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Elucidating the diversification process of congeneric species makes

it necessary to identify the factors promoting species variation and

diversification. Comparative gene family analysis allows us to elucidate the

evolutionary history of species by identifying common genetic/genomic

mechanisms underlying species responses to biotic and abiotic environments

at the genomic level. In this study, we analyzed the high-quality

transcriptomes of four Datura species, D. inoxia, D. pruinosa, D. stramonium,

and D. wrightii. We performed a thorough comparative gene family

analysis to infer the role of selection in molecular variation, changes in

protein physicochemical properties, and gain/loss of genes during their

diversification processes. The results revealed common and species-specific

signals of positive selection, physicochemical divergence and/or expansion

of metabolic genes (e.g., transferases and oxidoreductases) associated with

terpene and tropane metabolism and some resistance genes (R genes). The

gene family analysis presented here is a valuable tool for understanding the

genome evolution of economically and ecologically significant taxa such as

the Solanaceae family.

KEYWORDS

comparative genomics, Datura, gene family analysis, positive selection, secondary
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Introduction

One of the fundamental endeavors in biology is to unravel the process and
mechanisms of species diversification (Savolainen et al., 2013). The development of
phylogenetic theory (Hennig, 1950, 1966), followed by the generation of massive
DNA sequence datasets, increased computing power, and the proliferation of analytical
methods (e.g., maximum likelihood, Bayesian inference, Bayesian molecular dating), has
led to the recognition of the temporal dynamics of evolutionary radiation (Magallon
and Sanderson, 2001; Alfaro et al., 2009; Stadler, 2011; Nürk et al., 2020). In addition,
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recent advances in genomics and bioinformatics have allowed
the elucidation of the transcriptome and genome assemblies
of several plant species (Leebens-Mack et al., 2019), which
constitute the basic resources to find candidate genes underlying
physiological, developmental, and ecological traits involved
in species diversification (Eckardt, 2001; Ehrenreich and
Purugganan, 2006; Anderson et al., 2011; Chang et al., 2012;
Savolainen et al., 2013; Flood and Hancock, 2017; Sork,
2018; Bamba et al., 2019; Kariñho-Betancourt et al., 2020;
Rich-Griffin et al., 2020). Genomic approaches that unravel
physicochemical divergence, natural selection, and/or gene
expansions/contractions in gene families of related taxa have
also contributed to enhanced understanding of the evolutionary
trajectories of specific traits (Stone and Sidow, 2005; Arendt
and Reznick, 2008; Han et al., 2013; Murrell et al., 2013;
Emms and Kelly, 2019). For instance, it is possible to discover
candidate genes involved in the production of secondary plant
metabolites that could also play important roles in mediating
plant-based interactions in the evolution of differentiated
defensive mechanisms (Bergelson et al., 2001; Friedman and
Baker, 2007; Ramakrishna and Ravishankar, 2011; Chang et al.,
2012; Kariñho-Betancourt, 2018; Kourelis and van der Hoorn,
2018; Wink, 2018; Erb and Kliebenstein, 2020; Rich-Griffin et al.,
2020).

The comparative genomics study (e.g., gene family analysis)
of plants has provided a broad view of the mechanisms at
the molecular level behind species evolution and diversification
(e.g., genomic signatures of directional selection on particular
genes) (Song and Mitchell-Olds, 2011; Savolainen et al., 2013;
Flood and Hancock, 2017; Russell et al., 2017; Anderson
and Song, 2020). Genomic studies have been central to
investigating the evolution and diversification of ecologically
and economically relevant plant species, such as the Solanaceae
family (Soltis and Soltis, 2021). Several species of this plant
family have been subjected to metabolomic and genomic
studies on specialized secondary metabolites, such as terpenoids,
tropane alkaloids, glycoalkaloids, and phenolics, implicated as
defenses against natural enemies (Friedman, 2002, 2006; Cheng
et al., 2007; Sierro et al., 2014; Akyol et al., 2016; Chowański
et al., 2016; Xu et al., 2017; De-la-Cruz et al., 2021). However,
this is not the case for nonmodel plant species in the Solanaceae
family – such as Datura species – where few genomic studies
examining the processes and candidate genes that underlie
evolutionary diversification have been carried out.

Within the Solanaceae family, the species of the genus
Datura produce high concentrations of tropane alkaloids
(Jirschitzka et al., 2012; Kohnen-Johannsen and Kayser, 2019;
Céspedes-Méndez et al., 2021), metabolites long used as
medicines (Roddick, 1991; Geeta and Gharaibeh, 2007; Benítez
et al., 2018; Sahu et al., 2022). Ecological evidence indicates that
some of these chemical compounds, as well as some terpenoids,
play central roles as defenses against herbivores and possibly
against pathogens, viruses, and fungi in Datura (Shonle and

