that

ESn(k) = θ

n−k+1
∑

j=2

jpnj(k)ETj, (7)

where

pnj(k) =

(

n− k− 1

j− 2

)

/

(

n− 1

j− 1

)

, (8)

the Tj denoting the coalescence times for the model with
arbitrary functional form of growth or decline of the population
in the past. The expectations are generally difficult to derive
analytically, and therefore it is convenient to consider the
approximations provided by Durrett (2013), who showed that if
the population has been growing exponentially with growth rate
r, i.e.,N(t) = Nert , t < 0, whereN is the present population size,
then as N → ∞,

ESn(k) →
θ

r

n

k(k− 1)
, k = 2, . . . , n− 1, (9)

while

ESn(1) ∼
θn ln(rN)

r
, (10)

where∼ denotes asymptotic equivalence. This latter term follows
directly from Griffiths and Tavaré (1998) results.

Relevance of the singletons for cell DNA sequencing data
is questioned by many, since low-frequency variants are
routinely pruned by data-cleaning algorithms to avoid confusion
with sequencing errors. We discuss this question further on.
Concerning non-singletons, i.e., doublets, triplets, and so forth,
expression (9) implies that the total count of these mutations is
equal to

A =

n−1
∑

k=2

ESn(k) ≈

n−1
∑

k=2

θ

r

n

k(k− 1)
= n

θ

r

(

1−
1

n− 1

)

≈ n
θ

r

(11)
Operationally, expressions (9), (10), and (11) are the simplest
to use. Since our simulations will be performed using the
linear birth-death processes and not Wright-Fisher model with
exponential growth, we should in principle use the corresponding
SFS expressions, such as those derived in Appendix E to
Dinh et al. (2020b). However, these latter involve Gauss
hypergeometric functions and, numerically, they work verymuch
like Durrett’s approximations (see Dinh et al., 2020b; Figure 3).

2.3.2. Neutral Evolution With Episodic Selective

Sweeps
A model of tumor evolution can be based on competition of
clones with differential growth rates, which gradually replace
(sweep out) each other. The selective sweeps are initiated by
major “driver” events such as genome rearrangements or cancer
gene mutations. They are separated by neutral mutations not
affecting growth rates, but merely being ticks of a molecular
clock. In our recent paper (Dinh et al., 2020b), we developed a
sampling theory for such model. As we will see, the subsequent
genome clones will be reflected by humps superimposed on the
Griffiths-Tavaré neutral SFS.

In general, we assume a general clonal hierarchy, in which at
time ti, Clone i, 1 ≤ i ≤ m, branches off from Clone ji, where
0 ≤ ji ≤ m − 1, and ji < i, as depicted in Figure 3. Let us
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FIGURE 3 | General clonal hierarchy of tumor cells in the model of Dinh et al. (2020b). At time ti , Clone i, 1 ≤ i ≤ m, branches off from Clone ji , where 0 ≤ ji ≤ m− 1,

and ji < i, as depicted in figure. Let us note that j1 = 0, and for completeness we assume j0 = 0. Moreover we assume that cells in each Clone i mutate (neutrally)

according to the infinite sites model (ISM), i.e., each mutation occurs at a different genome site, with mutation rates θi per time unit per cell, and Clone i grows

exponentially at rate ri (Equation 12). At time tm+1, the tumor is diagnosed and the cell count at this time is denoted N. Finally, we assume that each clone is initiated

by a single cell of clone ji , the ancestry of which is marked by Ki mutations in Clone ji (Equation 13).

note that j1 = 0, and for completeness we assume j0 = 0. The
clonal structure can be summarized by an (m + 1,m + 1) clonal
hierarchy matrix B, which has the 0-th row filled with 0-s, and
each subsequent i-th row, i = 1, . . . ,m also filled with 0-s, except
for the ji-th column, where the entry equals 1.

Moreover, we assume that cells in each Clone i mutate
(neutrally) according to the infinite sites model (ISM), i.e., each
mutation occurs at a different genome site, with mutation rates
θi per time unit per cell, and Clone i grows exponentially at rate
ri. At time tm+1, the tumor is diagnosed and the cell count at this
time is denoted N. Therefore, the fraction of cells of any Clone i,
present at tm+1, is equal to

pi =
eri(tm+1−ti)

∑m
l=0 e

ri(tm+1−tl)
=

eri(tm+1−ti)

N
, i = 0, . . . ,m (12)

Finally, we assume that each clone is initiated by a single cell
of clone ji, the ancestry of which is marked by Ki mutations in
Clone ji, which are just measuring time to the genomic (or other)
event leading to the rise of Clone i. Alternatively, the last of these
mutations may be “the event” itself. In the expected value sense,
this leads to

Ki = θji (ti − tji ), i = 1, . . . ,m (13)

as depicted in Figure 3. In each clone accumulation of the neutral
mutations follows the rules of the infinite sites model (ISM), with
the resulting SFS similar as in Equation (9), specifically

ESn =
θi

ri

n

k(k− 1)
, i = 0, . . . ,m (14)

Two-clone toy example To understand how the model works, let
us use a two-clone toy example as depicted in Figure 4. Assume
that at time t0 = 0, the initial malignant cell population (Clone 0)

arises, grows exponentially in size at rate r0, these cells acquiring
mutations at the rate θ0 per time unit per cell. At time t1 > 0, a
secondary clone (Clone 1) arises, which differs from the original
clone with respect to growth rate (now equal to r1) and mutation
rate (now equal to θ1). We call this the “selective event.” The new
clone arises on the background of a haplotype already harboring
K1 mutations. Finally, at t2 > t1 > 0, the sample of DNA is made
available for sequencing. At that point, it is difficult to distinguish
cells arising from the two (or more) clones and the resulting
sample represents a mixture of DNA from both.

