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Bat caves in the Neotropical region harbor exceptional bat populations

(> 100,000 individuals). These populations play a wider role in ecological

interactions, are vulnerable due to their restriction to caves, and have a

disproportionate conservation value. Current knowledge of bat caves in

Brazil is still small. However, systematic monitoring of some bat caves in

northeastern Brazil shows that they experience strong population fluctuations

over short periods of time, suggesting large-scale movements between

roosts and a much broader use of the landscape than previously considered.

Spatio-temporal reproductive connectivity between distant populations would

change our understanding of the use of roosts among bat species in Brazil,

and important gaps in knowledge of long-distance bat movements in the

country would be filled. Here, we used ddRADseq data to analyze the genetic

structure of Pteronotus gymnonotus across nine bat caves over 700 km. Our

results indicate the lack of a clear geographic structure with gene flow among

all the caves analyzed, suggesting that P. gymnonotus uses a network of bat

caves geographically segregated hundreds of kilometers apart. Facing strong

anthropogenic impacts and an underrepresentation of caves in conservation

action plans worldwide, the genetic connectivity demonstrated here confirms

that bat caves are priority sites for bat and speleological conservation in Brazil

and elsewhere. Moreover, our results demonstrate a warning call: the applied

aspects of the environmental licensing process of the mining sector and its

impactmust be reviewed, not only in Brazil, but wherever this licensing process

a�ects caves having exceptional bat populations.
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Introduction

Caves are among the most used shelters by bats and are
critical to the survival of several species worldwide (Furey and
Racey, 2016). Although the number of bats in a cave can vary
drastically, the largest aggregation of warm-blooded vertebrates
is found in caves, reaching millions of individuals at a single
site (Betke et al., 2008; Medellín et al., 2008). The locations that
provide shelter for these large bat populations are known as bat
caves and have been documented in some places across the world
(Ladle et al., 2012; Furey and Racey, 2016). In the neotropics,
bat caves have been documented in Mexico, Central America
and the Caribbean, and in some South American countries
(e.g., Corso et al., 2010; Ladle et al., 2012; Medellín et al., 2017;
Otálora-Ardila et al., 2019).

In Brazil, large colonies found in bat caves are
predominantly made up of Pteronotus gymnonotus (e.g.,
Rocha et al., 2011; Vargas-Mena et al., 2018; Otálora-Ardila
et al., 2019), an insectivorous and strictly cave-dwelling species
from the Mormoopidae family (de la Torre and Medellín,
2010; Pavan and Tavares, 2019). Systematic monitoring of some
of these caves indicates that while some of them appear to
maintain resident populations throughout the year, in others,
populations may experience large fluctuations in short periods
of time (Otálora-Ardila et al., 2019; Leal and Bernard, 2021).
Such variations suggest the existence of a massive displacement
of bats between different shelters. Thus, bats in one cave could
leave the shelter andmove as a group to another bat cave, leading
to a far broader use of the landscape than previously considered.
In fact, mark/recapture studies have proven displacements of
up to 15 km between bat caves in the state of Pernambuco,
Brazil (Leal and Bernard, 2021). However, could those bats
be moving further away? Data for Leptonycteris yerbabuenae

and Tadarida brasiliensis have indicated movements between
summer bat caves in the USA and winter bat caves in Mexico
of 1,000–1,600 km for the first species and >2,500 km for
the second (Cole and Wilson, 2006; Wiederholt et al., 2013;
Medellín et al., 2017). With such a dynamic use of roost site,
some bat caves should be treated as a single management unit
for both genetic, conservation, and environmental service
purposes (e.g., Wiederholt et al., 2015, 2017; López-Hoffman
et al., 2017a,b; Medellín et al., 2017).

Sites with large animal congregations—such as bat caves—
are considered exceptional ecological and conservation locations
because (1) they have a disproportionate value for the survival of
the species in question, (2) species can be particularly vulnerable
when present in such large congregations, and (3) because they
are numerically abundant, those individuals participate in a
wide range of ecological interactions (Mittermeier et al., 2003).
Bat caves have all such characteristics, and their ecological and
conservation importance is recognized in a few countries. For
instance, in Mexico, bat caves are key sites for the conservation
of nectarivorous species such as Leptonycteris curasoae and

the endangered L. yerbabuenae (Arita and Santos-del-Prado,
1999; Stoner et al., 2003; Galindo et al., 2004); in Brazil, bat
caves have legal protection status (Brasil, 2022) and special
attention during environmental licensing; and the millions of
Mexican free-tailed bats in bat caves in the USA provide
an ecosystem service of pest control worth $3.42 billion/year
(Betke et al., 2008; Medellín et al., 2017) justifying their
economical protection.