Bergelson, 2000; Hare and Elle, 2001; Hare and Smith, 2005;
Castillo et al., 2014; Kariñho-Betancourt et al., 2015; Miranda-
Pérez et al., 2016; De-la-Cruz et al., 2020a, 2021; Goldberg et al.,
2020; Céspedes-Méndez et al., 2021; Velázquez-Márquez et al.,
2021). Furthermore, there is evidence that these species produce
different concentrations of total tropane alkaloids (Doncheva
et al., 2006; Kariñho-Betancourt et al., 2015). The genus Datura
includes 13–14 species of annual herbs and perennial shrubs
native to dry, temperate, and subtropical regions of North
America, distributed mainly in Mexico, which is considered
its center of origin (Avery, 1959; Barclay, 1959; Symon and
Haegi, 1991; Luna-Cavazos and Bye, 2011). Plant size ranges
from 30 cm to 2 m in height (Avery, 1959). Flowers open at
dusk and are pollinated by hawkmoths (Jiménez-Lobato and
Núñez-Farfán, 2021). All species have tubular erect flowers with
large variations in size and color (Matuda, 1952). While most
ruderal species have small-sized white, yellow and purple flowers
(3–8 cm), plants distributed in less disturbed environments
have mostly large white flowers (10–17 cm). Nevertheless, the
genomic mechanisms underlying the evolutionary divergence of
Datura species are unknown.

In this study, we selected four Datura species of two
different clades of the genus (Mace et al., 1999; Bye and Sosa,
2013; Kariñho-Betancourt et al., 2015), some of which also
overlap with respect to their distribution ranges within Mexico
(Supplementary Figure 1). Datura inoxia, D. wrightii, and
D. pruinosa are nested within the section of nodding fruits and
larger flowers (except for D. pruinosa). Datura inoxia occurs
in central and northern Mexico, D. wrightii occurs in northern
Mexico, and Datura pruinosa is distributed in southern Mexico.
In contrast, D. stramonium is nested within the section of erect
fruits and is distributed throughout North and South Mexico
(Mace et al., 1999; Bye and Sosa, 2013; Kariñho-Betancourt
et al., 2015). All Datura species studied here are summer
annuals, except for D. wrightii, which is perennial. Hence, these
species represent good systems for addressing their evolutionary
divergence at the genomic level. To this end, we performed a
thorough gene family analysis using de novo leaf transcriptomes
of these four Datura species to find candidate genes evolving
under positive selection, physicochemical divergence (changes
in physicochemical properties of proteins) and expansion (gain
of genes).

Materials and methods

Plant material and sequencing

Our sample design consisted of nine plants per species
(different maternal families) from the four Datura species (see
above). Seeds were collected in the field (natural progenies;
Supplementary Figure 1) and germinated in the glasshouse
of the Institute of Ecology, UNAM (UTM 19.3218, −99.1922).
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Once true leaves appeared and seedlings reached 3–5 cm
long, they were planted in 150 mL pots in sterilized soil,
watered ad libitum, and grown under a 16:8 L:D cycle at
25:20◦C (L:D). Then, we sampled fully expanded leaves from
each plant of the four Datura species before and during
flowering (dx.doi.org/10.17504/protocols.io.bx4zpqx6). All
leaves were flash-frozen in liquid nitrogen and kept in a
−80◦C freezer. We extracted total RNA from the leaves of
each plant species of Datura studied here using the TRIzol
extraction method (doi.org/10.17504/protocols.io.bx4zpqx6)
(Rio et al., 2010). RNA quality and quantity were determined
using a Nanodrop 2000 instrument (Thermo Scientific)
and Bioanalyzer Chip RNA 7500 series II (Agilent). Each
sample was sequenced using an Illumina NextSeq 500 in
paired-end mode (2 × 75 bp). The library preparation and
sequencing were carried out at the Unidad Universitaria
de Secuenciación Masiva y Bioinformática (UUSMB) of
the Institute of Biotechnology, UNAM. The quality of the
RNA sequences of each plant individual was verified using
FastQC (Andrews, 2010). Trimmomatic (Bolger A. M. et al.,
2014) was used to remove sequences below 20 Phred quality
scores.

De novo transcriptome assembly and
validation

We pooled the sequences of all analyzed plants of each
Datura species as input for a de novo assembly using
Trinity v2.12.0 (Grabherr et al., 2011). After transcriptome
assembly, we retained only the longest isoforms using
TransDecoder v5.5.0.1 A further step was carried out using
CD-HIT v4.8.1 to cluster similar proteins and remove
their redundancy (Li and Godzik, 2006; Fu et al., 2012) to
retain only “primary transcripts” (Li and Godzik, 2006; Fu
et al., 2012). We evaluated the transcriptome assemblies
using the standard metrics (total genes and transcripts,
percent of GC, Nx length statistics and median and
average contig) with the script “TrinityStats.pl” of Trinity
v2.11.0 (Grabherr et al., 2011). We assessed transcriptome
completeness using the Benchmarking Universal Single-
Copy Orthologs (BUSCO), which determines completeness
by determining the fraction of a lineage-specific set of
conserved genes present in an assembly. We performed
the analysis using BUSCO v.5.1.2 (Seppey et al., 2019)
with the transcriptome mode option. The database
“embryophyta_odb9” was used as a reference for searching
BUSCOs in the four Datura transcriptomes (Simão et al.,
2015). BUSCOs were classified as complete and single-copy
(S), complete and duplicated (D), fragmented (F), or missing
(M).