We assume that both clones start from single cells, so that
the sequenced sample comes from N = N0 + N1 cells, and the
number of cells in each clone is

N0 = exp(r0t2), N1 = exp(r1(t2 − t1)), (15)

and the fraction of clone i cells is approximately equal to

pi = Ni/(N0 + N1), i = 0, 1. (16)

Based on this, we use the neutral Griffiths-Tavareé SFS under
exponential growth to estimate the expected site frequency
spectra. We obtain the following expression for the expected
count of variants present in k copies in the sample of n cells

Qnk = ESn(k) =
A

k(k− 1)
+ K

(

n

k

)

pn−k
0 pk1 (17)

for k = 2, . . . , n, where

A = n

(

p0θ0

r0
+

p1θ1

r1

)

(18)

and notation Qnk has been retained for consistency with Dinh
et al. (2020b). The final take-out message from the toy example
is that (i) the total count of neutral non-singleton mutations in
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FIGURE 4 | An example of how the composite SFS for two clones (m = 1) arises under binomial sampling of DNA reads, with parameters , n = 30, K1 = 8, p1 = 0.4,

and A = 3.4. (A) Purely neutral SFS of Clone 0 based on the sample of n0 = 10 cells, mathematically q0k = p0n0θ0/[r0k(k − 1)], k = 2, . . . , n0 − 1. (B) SFS of Clone 1

based on the sample of n1 = 20 cells, with a spike representing all 20 cell having the K1 = 8 mutations defining Clone 1 and the neutral component, mathematically

q1k = p1n1θ1/[r1k(k − 1)]1(k < n1)+ K1δk,n1 , k = 2, . . . , n1. (C) Spectrum of the entire population, based on randomly sampled DNA reads from n cells, mathematically

Qnk , as in expressions (Equations 17, 18). The binomial hump is due to random sampling of different counts of Clone 0 and Clone 1 DNA reads, independently for

each mutation, yielding n1 ∼ binomial(n,p1).

both clones is equal to A, the area under the decreasing right-
skew component of the SFS, (ii) the total count of mutations in
the lineage leading to emergence of Clone 1 is equal to K, the area
under the binomial hump of the SFS, and (iii) the fraction of the
Clone 1 cells is equal to the central parameter of the hump of the
SFS. Parameters A, K and p1 are directly estimable from the SFS.

Back to general clonal hierarchies It is possible to extend
(Equation 17) to arbitrary number of clones. If the last clone
formed has index m, then the more general expected SFS
equation has the form

Qnk = ESn(k) =

m
∑

i=0

piAi

k(k− 1)
+

m
∑

i=1

Ki

(

n

k

)

(1− Pi)
n−kPki ,

k = 2, . . . , n− 1 (19)

where the form of Ai is deduced from Equation (14). The
relations between the centroid Pi of the i − th binomial hump
and the fraction pi of cells in the i − th clone results from the
fact that each clone’s binomial hump in the composite SFS arises
from the Kl mutation counts from all Clones l preceding clone i.
We skip the resulting algebra here.

2.3.3. Birth and Death Process With Mutations
Mathematical and simulation treatment of a model, introduced
by McDonald et al. (2018), was recently published by Tung and
Durrett (2021).

In the model we consider, clonal expansion begins with a
single cell of the original tumor-initiating type (type 0). Type 0
individuals give birth at rate a0 and die at rate b0, so the
exponential growth rate is λ0 = a0 − b0. For simplicity,
we will suppose that neutral mutations accumulate during the
individual’s life time at rate v, instead of only at birth.

Type 0 individuals mutate to type 1 at rate u1. Type 1
individuals give birth at rate a1 and die at rate b1. Their
exponential growth rate is λ1 = a1 − b1 where λ1 > λ0. All
type 1 mutations have the same growth rate.

Tung and Durrett (2021) demonstrate that if the fitnesses of
the two types are λ0 < λ1 then the site frequency spectrum
has the form of cf−α where α = λ0/λ1. Again, this is a
power-law SFS, due to the advantageous mutations that produce
the founders of the type 1 population. Mutations within the
growing type 0 and type 1 populations follow the 1/f law.
Authors assert that the results show that neutral evolution
can be distinguished from the two-type model using the site
frequency spectrum.
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FIGURE 5 | Comparison of cumulative tails in semi-logarithmic coordinates

yielded by different theoretical models of cell proliferation, mutation and

selection. Blue: Model A. Red: Model B. Both with identical parameters

s = 0.5, d = 0.0001, L = 6, p = 0.01, t = 100, and N = 200. Green:

Multiclone model of Dinh et al. (2020b), with parameters m = 3, n = 200,

A = 40, K1 = 5, K2 = 15, P1 = 0.5, and P2 = 0.3. Purple: Model of McDonald

et al. (2018), based on a smoothed version of a Figure in Tung and Durrett

(2021).