Although research on caves and their conservation status is
increasing worldwide (Medellín et al., 2017), the roadmap for
the conservation of the subterranean biome highlights reliable
scientific information that can help identify priority areas for
cave conservation (Mammola et al., 2020; Wynne et al., 2021).
This is especially true in Brazil, where caves are at high risk
due to relaxation of protection laws (Bernard et al., 2021).
Moreover, studies on caves—and especially bat caves—are still
scarce in Brazil despite the richness of species and the ecological
importance of these animals (De Oliveira et al., 2018; Silva
et al., 2018; Barros et al., 2020; Delgado-Jaramillo et al., 2020).
Caves are also highly susceptible to various impacts, such as
mining and agricultural activities (Furey and Racey, 2016),
both economically important and widespread sectors in Brazil
and Latin America (Bernard et al., 2012, 2021). For instance,
the protection of caves has a central role in the licensing
process of mining activities in Brazil, setting such habitats under
strong pressure. Furthermore, recent attempts to dismantle
environmental regulations in Brazil have made matters worse,
further stressing the urgent need to better understand and
protect Brazilian cave heritage (Bernard et al., 2021; Ferreira
et al., 2022). This is especially true for northeastern Brazil, a
region that simultaneously harbors a high richness of bat species
(potentially 100 species—Silva et al., 2018; Delgado-Jaramillo
et al., 2020), a great potential for the occurrence of caves
(Jansen et al., 2012), but where the main biome (Caatinga) has
already lost ∼50% of its original natural cover, and is suspected
of chronic anthropogenic disturbance (Antongiovanni et al.,
2020). Moreover, more than 90% of the wind turbines in
operation in Brazil are installed in the Northeast, setting
conflicts for biodiversity conservation (Neri et al., 2019) and bats
in particular (Bernard et al., 2014; Valença and Bernard, 2015).

Although the population structure in bats is often relatively
low due to their ability to fly and cross some ecological barriers
impossible for other animals (Laine et al., 2013), at large
geographical scales distance can be significantly correlated with
genetic distance, thus the population structure can be observed
(e.g., Martins et al., 2007; Hua et al., 2013; Lilley et al., 2020).
In fact, phylogeographic and population studies of bats in the
Neotropical region reveal several cases of genetic structure and
cryptic diversity (e.g., Martins et al., 2007; Pavan and Marroig,
2016, 2017; Moras et al., 2018; Garbino et al., 2020). In this
scenario, genomic data can assist in conservation studies (Dool,
2020) and shed some insights on the genetic structure and
diversity of a species, as well as the large-scale movements of
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individuals at the landscape level (e.g., Sovic et al., 2016; Gong
et al., 2019; Pinzari et al., 2020; Luna et al., 2021).

Here, we used genomic data to assess the genetic structure
of P. gymnonotus colonies from nine bat caves along 700 km
in northeastern Brazil. We hypothesized that, due to strong
population fluctuations observed in some bat caves, bats use
networks of caves as roosts and thus no strong population
structure would be observed. If spatio-temporal reproductive
connectivity between populations hundreds of kilometers apart
is identified, it will fill important gaps in knowledge of long-
distance bat movements in Brazil. Moreover, the legal status of
those caves and their populations will have to be revised, as they
have to be considered priority areas for the conservation of the
biological and speleological heritage of Brazil.

Methods

Sample collection and library
construction

Nine colonies of P. gymnonotus from bat caves in the
Brazilian states of Ceará, Rio Grande do Norte, Pernambuco,
and Sergipe were sampled in July 2019 (Figure 1, Table 1). The
distance to the nearest bat cave ranged from 15 km (PEMR
to PEFM) up to 196 km (RNGA to RNCU) (Table 1), and
the distance from the southernmost to the northernmost cave
was 700 km. Colony size estimates were made using a non-
invasive thermal detection system (see Otálora-Ardila et al.,
2019; Pimentel et al., 2022), with two counts per cave. Following
the guidelines of the American Society of Mammalogists, the
bats were captured with a hand net inside the cave and
euthanized, and liver tissue samples were collected from ∼20
adult individuals in each cave (Sikes and Animal Care and Use
Committee of the American Society of Mammalogists, 2016).
Tissue samples were stored in 1.5-ml tubes with 95% EtOH
and stored at −80◦C until further analysis. All specimens were
deposited in the Mammal Collection of UFPE as vouchers. The
project activities were conducted under the SISBIO/ICMBio
permit 68992-1, registered in SisGen under the protocol
A974BB7 and approved by the Commission on Ethics and
Animal Use of Federal University of Pernambuco (CEUA-
UFPE 114/2019).