1 https://github.com/TransDecoder/TransDecoder

Ortholog identification and
phylogenetic inference

Four Datura and three Nicotiana transcriptomes were used
for phylogenetic and gene family evolution analyses. Since
we encountered logistic issues downloading other Solanaceae
transcriptomes (e.g., Solanum transcriptomes), we decided to
use these three Nicotiana species for gene family construction
(see De-la-Cruz et al., 2021). Thus, protein-coding genes and
CDS from the three Nicotiana transcriptomes were sourced
from the Sol Genomics Network2 [N. tomentosiformis (Sierro
et al., 2013), N. sylvestris (Sierro et al., 2013), and N. attenuata
(Xu et al., 2017)]. We used the combined set of Datura and
Nicotiana proteomes to infer orthogroups in the OrthoFinder
v2.5.2 program (Emms and Kelly, 2019). Briefly, DIAMOND
blast (Buchfink et al., 2015) was used in OrthoFinder (Emms
and Kelly, 2019) for orthogroup inference (E-value < 1e−5)
and the MCL algorithm was employed for clustering of similar
sequences (Enright et al., 2002). MAFFT v7 was used as a
multiple protein sequence aligner of each orthogroup/gene
family (Katoh et al., 2002), and FastTree2 v2.1.10 (Price et al.,
2010) was used for maximum likelihood gene tree inference.
The species tree inference was constructed using a concatenated
alignment of 3,219 single-copy orthogroups in OrthoFinder
(Emms and Kelly, 2019). The species tree was inferred with
FastTree2 (Price et al., 2010). Rooting was performed using
the STRIDE algorithm (Species Tree Root Inference from
Duplication Events; Emms and Kelly, 2019) of OrthoFinder,
which selected N. sylvestris, N. attenuata, and N. tomentosiformis
as outgroups of the Datura phylogeny.

Ultrametric tree and gene family
evolution analysis

To build an ultrametric phylogeny (i.e., estimating
divergence times and rates of substitution in a phylogeny)
for the analysis of gene family evolution (expansions and
contractions in gene families; see below), we used the
rooted species tree obtained from OrthoFinder to search
the divergence times between the branches using the TimeTree
webtool (Kumar et al., 2017). Then, the rooted species tree
and the information of divergence times were used to create
an input file using the script “cafetutorial_prep_r8s.py” from
the CAFE tutorial webpage3 to run the r8 v1.5 program for
ultrametric inference (Sanderson, 2003). The tip-to-root length
was adjusted to match the approximately 35-million-year
evolutionary history between Nicotiana and Datura species
(Bombarely et al., 2016; Kumar et al., 2017; De-la-Cruz et al.,
2021).

2 https://solgenomics.net/

3 http://evomics.org/wp-content/uploads/2016/06/cafe_tutorial.pdf
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To evaluate the rate of gene gain and loss across the Datura
and Nicotiana species studied here, we used only the gene
families with more than three genes per family (24,884) and
the ultrametric species tree as inputs to CAFE v4.2.1 (Han
et al., 2013). CAFE (Computational Analysis of gene Family
Evolution) estimates the birth and death parameter (λ) for the
provided tree and gene family counts. The λ parameter describes
the probability that any gene will be gained or lost (Han et al.,
2013). First, the Python scripts provided by the CAFE pipeline
were used to estimate the error in our dataset (Han et al., 2013).
Then, CAFE was run using the mode in which the gain and
loss rates were estimated together (λ) for the whole phylogeny
(Han et al., 2013). The CAFE overall p value threshold was
kept at its default value (0.01) for the entire analysis. We
used the script “cafetutorial_report_analysis.py” from CAFE to
obtain summary statistics. The script parseCafeResult.R from
the SlydGeneFamsAnalyses R package (see De-la-Cruz et al.,
2021) was used to parse the CAFE outputs for functional
enrichment analysis (see below).

Multivariate analysis of protein
polymorphisms

Multiple sequence alignments of the 24,884 protein families
(families with more than three proteins) were used to
carry out a multivariate analysis of protein polymorphisms
(MAPP program) (Stone and Sidow, 2005). MAPP quantifies
the physicochemical variation (hydropathy, polarity, charge,
volume, free energy in alpha-helix conformation, and free
energy in beta-strand conformation) in each column of a
multiple sequence alignment and calculates the deviation
of candidate amino acid replacements from this variation.
The greater the deviation, the higher the probability that
a replacement impairs the function of the protein and the
greater its predicted effect on the protein’s function (Stone
and Sidow, 2005). Therefore, MAPP was used to estimate
the physicochemical divergence in each protein family. First,
we used the script readAndParseOrthogroupsTxt.R from the
SlydGeneFamsAnalyses R package (De-la-Cruz et al., 2021)
to parse and create folders from each protein family and
store the corresponding protein tree and multiple sequence
alignment from OrthoFinder results. Then, the MAPP program
was run with default parameters for each of the protein
families (Stone and Sidow, 2005). The script readMappResults.R
in the SlydGeneFamsAnalyses R package (De-la-Cruz et al.,
2021) was used to parse and read all the MAPP results of
gene families. This script reads the MAPP results for all gene
families, adjusts the p value, finds genes of families with good
multiple sequence alignments (Valdar Score > 0.6), and only
retains the significant sites with physicochemical divergence that
correspond with conserved domain proteins (De-la-Cruz et al.,
2021). This method allows us to score residues in a multiple

sequence alignment and assigns a score ranging from 0 for low
conservation to 1 for high conservation (Valdar, 2002).