2.4. Comparison of SFS Tails in Different
Models
Figure 5 depicts cumulative tails of the SFS in semi-logarithmic
coordinates, yielded by different theoretical models of cell
proliferation, mutation and selection. Comparison of cumulative
tails, as opposed to probability mass functions or probability
distribution functions, seems meaningful for several reasons;
(i) the cumulative tails are smoother, (ii) they are all inscribed
into a unit square, if VAF frequency x = m/n is used as
an argument, (iii) semi-logarithmic coordinates allow resolving
differences in the “deep tail” (T(x) small), and (iv) they are
less sensitive to differences in T(x) for x small, which might be
caused by DNA sequencing errors and data “massaging.” Blue
and red curves correspond to Models A and B with parameters
for which Model A seems to be fitting our breast cancer data best
(see Results). The relationships between Models A and B SFS, is
investigated further on. Multiclone model of Dinh et al. (2020b)
leads to a tail that is characteristic of such cancers as advanced
ovarian cancer or melanoma (see further on). McDonald et al.
(2018) model tail seems to be similar to Model B, but Model B
exhibits a range of patterns (see Results).

2.5. Neutrality Testing
The hypothesis of selective neutrality, leading to the “neutral"
theory of evolution, is credited to Kimura (1968). The theory
assumes that the number of mutations that have occurred by
random stochastic processes without selective impact, strongly

exceeds the number of mutations affected by selection. The
aim of neutrality testing is to determine whether the observed
alelle counts a1, ..., an conform to what is expected under null
hypothesis assuming neutrality, given the sample size n and the
observed number k of alleles in the sample.

Accordingly, in the present analysis, we use counting rules
such that each new mutation is creating a new allele in the
individual cell, i.e., using the infinite allele model (IAM). This
allows using neutrality tests based on the Ewens Sampling
Formula.

2.5.1. Expected Allele Count
The properties of a sample of n genes under infinitelymany alleles
version of theWright-Fisher model are best summarized through
the following (approximating) partition formula. Let us define
A = (A1,A2, ...,An) where Ai if the number of alleles present in
exactly aj cells (out of n) in the sample. With this definition, the
following expression, the well-known Ewens Sampling Formula
(ESF) was derived by Ewens (1972) and Karlin and McGregor
(Karlin, 1972). It describes the distribution of selectively neutral
alleles under mutation-drift equilibrium, and under the infinite
allele model.

P(A = a) =
n!θ

∑

aj

1a12a2 ...nana1!a2!...an!Sn(θ)
, (20)

where a = (a1, a2, ..., an) and Sn(θ) is defined by

Sn(θ) = θ(θ + 1)(θ + 2)...(θ + n− 1) (21)

where θ is the scaled mutation rate (see next praragraph). Let
us denote

∑

Aj, the (random) number of different allelic types
seen in the sample, by K, and

∑

aj, the corresponding observed
number in a given sample, by k. We have

∑

jAj =
∑

jaj = n.
From Equation (20) the probability distribution of the random
variable K can be obtained as

P(K = k) = |Skn|θ
k/Sn(θ), (22)

In our case, n = N, and θ = nµ/λ, where µ denotes
mutation rate and λ corresponds to allele fitness (in the neutral
case fitness is always equal to 1). Fitness correction is added
to account for cell generation length in the model, which is
inversely proportional to fitness. Quantity |Skn| is the coefficient
of θk in Sn(θ) and is calculated as the absolute value of a
Stirling number of the first kind. Both these symbols result
from mathematical derivations and do not seem to have a direct
biological interpretation. Expression (22) with the mutation
rate θ known provides the distribution under null hypothesis of
neutrality i.e., the hypothesis that the alleles in the sample are
selectively equivalent. Empirical distribution under alternative
hypothesis of Model A or B with different s and d coefficients
can be obtained by running the model a large number of times
and obtaining frequencies of alleles present in given number of
cells. Then the empirical distribution can be compared to the
analytically expressed null, using a goodness of fit test such as the
one-sample Kolmogorov-Smirnov (K-S) test.
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2.5.2. Expected Singleton Count
In this case the testing procedure is based on the sample
frequency spectrum. Let us again define Aj as the random count
of alleles in the sample that are represented by exactly j genes. For
given k and n the mean value of Aj can be found directly as

E(Aj|k, n) =
n!

j(n− j)!

|S
n−j

k−1
|

|Sn
k
|

(23)

In this expression, the Sij are values of Stirling numbers of the

first kind, the array of the E(Aj|k, n) values for j = 1, 2, ..., n
is the sample conditional mean frequency spectrum, and the
corresponding array of observed values aj is the observed
conditional frequency spectrum. The j = 1 term in both these
vectors is singleton count.