Genomic deoxyribonucleic acid (DNA) was extracted using
the Biopur Mini Spin Plus kit (Biometrix) according to the
manufacturers’ protocols. All extractions were performed at
Instituto Aggeu Magalhães, FIOCRUZ/Pernambuco and stored
at −80◦C before being sent to LUOMUS, Helsinki/Finland, for
the following analyses. The amount of DNA from each sample
was tested and quantified using the Thermo Scientific Nanodrop
spectrophotometer, and all samples were diluted into a 12 ng/ml
solution, following Lilley et al. (2020).

Deoxyribonucleic acid was prepared for genotyping-by-
sequencing using a double digestion RAD-seq method adapted
from Elshire et al. (2011) and Lemopoulos et al. (2018) for the
use of low-concentration samples. Therefore, 180 ng of each
DNA extract was used in a reaction together with 20U of each of
the restriction enzymes PstI-HFTM and BamHI (New England
Biolabs) and 2 µl of CutSmart Buffer. PstI-BamHI-digested
libraries were prepared and sequenced using the Illumina
Novaseq6000 over two lanes with 100 bp single-end reads by
Bioname Oy. Details of the library preparation methods and
sequencing runs are provided as Supplementary Information,
and raw data are available from the NCBI SRA archive under
the bio project PRJNA824143.

Bioinformatic processing

The resulting reads were processed according to Lilley et al.
(2020), and the complete scripts and pipelines are available at
https://github.com/itofs/Pgymno_radseq. Demultiplexing and
quality filtering were carried out using Stacks 1.48 (Catchen
et al., 2013) “process_radtags.” Trimming of barcodes, low-
quality regions, and uncalled bases was performed, followed by a
minimum read length filter of 30 bp. After quality control, reads
were mapped against the Pteronotus mesoamericanus genome
(Scheben et al., 2020), using BWA mem 0.7.17 with parameters
-B 3 -O 5 -k 15 (Li and Durbin, 2009). Stacks 1.48 (Catchen
et al., 2013) pipeline “ref_map.pl” was used for single nucleotide
polymorphism (SNP) calls and filtering. Several stack depths
were tested to optimize analyses (Catchen et al., 2013), with a
value of 3 being used for a downstream analysis. The samples
were assigned to nine different populations, representing the bat
caves where they were collected. SNPs with a low (≤5) or high
(≥125) coverage were excluded, and only biallelic SNPs were
used in subsequent analyses (Lilley et al., 2020).

Data analysis

After sequencing data processing and SNP filtering,
principal component analysis (PCA) was performed using Plink
1.09 (Purcell et al., 2007). The inference of individual ancestry
coefficients was conducted using two approaches: the first is
based on sparse non-negative matrix factorization (NMF) and
least-squares optimization, implemented in the sNMF software
(Frichot et al., 2014); and the second with ADMIXTURE,
which is based on likelihood models with the quasi-Newton
convergence acceleration method (Alexander et al., 2009).
Considering each of the nine caves as a population, sNMF runs
were performed for values of the number of clusters fixed at
K = 1–10 and the regularization parameter (α) varying between
0 and 1,000. The cross-entropy criterion was used to select the
best K. For ADMIXTURE, possible K values ranging from 1 up
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TABLE 1 Geographical and population data for Pteronotus gymnonotus per bat cave in northeastern Brazil, including sampling location, the number of genetic samples collected (N), and the division

of samples by gender (female/male), estimated colony size, and genetic diversity information for each cave.