Divergent positive selection in gene
families

A codon-level analysis of positive natural selection was
performed with FUBAR (Fast, Unconstrained Bayesian
Approximation) (Murrell et al., 2013) on 24,884 gene families.
FUBAR uses a Bayesian approach to infer nonsynonymous
(dN) and synonymous (dS) substitution rates on a per-site basis
for a given coding alignment and corresponding phylogeny
(Murrell et al., 2013). This method assumes that the selection
pressure on each site is constant along the entire phylogeny
(Murrell et al., 2013). FUBAR reports evidence for positive
selection using posterior probabilities (which range from 0 to
1), not p values. Generally, posterior probabilities > 0.9 strongly
suggest positive selection (Murrell et al., 2013).

To run FUBAR, we first removed trailing stop codons from
the CDS in each transcriptome and then applied PAL2NAL
(Suyama et al., 2006) to produce a codon alignment for each
gene family. PAL2NAL is a program that converts a multiple
sequence alignment of proteins and the corresponding DNA
(CDS) sequences into a codon alignment (Suyama et al., 2006).
Therefore, we used the protein tree that we already had from
each protein family to run PAL2NAL. FUBAR was run for each
protein family’s codon alignments (De-la-Cruz et al., 2021).
A custom Python script was used to transform the “.json”
format from the FUBAR result to tabular format. Then, the R
script “loadFubarResults.R” from the R package GeneFamilies
(De-la-Cruz et al., 2021) was used to obtain a table with the
significant posterior probabilities of a codon being subject to
positive selection for each gene family (significant posterior
probabilities ≥ 0.98; Bayes Factor > 100). As stated above, we
only used alignments with a Valdar score > 0.6.

Enrichment analysis

Fisher’s exact test (Fisher and Russell, 1922) was employed
for functional enrichment/overrepresentation analyses to look
for biological functions enriched in a gene list to a greater extent
than expected by chance. In other words, the overrepresentation
method compares the set of all genes annotated to pathways to
a list of those genes that are significantly expanded, positively
selected and which exhibit physicochemical divergence
between species. To this end, we used all the proteins
from the seven transcriptomes (262,248 proteins) as the
background to detect overrepresented proteins that showed
signals of expansion, physicochemical divergence (MAPP),
and positively selected conserved amino acids (codons)
(FUBAR) (De-la-Cruz et al., 2021). Functional annotation of all
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transcriptomes was performed using MapMan4 (Schwacke
et al., 2019). The enrichment analysis was carried out
using our custom script “enrichedAnnosInExpContrFams.R
(CAFE)”, “identifyDomainsAtSelectedSites.R (FUBAR)” and
“readMappResults.R (MAPP)” from the SlydGeneFamsAnalyses
R package (De-la-Cruz et al., 2021). In addition, protein
domains were annotated for the four complete Datura
transcriptomes using Interproscan v.5.24 (Jones et al., 2014).

Results

Transcriptome sequencing and
assembly

Illumina sequencing yielded between 1 and 14 M (million)
paired-end reads per sequenced individual of every Datura
species (Table 1 and Supplementary Table 2). This resulted
in good-quality RNA-seq datasets containing between 86
and 104 M paired-end reads for each species (Table 1 and
Supplementary Table 1). The raw read data from Illumina
sequencing for each species are deposited in the NCBI
under BioProject PRJNA669339. Trinity constructed 81,748
transcripts for D. inoxia, 103,954 for D. pruinosa, 113,343 for
D. stramonium and 111,196 for D. wrightii (Table 1). After
polishing with TransDecoder and CD-HIT, we retained only
26,112, 30,191, 33,851, and 30,385 transcripts for D. inoxia,
D. pruinosa, D. stramonium, and D. wrightii, respectively, for
subsequent analyses (see below and Table 1). The percentages
of GC and N50 were relatively similar among the four
Datura transcriptomes (Table 1). The Datura transcriptomes
covered 86.1, 91.8, 90.3, and 92.8% complete single-copy
BUSCOs for D. inoxia, D. pruinosa, D. stramonium, and
D. wrightii, respectively (Supplementary Table 2). Overall, the
four assemblies were relatively similar in gene completeness,
with D. wrightii and D. inoxia having the highest and lowest
BUSCO scores, respectively (Supplementary Table 2).

Protein family construction

Protein coding genes from three Nicotiana species sourced
from the Sol Genomics Network (see “Materials and methods”
section) and proteomes/CDS of four Datura species were used
to construct gene families/orthogroups. From 262,248 genes,
OrthoFinder assigned 85.6% to 30,065 orthogroups/protein
families. Fifty percent of all genes were in orthogroups with
eight or more genes (G50 = 8; Supplementary Table 3).
There were 3,219 orthogroups that consisted entirely of single-
copy genes and 11,786 orthogroups with all species present
(Supplementary Table 3). The two species sharing the most
protein families were N. tomentosiformis and N. sylvestris.
Likewise, compared to the other Nicotiana species, N. attenuata

shares the highest number of orthogroups with the four Datura
species (Supplementary Figure 2). Within the Datura genus,
D. wrightii and D. pruinosa shared the highest number of
orthogroups (protein families), followed by D. stramonium and
D. pruinosa. Datura inoxia was the species that shared the lowest
number of orthogroups with the other three Datura species
(Supplementary Figure 2). This difference may be explained by
the lower number of transcripts/genes assembled for D. inoxia.