The singleton distribution under neutrality (null hypothesis)
is approximated by substituting into expression (23), with j = 1,
the empirical k from each simulation run, thus obtaining the
conditional expectation of singleton count given K = k, and
computing the empirical distribution of these expectations. This
latter is then compared to the empirical distribution of singleton
count from all runs of themodel. For this purpose we use the two-
sample two-sidedWilcoxon test, which is particularly sensitive to
differences of central tendencies such as means or medians, but
less so to differences in shape. Two-sample tests are justified by
the semi-empirical nature of the null distribution.

2.6. DNA Sequencing of Cell Samples From
Breast Cancer Specimens
2.6.1. DNA Sample Collection and Processing
Paired tissue samples from primary breast tumor locations and
concurrent metastasis to regional lymph nodes were collected at
the Department of Applied Radiology of the Maria Sklodowska-
Curie National Research Institute of Oncology, Krakow Branch
(Poland). Cancer specimens were matched with specimens
of normal tissue used as a reference for individual genetic
background (control samples). Two sets of 3 samples each,
called specimens G30 and G31, are HER2+ breast cancers. DNA
samples were isolated at the Department of Applied Radiobiology
from macro-dissected FFPE tissue specimens, processed to
generate DNA libraries and sequenced using Illumina HiSeq
platform (with min. 100x coverage).

Quality control whole exome sequencing (WES) experiment
was conducted using FastQC and FastQ Screen. Raw reads
were aligned to the GRCh38 reference genome using the
BWA mem (v0.7.17) (Li, 2013) in the alternative contigs-aware
mode. All aligned reads were processed using MarkDuplicates
algorithm from the Picard tool set and BaseRecalibrator
which is a part of the Genome Analysis Toolkit (GATK
v4.1.4.0) (DePristo et al., 2011). Somatic mutations were
identified using MuTect2 (v4.1.4.0) (DePristo et al., 2011)
using tumor-normal sample pairs. Variants were filtered
using GATK’s FilterMutectCalls based on MuTect2 results,
as well as sample contamination estimates obtained using
CalculateContamination tool and read orientation bias statistics
obtained with LearnReadOrientationModel tool. All retained
variants were annotated using the Variant Effect Predictor

(v100) (McLaren et al., 2016). Further details concerning the
quality control issues and a comparison between FFPE vs. FF
(fast-frozen) DNA quality, are presented in the Part 3 of the
Supplementary Materials.

2.6.2. Removal of Coverage Difference Bias
In the experimental dataset, differences of coverage of variant
sites by sequencing reads are present, which might bias the
estimation of variant allele frequencies of mutations present both
in the primary and in lymph node metastases. In order to correct
for this effect, a total count histogram equalization method was
developed. The method is based on resampling and it helps to
minimize the effect of variation of total number of reads between
the primary tumor sample and lymph node sample on the shape
of their respective Site Frequency Spectra. The correction it yields
is not large but seems noteworthy. We proceed as follows.

1. Histograms of total read counts are generated for both samples
of the same individual. It is necessary to employ a common bin
width for both histograms.

2. For each bin, the lower count among the two histograms is
chosen as the new desired count for an equalized histogram.

3. The variants are sorted by total count of reads separately
for lymph node sample and primary tumor sample. Sorted
variants are divided based on the total count of reads into
subsets corresponding to bins of the desired histogram.

4. For each bin, the corresponding subset with greater number
of variants (lymph node or primary tumor) is pruned by
randomly choosing the desired number of variants.

3. RESULTS

Simulations presented in the Results section were performed with
N ranging from 50 to 400 cells. This range of N allows carrying
out direct simulations in manageable time. We devote part of
Discussion section to biological interpretation of parameters.

3.1. Simulation Studies of Models A and B
Simulation results illustrating the behavior of the A and B
models are ordered according to the fitness trend predicted by
Equation (6). All simulations presented in this section were
performed on 100 cells. The duration of simulation was generally
equal to t = 100, except in the case of high driver influence
(sp > dq), where it was reduced to t = 60 due to the high
memory demand.

3.1.1. Models A and B Without Driver and Passenger

Impact, s = d = 0
In the absence of driver and passenger impact (s = d = 0)
fitness of all cells is constant and equal to the initial value. To
check how selection and drift processes impact the fitness of the
population we consider the scenario in which there is lack of
mutation process, but initial numbers of drivers and passengers
affecting initial fitness are drawn from exponential distribution
with parameters 10×p and 10×(1−p), respectively and rounded
to the nearest integer.

Trajectories of average fitness for 100 simulations are
presented in Figure 6. Mean fitness of 100 simulations remains
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FIGURE 6 | Average fitness of cells as a function of time. Results for 100 simulations involving N = 100 cells with no mutation, but with initial number of drivers and

passengers drawn from exponential distribution with parameter 10× p for number of drivers and 10× (1− p) for passengers, with p = 0.5 and rounded to the nearest

integer. (A) Model A; (B) Model B. Bold lines represent means of average fitnesses from 100 simulations.

almost constant and equal to 1 in Model A (Figure 6A), as
expected by Equation (6), while in Model B increase in fitness
is observed due to replacement of dying cells by the fitter ones
(Figure 6B).