Cave Locality Geographical

coordinates

Distance to

the nearest

bat cave (km)

N Female/male Colony

size

Polymorphic

sites

Nucleotide

diversity

Unique

SNPs

Inbreeding

coefficient

Heterozygosity

Observed Expected

CEBL—Boqueirão de

Lavras

Lavras da

Mangabeira/CE

06◦42’45.05”S

38◦57’28.1”W

85 22 17/5 86,089 54,122 0.81783 89 0.04596 0.25741 (± 0.03004) 0.2631 (± 0.02095)

CEGF—Gruta do Farias Arajara Park/CE 07◦19’59.0”S

39◦24’45.9”W

85 24 13/11 11,540 51,382 0.82269 36 0.00379 0.26737 (± 0.03312) 0.25792 (± 0.02072)

CEGS—Gruta do

Sobradinho

Aiuaba/CE 6◦38’35.6”S

40◦5’57.1”W

108 15 10/5 57,200 49,167 0.8242 59 0.02273 0.25887 (± 0.03673) 0.25372 (± 0.0229)

RNGA—Gruta do

Arnold

João Câmara/RN 05◦26’36.2”S

35◦53’37.1”W

196 21 11/10 5,365 49,130 0.81868 68 0.06561 0.2485 (± 0.02825) 0.26195 (± 0.02116)

RNCU—Caverna do

Urubu

Felipe Guerra/RN 05◦34’22.8”S

37◦39’08.8“W

192 23 13/10 22,743 46,296 0.82472 14 0.05572 0.2459 (± 0.02807) 0.2553 (± 0.02102)

PEMR—Meu Rei PARNA

Catimbau/PE

08◦29’14.1”S

37◦16’48.8”W

15 11 8/3 13,828 47,989 0.82652 49 0.02045 0.2586 (± 0.04052) 0.24954 (± 0.02432)

PEFM—Furna do

Morcego

PARNA

Catimbau/PE

08◦34’14.1”S

37◦22’55.4”W

15 24 16/8 37,789 55,286 0.81807 111 0.05209 0.2558 (± 0.02900) 0.26337 (± 0.02052)

SECP—Casa de Pedra Campo do Brito/SE 10◦50’03.0”S

37◦27’03.6“W

33 17 2/15 98,986 18,510 0.88359 8 0.04088 0.17825 (± 0.02521) 0.18131 (± 0.01858)

SEUR—Urubu Divina Pastora/SE 10◦43’58.1”S

37◦09’56.0"W

33 20 3/17 62,149 51,679 0.82049 70 0.07602 0.24473 (± 0.02943) 0.25951 (± 0.02162)
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FIGURE 1

Bat caves in northeastern Brazil where Pteronotus gymnonotus bats were sampled (Left) and the genetic structure of the species shown by a

principal component analysis (PCA) (Right). The two most important components explain 15.32% of the nucleotide variation for the species.

FIGURE 2

An ADMIXTURE analysis shows the proportion of ancestry for P. gymnonotus from nine bat caves in northeastern Brazil. Each vertical bar

represents an individual, ordered by cave. Vertical bars with both colors indicate individuals of mixed ancestry. Plots represent individuals from

one ancestral population (K = 1; at the top) and two ancestral populations (K = 2; at the bottom). For complete cave names, please see Table 1.

to 9 were evaluated, representing the bat caves analyzed, and 10
runs were performed for each K number.

Nei’s pairwise FST, the expected (HE) and observed
(HO) heterozygosity, nucleotide diversity (π), and inbreeding
coefficient were calculated with the populations program in
Stacks 1.48 (Catchen et al., 2013), using each cave as a
population. FST is a standardized variance, which represents the

portion of the total genetic variance that is due to differences
between subpopulations (Hartl and Clark, 1997). FST values
of 0 to 0.05 were considered poorly differentiated, and 0.05
to 0.15 moderately differentiated, respectively, whereas FST
values > 0.15 were considered distinctly differentiated (Hartl
and Clark, 1997). The latitude and longitude coordinates of
the sampling locations were used to calculate the pairwise
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geographic distances between the caves in kilometers using the
Haversine method, assuming a spherical earth, implemented in
the function distm in the R package geodist v. 1.5.10. Then,
isolation by distance was estimated with a Mantel test with
complete permutations, using the pairwise FST as a measure of
genetic distances and distances between the caves as geographic
coordinates for populations and considering α = 0.05.