According to the estimated calibration time, Nicotiana and
Datura diverged ∼25 Mya (Figure 1). Our evidence indicated
that D. inoxia, D. pruinosa, and D. wrightii diverged from
D. stramonium ∼2.6 Mya. Datura inoxia and D. wrightii were
the most recently derived species within the Datura group
(Figure 1). The rate of gene gain and loss (λ) resulting from
CAFE analysis was 0.039 per year for the whole tree (Figure 1).
The internal branch with the largest number of protein gains
(expansions) corresponded to the most recent common ancestor
of N. tomentosiformis (Figure 1). The internal branch with the
largest contractions corresponded to the most recent common
ancestor of the Datura clade (Figure 1). Within the Datura
group, there was no evidence of expansions and contractions
for the most recent common ancestor of D. pruinosa, D. inoxia,
and D. wrightii. The terminal branch with the largest number of
expansions corresponded to N. sylvestris (Figure 1 and Table 2).
Within the Datura clade, the terminal branch with the largest
number of expansions was the branch leading to D. stramonium.
The terminal branch with the greatest number of contractions
was the branch leading to N. attenuata (Figure 1 and Table 2).
Within the Datura group, the terminal branch with the largest
contractions was the branch leading to D. inoxia, followed by
D. stramonium (Figure 1 and Table 2). The internal branch with
the largest rapidly evolving gene families corresponded to the
most recent common ancestor of N. attenuata and N. sylvestris
(Figure 1). The terminal branch with the most rapidly evolving
gene families was the branch leading to N. attenuata (Figure 1
and Table 2). Within the Datura clade, the terminal branch
with the most rapidly evolving gene families was the branch
leading to D. inoxia, followed by D. wrightii (Figure 1 and
Table 2). According to CAFE, the number of protein families
that experienced neither expansion nor contraction in the
genomes of all species tested here varies from 15,896 to 19,743
(Table 2).

Enrichment tests overlapping families
with signals of positive selection,
expansion, and physicochemical
divergence

We found a total of 11, 14, 10, and 11 enriched protein
families (i.e., functionally overrepresented protein families)
with a signal of expansion in D. inoxia, D. pruinosa,
D. stramonium, and D. wrightii, respectively (Figure 2 and

Frontiers in Ecology and Evolution 05 frontiersin.org

https://doi.org/10.3389/fevo.2022.916762
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-916762 November 10, 2022 Time: 15:14 # 6

De-la-Cruz et al. 10.3389/fevo.2022.916762

TABLE 1 RNA reads produced by the transcriptome assembly of four Datura species.

Species # Total illumina
sequences

# Total assembled
transcripts
(Trinity)

# Total genes
(Trinity)

% GC N50 (the longest
isoform)

#
Transcripts/Genes
(after polishing)

Datura inoxia 104,940,331 81,748 51,776 40.1 1,683 26,122

Datura pruinosa 94,261,673 1,03,954 66,186 40.28 1,589 30,191

Datura stramonium 86,626,733 1,13,343 76,635 40.18 1,511 33,851

Datura wrightii 89,135,921 1,11,196 68,353 40.3 1,546 30,385

FIGURE 1

Phylogenetic time tree constructed from concatenated alignment of 3,219 orthogroups consistent entirely of single-copy genes from four
Datura species and three Nicotiana species. Nicotiana and Datura species diverged approximately 25 Mya. Expansions (red), contractions (blue)
and rapidly evolving gene families (green) are shown at nodes and terminal branches. The rate of gene gain and lost (λ) resulted from CAFE
analysis was 0.039 for the whole tree.

Supplementary Table 4). We also detected 22, 17, 12, and 24
enriched proteins with signals of physicochemical divergence
(Figure 3 and Supplementary Table 5) and 51, 59, 51, and
54 enriched proteins with positively selected conserved amino
acids (Figure 4 and Supplementary Table 6) for D. inoxia,
D. pruinosa, D. stramonium, and D. wrightii, respectively.
Several of these enriched family proteins with signals of
expansion, positive selection, or physicochemical divergence
have been related to responses to specific abiotic and biotic
pressures, as discussed below. We found that one and 29
expanded and positively selected protein families were shared
between all Datura species, while there was no protein family
with significant physicochemical divergence shared between all
Datura species (Figures 2–4).

Candidate genes related to chemical
defense and plant resistance (R genes)

We detected several protein families related to plant
resistance to pathogens, herbivores and viruses. For instance,
the UDP-dependent glycosyl transferase protein family -
related to cytokinin conjugation - was expanded and positively
selected only in D. stramonium (Figure 2). We also detected
enriched protein families with signals of positive selection
related to glycosyltransferases and oxidoreductases in all
Datura species. Expansion of oxidoreductases was also detected
only in D. pruinosa and D. stramonium, while expansion
of glycosyltransferases occurred in all the species except in
D. stramonium. Moreover, we also observed positive selection
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for terpenoid proteins in D. pruinosa and D. wrightii, but not
in D. inoxia and D. stramonium (Figure 4 and Supplementary
Table 6). However, we also found physicochemical divergence
with respect to 2-C-methyl-D-erythritol 4-phosphate (of the
terpenoid family) only in D. stramonium (Figure 3 and
Supplementary Table 5).