For both models we chose single simulations to show changes
in fitness and percentage of given clone in population. In both
cases, in initial phase of the simulation less fit clones are purged
from population and replaced by a few clones with higher fitness
(Figures 7A,B).

3.1.2. Symmetric, sp = d(1 − p), Case of Models A

and B
The following examples include the process of mutation. In all
simulations the initial population is homogeneous with no driver
or passenger mutations and with fitness of all cells equal to 1.
Observed trends in average fitness depend onmutation and death
- replacement events.

Assume that the impact of driver and passenger mutations
is in equilibrium - the less frequent appearance of drivers is
balanced by higher impact s on the fitness of given clone. Based
on Equation (6) no systematic trend in fitness is expected, as
confirmed for Model A simulations (Figure 8A). For Model B,
despite accumulating passenger mutation, the average fitness
slightly increases, due to the drift process favoring fixation of
clones with higher fitness (Figure 8B). The dynamics of fitness
increase in the Model B is also different than in the Model A.

The time succession plots (Figures 9A,B) are kept in the same
convention as in previous example, but for clarity shown are
only clones originating from driver mutation. The fitness of such
clone, represented by corresponding shade of color as shown on
scale bar next to the figures, is calculated as an average across all
passenger clones sharing the same driver mutation.

Results obtained with the use of Model A have higher number
of clones with wide spectrum of fitness (Figure 9A), while in the
case of Model B a few clones with higher fitness dominate the
population (Figure 9B).

In Figure 9 we compare also genealogies of the clones. Results
are shown in the form of ancestor-descendant trees depicting
relationship between clones, but without specifying the time at
which given clone appeared. The numbers next to the circles
represent the order number of a clone. For clarity the graphs are
showing only clones starting from a driver, alive at t = 100. The
total number of clones which appeared during the simulation is
equal to 992 in the case of Model A (Figure 9C) and 1,041 in the
case ofModel B (Figure 9D). Drivermutations aremarked by red
lines. The topology of genealogies in equilibrium case (sp = dq)
is similar for both models.

3.1.3. Asymmetric, sp 6= d(1 − p), Case of Models A

and B
We now consider the case in which the impact of driver
mutations is high, while the passengers have no impact on fitness
of cells. In such case sp > dq, and the average fitness is expected
to rise. Expected behavior is observed in results obtained by both,
Model A and B (Figures 8C,D); however the shape of trajectories
is different due to a much higher number of events observed in
Model B (despite similar number of mutations), which leads to
the takeover of the population by clones with higher fitness.

The time succession patterns and the number of living clones
at the end of simulation also vary substantially between both
Models (Figures 10A,B and Supplementary Figures S1A,B).

In the last scenario, we consider situation with no impact
of driver mutations, but high impact of passenger mutations
(sp ≪ dq). Results demonstrate very clearly the qualitative
differences between A and B Models that may be overlooked in
more balanced examples.

Based on Equation (6) we expect falling values of average
fitness as seen in Model A result (Figure 8E). The behavior of
average fitness in Model B simulations does not fit well into
these expectations. After initial period of decreasing, the average
fitnesses are balancing around certain level, not dropping to zero
(Figure 8F).
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FIGURE 7 | Time succession patterns of clones colored according to their fitness. Results of one simulation on N = 100 cells with no mutation process, but with initial

number of drivers and passengers drawn from exponential distribution with parameter 10× p for number of drivers and 10× (1− p) for passengers, with p = 0.5.

(A) Model A; (B) Model B.

Time succession plots also differ between the results of
simulations of models A and B. In the case of Model A, large
number of clones with low fitnesses emerge (Figure 10C), while
in Model B, these are continually removed from the population
and replaced by clones with fitness close to 1 (Figure 10D). Note
that in both figures, only clones starting from driver mutations
are presented, which indicates that in the case of Model A,
driver mutations arise on the background of the large number
of passenger mutations and are not able to overcome this effect,
while in the case of Model B, clones with passenger mutations are
not fixed in the population, but are replaced by clones with higher
number of drivers.

The difference between bothModels is noticeable also in clone
genealogies (Supplementary Figures S1C,D), with Model A
having much more clones alive at the end of simulation. The
overall number of events is higher in case of Model B, but
the percentage of mutation events is much higher in case of
Model A.

3.1.4. Neutrality Tests
In the following section we present the outcome of neutrality
testing (see earlier on) of the simulation results obtained
using Models A and B. In all cases tests were performed on
samples including 1,000 simulation results. Top panels show
the comparison between the number of alleles (k) observed
in simulation results and the number of alleles which is
theoretically expected, while bottom panel presents number

of singletons expected and observed in simulation results.
In the latter case narrower red bars representing simulated
spectra of singletons are placed “in front” of expected spectra
(blue bars).

One-sample Kolmogorov-Smirnov tests were performed to
examine the hypothesis that the empirical distribution of allele
count fits the theoretical one (Models A and B). To examine the
hypothesis that simulated singleton counts fitted the distribution
simulated under neutrality, we performed two-sample two-sided
Wilcoxon tests.