Results

Colony size estimates ranged from 5,365 bats at Gruta
do Arnold (RNGA) to 98,986 bats at Casa de Pedra (SECP),
confirming that all of those caves harbor large populations
(Table 1). We analyzed samples from 177 individuals of
P. gymnonotus, 84 males and 93 females (Table 1). The number
of samples per cave varied from 11 for the Meu Rei cave in
Pernambuco to 24 bats for the Gruta do Farias cave, Ceará,
and Furna do Morcego, in Pernambuco (Table 1). In total,
the ddRADseq yielded an average of 1.6 million single-end
raw reads. After quality filtering and SNP calls with Stacks,
we obtained 62,644 biallelic genotypes and 26,091 SNPs were
retained after pruning the data sets of variants that were linked
(Purcell et al., 2007).

In the PCA, the first two axes explained 15.32% of the data
variation (Figure 1), and based on the two axes there is no clear
geographic structure among P. gymnonotus sampled in the nine
bat caves, along 700 km. Although at a fine scale PC1 generated
two clusters (Figure 1, bottom panel at right), the variation
between them is not very pronounced and does not represent
a case of isolation by distance. In fact, cluster one covers samples
from five caves, while the second cluster has samples from
seven of the nine caves analyzed (Supplementary Figure S1).
Additionally, individuals from the northernmost cave (RNGA)
are grouping together with bats from the southernmost bat
cave (SECP). Also, the individuals from the caves located at
intermediate points of the sampling area (PEFM and PEMR) are
clustering with bats from the north (RNCU), west (CEGS, CEBL,
and CEGF), and south caves (SEUR; Supplementary Figure S1),
which indicates that the genetic distance observed here for
P. gymnonotus has no correlation with the geographical distance
between the caves. Moreover, individuals from the RNCU,
CEGS, and SEUR caves are found in both clusters, despite the
geographical distance between them. Therefore, bats in these
three caves are connected to bats in all of the caves analyzed.
Genetic connectivity between cave populations is also observed
in both sNMF and ADMIXTURE (Figure 2), where K = 1 shows
the lowest cross-entropy (Figure 3). Thus, each individual bat
belongs to the same population and has the contributions of a
single ancestral population, K = 1.

Overall, pairwise FST was low when considering each cave as
a population (Table 2), with a range from 0.012 (SEUR∼CEGF)
to 0.029 (PEMR∼SECP). As FST represents the portion of

FIGURE 3

sNMF plot shows the values of cross-entropy for each K

(number of ancestral populations) calculated for P. gymnonotus

from nine bat caves in northeastern Brazil. K = 1 has the lowest

cross-entropy.

the total genetic variance that is due to differences between
subpopulations (Weir, 1996), the low values observed here
indicate no genetic differentiation between colonies. This also
suggests the existence of gene flow between P. gymnonotus

colonies, which is supported by the low values of the inbreeding
coefficient in all populations analyzed, which ranged from
0.003 to 0.076 (Table 1). Furthermore, the observed (HO)
and expected (HE) heterozygosity ranged from 0.178 to 0.267
and from 0.181 to 0.263, respectively. We did not find a
strong correlation between genetic and geographical distance, as
estimated by the Mantel test: r = 0.1372 (p= 0.01).

Discussion

Using an individual-based approach with genome-wide
markers, we conducted population genetic analyses of
P. gymnonotus bats sampled from nine geographically distant
caves in northeastern Brazil, and our results indicate that these
bats do not present a clear geographical structure. Although
some caves are separated by 700 km, the large bat populations
analyzed show a poor pattern of isolation by distance and
present high gene flow between bat caves. Our results help
better understand the large population fluctuations reported
in some bat caves (Otálora-Ardila et al., 2019) and confirmed
our initial hypothesis that P. gymnonotus move between distant
bat caves, using them as a network of reproductive roosts. As
shown in the PCA, individuals from the SEUR, CEGS, and
RNCU caves had close genetic proximity to individuals from all
sampled caves, while samples from the PEMR and PEFM caves
were genetically similar to samples from the six other caves.
Although this did not happen in all caves, the bats sampled in
one cave are similar to populations from at least four different
caves, suggesting that these animals move between the analyzed
roosts. Based on our findings, the current understanding of
how these bats use the landscape needs to be revised, as the
exchange of genetic material between bats sampled in distant
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TABLE 2 Pairwise FST (above the diagonal) and pairwise geographical distance (below the diagonal) between subpopulations of P. gymnonotus from

nine bat caves in northeastern Brazil.