Genes related to plant immunity, such as phosphorylation-
related proteins belonging to the large family of leucine-rich
repeat receptor-like protein kinases (LRRs), showed expansion,
physicochemical divergence, and positive selection in all Datura
species (Supplementary Tables 4–6). We also found several
enriched proteins belonging to the kinase superfamily with
physicochemical divergence, expansion and positive selection
(Supplementary Tables 4–6), such as the SD-1 kinase protein,
which was positively selected in all Datura species (Figure 4).
Plant nucleotide binding proteins, such as leucine-rich repeat
(NLR) receptors, were only positively selected in D. pruinosa
and D. wrightii (Figure 4), and proteins related to receptor-
like protein kinase (RLCK-IXb) were expanded in D. inoxia
(Figure 2 and Supplementary Table 4).

Candidate genes related to abiotic
stressors

We also found different enriched proteins with signals of
expansion, physicochemical divergence and positive selection
in the Datura species studied here (Supplementary Tables 4–
6) associated with abiotic stresses. For instance, we found
physicochemical divergence in a protein family related to
glutamate biosynthesis (the pyrroline-5-carboxylate synthase
gene family) in D. pruinosa (Figure 3). In addition, we found
physicochemical divergence in different protein families related
to solute transport, such as the metal chelator transporter TCR
and metal chelator nicotianamine transporters in D. pruinosa
(Figure 4). Datura stramonium showed expansion in the class
of Tau glutathione S-transferases (Figure 2 and Supplementary
Table 4). In the case of D. inoxia, we detected a signal
of expansion in receptor-like cytoplasmic kinases (RLCKs)
(Figure 2 and Supplementary Table 4), while we did not find
expansions in TCR, RLCKs, and Tau glutathione S-transferases
in D. wrightii.

Discussion

In this study, the completeness of single-copy orthologs and
general statistics (N50, number of genes) suggest a good quality
assembly for all de novo Datura transcriptomes (Simão et al.,
2015). The number of complete BUSCOs for all transcriptome
assemblies is very similar to that previously reported for
D. stramonium and other Solanaceae species, such as tomato
and potato, Nicotiana and its wild relatives, as well as Petunia
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FIGURE 2

The UpSet plot shows the intersections of the set of a particular expanded protein family annotated with Mapman4 from the seven
transcriptomes. Filled cells indicate that the set is participating in the intersection and that the species share that protein family with signal of
expansion (A). Heatmap of the enriched expanded proteins of the four Datura species studied here (B). The brightness of color indicates the
number (counts) of enriched protein families with signal of expansion that are shared between species. See also Supplementary Tables 4–6.

FIGURE 3

UpSet plot shows the intersections of the set of a particular protein family annotated Mapman4 with signal of physicochemical divergence from
the seven transcriptomes. Filled cells indicate that the set is participating in the intersection and that the species share that protein family with
signal of physicochemical divergence (A). Heatmap of the enriched proteins with signal of physicochemical divergence of the four Datura
species studied here (B). The brightness of color indicates the number (counts) of enriched protein families with signal of physicochemical
divergence that are shared between species. See also Supplementary Table 5.

inflata and Petunia axilaris (Xu et al., 2011, 2017; Sato et al.,
2012; Sierro et al., 2013; Bolger A. et al., 2014; Bombarely
et al., 2016; Hulse-Kemp et al., 2018; Razali et al., 2018;
Barchi et al., 2019; De-la-Cruz et al., 2021). Our comparative
gene family analysis also revealed signals of positive selection,
physicochemical divergence and expansions for candidate genes
possibly associated with species divergence.

Our results revealed that the divergence times reported
here are consistent with other Solanaceae phylogenies (Särkinen
et al., 2013; Bombarely et al., 2016; De-la-Cruz et al., 2021).

We also found that N. attenuata shares the highest number
of orthogroups with the four Datura species. This result
could suggest a closer evolutionary history (i.e., genes forming
orthogroups due to a shared origin from a single ancestral gene
of the last common ancestor of the compared genomes) between
these species (Koonin, 2005). Nevertheless, duplication events
could also generate many of these genes forming orthogroups
(Koonin, 2005). We detected positive selection of the same
29 protein families of all Datura species. This result could
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FIGURE 4

UpSet plot shows the intersections of the set of a particular protein family annotated with Mapman4 with signal of positive selection from the
seven transcriptomes. Filled cells indicate that the set is participating in the intersection and that the species share that protein family with signal
of positive selection (A). Heatmap of the enriched proteins with signal of positive selection of the four Datura species studied here (B). The
brightness of color indicates the number (counts) of enriched protein families with signal of positive selection that are shared between species.
See also Supplementary Table 6.

suggest parallel evolution of these genes among all Datura
species.