Figure 11 shows the neutrality testing outcomes for the case
with no impact of driver or passenger mutations (s = d = 0).
Note the difference between the following example and the case
described in Section 3.1.1: mutation process is present here, but
mutations do not affect cell fitness.

In the case of both Models, the simulated allele counts adhere
to expected values (Figures 11A,B). The empirical singleton
counts in both cases (Figures 11C,D) slightly differ from
expectations in shape but not in central tendency.

We performed the same type of analysis for the remaining
cases. Results are presented in Supplementary Figures S2–S4.

3.2. Comparison of Simulated SFS to Data
Obtained From Breast Cancers
Semi-logarithmic cumulative tails of variant allele frequencies
(VAF) from the breast cancer samples G30 and G31 from
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our collection have been compared to the semi-logarithmic
cumulative tails of SFS generated from model A and model B
simulations.

Here we present the results for raw and resampled data (details
regarding reducing coverage bias procedure are described in
Section 2.6.2).

Simulated datasets trace the sensitivity to varying

• the number of individuals N, with a concurrent change in µ,
so the product of both remains constant (Figure 12),

• the s and d coefficients (Figures 13A,B and
Supplementary Figure S5),

FIGURE 8 | Average fitness of cells as a function of time. Bold lines represent the mean of average fitnesses from 100 simulations. (A,B) Results for 100 simulations

on N = 100 cells in equilibrium (sp = dq) with parameters: s = 0.1,d = 0.01,µ = 0.1,p = 0.0909. (A) Model A; (B) Model B. (C,D) Results for 100 simulations on

N = 100 cells under selection (sp≫ dq) with parameters: s = 0.5,d = 0,µ = 0.1,p = 0.1. (C) Model A; (D) Model B. Please note that the time range in plots C and D

is 0 to 60, since some of the trajectories grow too fast to be accomodated by computer memory limits. (E,F) Results for 100 simulations on N = 100 cells under

negative selection (sp < dq) with parameters: s = 0,d = 0.5,µ = 0.1,p = 0.1. (E) Model A; (F) Model B.
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FIGURE 9 | Time succession patterns. Clones started with driver mutations are colored according to average fitness of given clone. Results of one simulation on

N = 100 cells with parameters: s = 0.1,d = 0.01, µ = 0.1, p = 0.0909. (A) Model A; (B) Model B. Genealogy of clones. Results of one simulation on N = 100 cells

with parameters: s = 0.1,d = 0.01,µ = 0.1,p = 0.0909. (C) Model A–genealogy of clones started from driver mutation, alive at t = 100 (out of 992 clones emerged

through the time of simulation). (D) Model B–genealogy of clones started from driver mutation, alive at t = 100 (out of 1041 clones emerged through the time of

simulation).

• the simulation time (Figures 13A,B and
Supplementary Figure S5), and

• the mutation rate µ, with population size N kept constant
(Figure 14).
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FIGURE 10 | Time succession patterns. Clones started with driver mutations are colored according to average fitness of given clone. (A,B) Results of one simulation

on N = 100 cells with parameters: s = 0.5,d = 0, µ = 0.1, p = 0.1 (sp > dq). (A) Model A; (B) Model B. (C,D) Results of one simulation on N = 100 cells with

parameters: s = 0,d = 0.5, µ = 0.1, p = 0.1 (sp < dq). (A) Model A; (B) Model B.

Additionally, for both Models we explored following
parameter values: (i) d = 0, d = 0.001, d = 0.1
(ii) s = 0, s = 0.5, s = 1; (iii) L = 1, L = 5, L = 10 (in

all possible combinations, with p = 0.01 and N = 200, see
Supplementary Figures S10–S12). In all cases simulation time
was equal t = 100.
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FIGURE 11 | Results of neutrality testing for allele counts (top panels) and singleton number (bottom panels) calculated for simulations with parameters: s = 0,d = 0,

µ = 0.1, p = 0.5. (A) Model A. One-sample Kolmogorov-Smirnov test does not reject the null hypothesis that the empirical distribution of allele count fits the expected

one at the 5% significance level (p = 0.62). (B) Model B. One-sample Kolmogorov-Smirnov test does not reject the null hypothesis that the empirical distribution of

allele count fits the expected one at the 5% significance level (p ≈ 1). (C) Model A. Two-sample two-sided Wilcoxon test does not reject the null hypothesis that

simulated and expected singleton counts come from distributions with equal medians at 5% significance level (p = 0.48). (D) Model B. Two-sample two-sided

Wilcoxon test does not reject the null hypothesis that simulated and expected singleton counts come from distributions with equal medians at 5% significance level

(p = 0.83).

The site frequency spectra are calculated based on observed
allele frequency at the end of simulation (t = 100 in all cases)
and presented as semi-logarithmic cumulative tails.

For the two patients G30 and G31, semi-logarithmic
cumulative tails of the SFS obtained from Model A fit the
experimental data well (Figures 12A,B, 13A), while results
obtained with the use of model B do not fit the tails of
VAF from breast cancer sample G30 (Figure 13B) or G31
(Supplementary Figure S5).

4. DISCUSSION

The analysis of the two models we discuss in the current paper is
relevant for two topics widely discussed in population genetics.
One of them, of current interest, is in what sense the evolution
in cancers is “Darwinian.” The other, with much more profound
roots, concerns the interaction of mutation, drift and selection in
asexual populations.

In our Model A the drift and selection component does not
increase fitness as demonstrated by Equation (4). Expected fitness

behaves precisely as predicted by the mutation balance, increases
with the drivers prevailing (sp > dq), decreases with passengers
prevailing (sp < dq), and remains constant at mutational
equilibrium (sp = dq).

Model B, patterned after the model introduced in Bobrowski
et al. (2021), behaves in a more complex manner. The drift and
selection component increases expected fitness as demonstrated
by Equation (5). Expected fitness cannot be predicted by the
mutation balance only, although it increases with the drivers
prevailing (sp > dq). However, with passengers prevailing
(sp < dq), the fitness may decrease or increase depending on how
much smaller sp is than d(1 − p). Fitness generally increases at
mutational equilibrium (sp = dq). These effects seem consistent
with the so-called drift barrier, which prevents the deleterious
passenger mutations from dominating fitness change too easily.

One of the fundamental problems in understanding the
evolution of cancerous tumors is the pattern of selection present
there. In blood tumors, which evolve mostly in the bone marrow,
the disease is confined to a restricted environment, although
cellularity of the bone marrow tends to be increased (see the
analyses in Dinh et al., 2021). Moran model with selection was
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FIGURE 12 | Comparison of semi-logarithmic cumulative tails of the SFS obtained for experimental data from (A) patient G30 and (B) patient G31 with four sets of

simulations with parameters: s = 0.5, d = 0.0001, p = 0.01, L = Nµ = 6, and variable population size N.

shown to lead to predictions consistent with clinical findings in
evolution of myeloid dysplastic syndrome from severe congenital
neutropenia (Wojdyla et al., 2019; Dinh et al., 2020a). In solid
tumors, the growth is more expansive, although a range of growth
patterns are present. Ling et al. (2015) presented an analysis
of a cross-section of human liver cancer, sampled genomically
in around 300 locations, which seems to demonstrate lack of
departure from the neutral mutation Infinite Sites Model, based
on the analysis of SFS using the Durett’s approximate formula
(Durrett, 2013). More recently, McDonald et al. (2018) argued
that available bulk sequencing data do not necessarily support a
model of neutral tumor evolution, based on a birth-and-death
process model. This model was recently analyzed mathematically

by Tung and Durrett (2021), who state it may be used as another
test of “Darwinian” selection.

In the realm of neutral theory, a large number of models
were developed, from which analytical or at least computational
expressions for the expectation of SFS can be derived.
The classical model of Griffiths and Tavaré (1998) includes,
among other, an expression for the SFS under Wright-Fisher
model with arbitrarily varying population. This expression
was rearranged to make it computable for large samples
by Polanski and Kimmel (2003). In the case of exponential
population growth, Durrett (2013) provided an approximate
large sample and large population expression, which leads
to the conclusion that, in this case, the SFS cumulative tail
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FIGURE 13 | Comparison of semi-logarithmic cumulative tails of the SFS obtained for experimental data from patient G30 with average from 100 simulations with

parameters L = Nµ = 6 and p = 0.01. (A) Model A; (B) Model B.

in the log-log scale should be approximated by a straight
line with coefficient −1. Working directly with a birth-death
process with binomial sampling, Lambert and Stadler (2013)
developed an SFS expression, which is easily computable
and surprisingly leads to curves very similar to Durrett’s
approximation of Griffths-Tavaré’s SFS (see a comparison inDinh
et al., 2020b).

Against this background, we now discuss our tug-of-war type
Models A and B. Let us note that Dinh et al. (2020b) developed a
model of neutral evolution with selective sweeps, which generates
humps overlapping the neutral Griffths-Tavaré’s spectrum. This
model seems appropriate for tumors with distinctive genomic
clones, such as lung cancer, displaying "punctuated" evolution

(Davis et al., 2017). However, in our breast cancer spectra (e.g.,
Figures 12A,B), we do not observe “humps,” although it was
suggested in Gao et al. (2016) that the evolution of aneuploidy
in breast cancer proceeds in a punctuated manner. In addition,
it is known that under neutral Wright-Fisher (or Moran) model
as, e.g., recently studied by Gunnarsson et al. (2021), the SFS tails
are approximately x−2 if the population is growing exponentially,
and x−1 if it is constant. Models A and B exhibit power-law
tails if s = d = 0, i.e., under “strict” neutrality. The x−2 SFS
tail implies the x−1 cumulative tail T(x), leading to straight line
with −1 slope in log-log coordinates. Tung and Durrett (2021)
paper also implies a power law, albeit a different one. Power
laws in general predict a decreasing straight-line cumulative
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FIGURE 14 | Comparison of semi-logarithmic cumulative tails of the SFS obtained for experimental data from patient G30 to simulations with Model A with varying µ.

Average from 100 simulations on 200 cells at time t = 100. s = 0.5, d = 0.0001, p = 0.01, N = 200.