As in many other plant species, we also found several
enriched protein families (significantly, in more from the
full protein set) in the Datura transcriptomes, with signals
of expansion, physicochemical divergence and/or positive
selection varying among species. For instance, UDP-dependent
glycosyl transferase was expanded and positively selected only in
D. stramonium. In plants, UDP-glycosyltransferases glycosylate
various phytohormones and metabolites (e.g., triterpenoids)
in response to biotic and abiotic stresses such as defenses to
herbivores (Vogt and Jones, 2000; Rehman et al., 2018; Rahimi
et al., 2019; Wilson and Tian, 2019). Indeed, we also detected
enriched protein families with signals of positive selection
related to glycosyltransferases and oxidoreductases in all
Datura species. Transferases and oxidoreductases are enzymes
directly involved in the biosynthesis of terpenes, tropane
alkaloids (Kanehisa and Goto, 2000; Dräger, 2006; Jirschitzka
et al., 2012; Kanehisa et al., 2016, 2017) and many other
plant defensive compounds, such as phenolics, glucosinolates,
salicylates, and anthocyanins, via glycosylation (Vogt and Jones,
2000; Bowles et al., 2005; Wilson and Tian, 2019). Expansion
of oxidoreductases was also detected only in D. pruinosa
and D. stramonium, while expansion of glycosyltransferases
occurred in all the species except D. stramonium. Moreover, we
also found positive selection of terpenoid proteins in D. pruinosa
and D. wrightii, but not in D. inoxia and D. stramonium
(Figure 4 and Supplementary Table 6). However, we also
found physicochemical divergence in the protein family related
to 2-C-methyl-D-erythritol 4-phosphate (terpenoids) only in
D. stramonium (Figure 3 and Supplementary Table 5). This
molecule is one of the two major building blocks of terpenoid

compounds (Rohdich et al., 2000; Narayanasamy et al., 2010).
Thus, it is likely that this divergence in the physical and chemical
properties in this protein family could be related to changes
in the production and/or concentration of specific terpenoid
compounds. A recent study carried out in natural conditions
with experimental plants of D. stramonium found that at least
one triterpenoid compound was positively selected (Darwinian
fitness) as a defense against the larvae of the specialized
beetle Lema trilienata daturaphila, which is responsible for
most of the leaf damage to plants (De-la-Cruz et al., 2020b).
Thus, we speculate that terpenoid genes (and their products)
could be involved in the production of defensive compounds
to guard against natural enemies (e.g., as we have found in
D. stramonium).

Terpenoids are involved in several biological functions
related to development and defense against herbivores, fungi
and pathogens (Degenhardt et al., 2009; Singh and Sharma,
2015; Boncan et al., 2020; Zhou and Pichersky, 2020). Moreover,
several terpenoids are volatilized to attract predators and
parasitoids of herbivores (Singh and Sharma, 2015; Lackus et al.,
2018; Boncan et al., 2020). Since the four Datura species are
attacked by the specialist herbivore L. trilineata daturaphila
(Kogan and Goeden, 1970; Castillo et al., 2014; De-la-Cruz
et al., 2020b; Goldberg et al., 2020), we speculate that the
positive selection (D. pruinosa and D. wrightii), expansion
(only in D. wrightii) and physicochemical divergence (only
in D. stramonium) detected for terpenoids could be related
how these species cope with their natural enemies such as
herbivores, pathogens and viruses (Pichersky and Raguso, 2018;
Karunanithi and Zerbe, 2019; Boncan et al., 2020; De-la-Cruz
et al., 2020a,b; Goldberg et al., 2020, 2021; Zhou and Pichersky,
2020; Velázquez-Márquez et al., 2021). Thus, positive selection
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of terpenoid proteins in almost all Datura species could suggest
species-specific evolutionary dynamics related to the different
biotic and abiotic pressures faced by each Datura species in their
natural environments (Castillo et al., 2014; Kariñho-Betancourt
et al., 2015; Pichersky and Raguso, 2018; Karunanithi and Zerbe,
2019; De-la-Cruz et al., 2020b; Goldberg et al., 2020, 2021;
De-la-Cruz et al., 2021).

We also found that the large family of leucine-rich
repeat receptor-like protein kinases (LRRs) showed expansion,
physicochemical divergence, and positive selection in all
Datura species. LRR genes play a central role in plant
innate immunity and are involved in the regulation of
jasmonate/ethylene and salicylate hormones implicated in the
defensive response against pathogens and herbivores (McHale
et al., 2006; Padmanabhan et al., 2009; Magalhães et al., 2016;
Tang et al., 2017). Notably, D. stramonium had the highest
number of protein families related to phosphorylation under
positive selection. We also found several enriched proteins
belonging to the kinase superfamily with physicochemical
divergence, expansion and positive selection, such as the SD-
1 kinase protein, which was positively selected in all Datura
species. Kinase superfamily proteins have been related to plant
defense signaling in response to different stresses, including
pathogen invasion (Stone and Walker, 1995; Afzal et al., 2008).
Likewise, plant nucleotide binding and leucine-rich repeat
(NLR) receptors are linked to defensive responses against
pathogens triggering plant immunity effectors (Cui et al.,
2015; Thordal-Christensen, 2020; van Wersch et al., 2020).
In our study, NLR proteins were only positively selected
in D. pruinosa and D. wrightii, and proteins related to the
receptor-like protein kinase (RLCK-IXb) were expanded in
D. inoxia.

On the other hand, we observed a signal of physicochemical
divergence in genes related to transcriptional regulation
(transcriptional corepressor LUG) among the three Datura
species. It has been reported that LUG plays an important role
in leaf blade outgrowth and flower development, also enhancing
the polarity and growth defects in leaves of Arabidopsis thaliana
(Stahle et al., 2009; Zhang et al., 2019). It could be possible
that the physicochemical divergence detected in LUG could be
involved in the mechanisms determining leaf shape and flower
size of these Datura species. Interestingly, the transcriptional
corepressor LUG is not enriched in D. pruinosa, which has
smaller leaves and flowers than the four Datura species studied
here (Figure 4; Matuda, 1952). Thus, LUG genes could be
candidates for studying leaf and flower shape and size in
Datura.