FIGURE 15 | Evolution of clones with increasing fitness, according to Model A. Depicted are logarithmic cumulative distribution tails log10 T (f ) of logarithmic fitness

log10 f , for a series of times t = 3, 5, 10, 15. Parameter values, s = 0.5, d = 0.05, p = 0.1, L = Nµ = 10.

SFS tail when plotted in the log-log scale. In contrast, in the
breast cancer data-based spectra, the cumulative SFS tails seem
slightly convex in semi-logarithmic scale, but concave in log-log
coordinates (Supplementary Figures S6–S9), this latter making
them inconsistent with power laws.

If the SFS of the breast cancer specimens G30 and G31 are
compared to predictions of Models A and B, it becomes clear
that it is Model A, which is fitting at least approximately, and
not Model B. To see this, compare Figure 13A to Figure 13B.
The striking qualitative difference between SFS cumulative tails
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T(x) generated by Model A and by Model B is preserved
for a wide range of parameter values. Specifically, Figure 13
and Supplementary Figures S10–S12 demonstrate this for a
range of parameters s, d, L and p. In addition, extending
time beyond t = 100 does not alter the SFS markedly.
Figures 12A,B demonstrate that increasing N seems to change
only slightly the simulated cumulative SFS tail for given s
and d, provided parameter L = Nµ stays constant, except
for the “deep tail” below the T(x) = 10−4 mark. On the
contrary, in case when population size N is constant and the
varied parameter is mutation rate µ (impacting L parameter
value), the corresponding SFS cumulative tail trajectories vary
more (Figure 14).

How does the Model A fit to cancer data relate to biological
parameters? Let us note that for L = Nµ = 6, which provides
feasible fits to the empirical SFS tails in Figure 12, if N = 400
is accepted, we obtain mutation rate µ = 0.0175 [time unit−1],
which is not very different from the expected rate per exome
(ca. 1% of genome) per cell division. This corresponds to the
time scale of single model time unit per division. This scaling
is appropriate if we apply the model to a population of several
hundred cells. This is equivalent to the typical coverage value of
a bulk sequencing sample (for details, cf. Dinh et al., 2020b). If
the effective population size is larger, the time scale has to be
different, which will affect the transients of the model. Another
context in which these estimates are realistic, is under assumption
that the clonal structure of tumors is due to a small count
(102 − 104) of cancer stem cells, having indefinite proliferative
potential, with the rest of tumor cells capable of only limited
division count.

Finally, let us note that it sometimes makes sense to consider
cancer growth in the framework of constant-population models.
Our models correspond to the situation in which a constant
population of N “healthy” stem cells is gradually replaced by a
growing clone of transformed cells with increasing fitness. This
is exemplified in the simulation in Figure 15, which shows the
gradual rise of a clone with fitness up to several times the fitness of
initial “healthy” cells. This is very similar to evolution of relapsing
leukemic clones as in Dinh et al. (2021).

We acknowledge that our approach is related to the past
theoretical work in the field of evolutionary genetics, such
as Peck (1994), Johnson and Barton (2002), Bachtrog and
Gordo (2004), Good and Desai (2014, 2015), and Rouzine
et al. (2003). These papers concern the interplay among
mutation, drift and selection, in absence of recombination
(asexual reproduction), where epistasis plays a major
role. Most of these papers concern the role of the drift
barrier and effects such as Muller’s ratchet. There exist
similarities and differences between these models and
ours, analysis of which requires much more research than
possible here.

In addition in Supplementary Material Part 2, we illustrated
comparisons of the model-generated SFS cumulative tails
(Models A and B, model of Tung and Durrett (2021), and
the multiclone model of Dinh et al. (2020b), to SFS obtained
from 4 TCGA cancers, breast, prostate, skin melanoma, and
ovarian. Among breast cancers, we found a number that

fit Model A or model B, while prostate cancers seem to
not fit Models A or B. Melanoma and ovarian cancers SFS
frequently conform to the multihump (Dinh et al., 2020b)
model. As for Tung and Durrett (2021), this model produces
tails similar to a case of Model B. These comparisons
illustrate a wide range of patterns of SFS in different cancer
types.

As noted in Results and Supplementary Materials, neutrality
tests based on the distribution of singleton counts and Ewens
Sampling Formula indicate deviations from null hypotheses for
both Model A and model B, except for the “truly neutral” case of
s = d = 0. A related question is behavior of Models A and B
under population growth, such as in a branching or birth-death
process model.

To conclude, two different Moran-type models of the Tug-
of-War process are based on underlying drift and selection
mechanism which either preserves expected fitness (Model A)
or is biased toward fitness increase (Model B). Therefore, fitness
change in Model A depends on the mutational balance only
(see Section 2.2.3). Based on simulation results, Model A and
Model B are leading to SFS with the qualitative difference
persisting over a range of parameters and times. Model A seems
to better fit the HER2+ breast tumor data. Model A is consistent
with the fitter cells reaching division (“dying”) faster and being
replaced preferentially by fitter cells. This evolution mode is also
“Darwinian,” but leading to different SFSs.
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