We detected physicochemical divergence in protein families
related to hemicellulose function, such as xylosyltransferase
IRX9 genes, among D. inoxia, D. stramonium, and D. wrightii,
but not for D. pruinosa. It has been reported that mutations in
IRX9 cause a collapsed xylem phenotype and decreases in xylose
and cellulose in cell walls, suggesting that IRX9 is required

for normal glucuronoxylan elongation (Peña et al., 2007; Wu
et al., 2010). Glucuronoxylans occur in angiosperm secondary
walls and are the main hemicellulosic polysaccharide in the
secondary cell walls of plants, and it has been detected that
IRX9 is specifically expressed in cells undergoing secondary wall
thickening (Peña et al., 2007; Wu et al., 2010). Moreover, a study
in A. thaliana revealed that IRX mutants had reduced cellulose
content in the stems, resulting in decreased stiffness of stem
material (Turner and Somerville, 1997). Thus, the IRX9 protein
is also a candidate gene to study in terms of involvement in
leaf thickness, stem stiffness, stem architecture and elongation
differentiation in the Datura species studied here.

We also found different enriched proteins with signals of
expansion, physicochemical divergence and positive selection
in D. pruinosa that have been associated with abiotic stresses.
For instance, we observed physicochemical divergence in a
protein family related to glutamate biosynthesis (the pyrroline-
5-carboxylate synthase gene family) in D. pruinosa. In Datura
stramonium, De-la-Cruz et al. (2020b) found that pyrroline,
a derivative compound from pyrroline-5-carboxylate synthase,
is involved in defense against the folivore beetle Epitrix
parvula (Chrysomelidae). This gene is also involved in proline
accumulation, a widespread metabolic response of plants to
osmotic stress (Pérez-Arellano et al., 2010). In plants, proline
is useful not only during conditions of drought and high salt
osmotic stress, but also as a response to environmental changes
such as low temperature, nutritional deficit, heavy metals, UV
radiation, and bacterial pathogens (Parvanova et al., 2004;
Haudecoeur et al., 2009; Pérez-Arellano et al., 2010; Qamar et al.,
2015). In some species, proline also accumulates during the
development of flowers, pollen, ovules or fruits (Venekamp and
Koot, 1988; Fujita et al., 1998; Pérez-Arellano et al., 2010).

In addition, we found physicochemical divergence in
different protein families related to solute transport, such
as the metal chelator transporter TCR and metal chelator
nicotianamine transporters in D. pruinosa. Transition metals
(e.g., iron, copper, and zinc) are essential for many physiological
processes but can be toxic at elevated levels (Clemens, 2001).
TCR proteins contribute to metal detoxification by buffering
cytosolic metal concentrations (Clemens, 2001). In the same
way, D. stramonium showed expansion in the Tau glutathione
S-transferase class. The Tau and Phi classes of transferases
are the largest groups in plants and play crucial roles in the
remediation of environmental pollution by organic xenobiotics,
including herbicides and industrial chemicals, as well as salinity,
oxidative stress, and drought (Kilili et al., 2004; Benekos et al.,
2010; Dixon and Edwards, 2010; Sharma et al., 2014; Gallé et al.,
2019). In the case of D. inoxia, we detected a signal of expansion
in receptor-like cytoplasmic kinases (RLCKs), which regulate
plant cellular activities in response to biotic/abiotic stresses
and endogenous extracellular signaling molecules (Liang and
Zhou, 2018). Datura plants grow in highly human-disturbed,
contaminated habitats and degraded soils, including landfills.
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Interestingly, TCR, RLCKs, and Tau glutathione
S-transferases are not expanded in D. wrightii, which
occurs in less disturbed habitats. Thus, it could be possible
that TCR, RLCKs and Tau glutathione S-transferases
could be involved in the mechanisms related to the
assimilation, long-distance transportation and detoxification
of metal compounds in D. pruinosa, D. inoxia, and
D. stramonium, respectively, to survive and grow in highly
disturbed and polluted habitats. All of these hypotheses
should be tested through functional analysis in further
studies.

Conclusion

The transcriptome assemblies of these four Datura species
provide a valuable molecular resource, as there are few
sequenced transcriptomes of nonmodel species from the
Solanaceae family. Our results provide new insights into the
diversification among these four Datura species. Understanding
the evolution of genes involved in the synthesis of secondary
compounds and genes related to defense and other functions,
such as development and growth, is essential to elucidating
their roles in species divergence. Here, we described how
the Datura gene families expanded and revealed positive
selection and physicochemical divergence of proteins related to
terpenoids, R genes, tropanes and other secondary metabolites
putatively relevant to the diversification processes among
these species. Gene family analysis is a useful tool for
understanding the genomic evolution of economically and
ecologically significant taxa. It is important to note that
the overrepresented candidate genes with signals of positive
selection and physicochemical divergence should be tested with
respect to functional analysis to evaluate their ecological and
evolutionary significance.
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