RNGA RNCU CEGS CEBL CEGF PEMR PEFM SEUR SECP

RNGA – 0.01532 0.01842 0.01517 0.01556 0.02043 0.01577 0.01738 0.01781

RNCU 195.419 – 0.01998 0.01726 0.01479 0.02258 0.01614 0.01725 0.01354

CEGS 484.33 295.867 – 0.01681 0.0171 0.02337 0.01309 0.02024 0.0247

CEBL 367.424 192.26 126.432 – 0.0157 0.0164 0.01423 0.01742 0.02022

CEGF 442.493 276.222 107.934 85.43 – 0.01993 0.01328 0.01248 0.01699

PEMR 371.863 327.008 372.689 270.726 267.944 – 0.01789 0.02348 0.029

PEFM 384.998 335.023 368.658 270.194 262.867 14.5511 – 0.01586 0.01854

SEUR 605.26 576.886 550.05 489.042 451.937 250.291 241.867 – 0.02027

SECP 624.138 586.091 550.01 487.836 445.404 261.929 252.094 33.1912 –

No strong correlation was observed between the variables (Mantel test, r = 0.1372; p= 0.01). Cave name acronym is presented in Table 1.

caves indicates a much broader use of the landscape than
previously understood.

Pteronotus gymnonotus is a relatively mobile species (Pavan
and Tavares, 2019), with the broadest latitudinal range among
mormoopid bats, and is found in several different habitats
(Pavan and Tavares, 2019). The wide distribution range could
contribute to the genetic population structure (Burland and
Wilmer, 2001), as an array of factors can affect the extent
of genetic partitioning among populations, including dispersal
ability and geographic barriers (Burland and Wilmer, 2001).
In fact, phylogeographic and population studies of bats in the
Neotropical region reveal several cases of genetic structure and
cryptic diversity, such as in the genera Chiroderma, Myotis,
and Pteronotus (e.g., Martins et al., 2007; Pavan and Marroig,
2016, 2017; Moras et al., 2018; Garbino et al., 2020; Novaes
et al., 2021). The genetic structure of bat populations in Brazil
is poorly understood, but some available data indicate a strong
population structure between the populations analyzed (e.g.,
Carstens et al., 2004; Pavan and Marroig, 2016, 2017; Moras
et al., 2018; Garbino et al., 2020). However, our results indicate
that P. gymnonotus occurs as a strongly connected population in
northeastern Brazil, with a poor correlation between geographic
and genetic distances.

Estimates of the inbreeding coefficient and genetic
differentiation of P. gymnonotus presented here suggest strong
gene flow between caves on a broad geographic scale. Thus,
together with population fluctuations (Otálora-Ardila et al.,
2019) and movements previously observed for Pteronotus

in some of the caves that contribute to our study (Leal and
Bernard, 2021), these results suggest a very dynamic use of
roosts. These observed fluctuations had no correlation with
the amount of rainfall or the environmental conditions around
the caves (Otálora-Ardila et al., 2019) and nursery colonies
have been observed in some, but not all, of the bat caves
analyzed (Otálora-Ardila et al., 2019; Barros et al., 2020; Leal
and Bernard, 2021; Pimentel, 2021). Therefore, the lack of

correlation between genetic and geographic distances, along
with the existence of gene flow between the colonies observed
here, suggests that reproduction-related displacements can be a
driver for better understanding extreme population fluctuations
already observed.

Movements associated with sexual segregation are known
to occur in bat species in the family Mormoopidae, with
female philopatry and male-biased dispersal (Pavan et al., 2019).
Similar patterns are also observed in other species that form bat
caves, such as T. brasiliensis (Llaven-Macías et al., 2021) and
L. curasoae (Galindo et al., 2004). These species can be found
in bat caves in Mexico, and their movements between roosts
are also related to reproductive periods (Galindo et al., 2004;
Llaven-Macías et al., 2021). The free-tailed bat (T. brasiliensis)
forms the largest colonies ever reported for mammals, up to
∼2 million individuals (Betke et al., 2008), and uses a roost
network along the southwestern USA and the south of Mexico
(Llaven-Macías et al., 2021). The species migration hypothesis
proposes that northward migration is mostly undertaken by
female individuals, while males only migrate short distances
with mating occurring in transitional roosts (Llaven-Macías
et al., 2021). Migrations between the southern USA and Mexico
were also evidenced by genetic analysis, proving that the bats
in these caves are genetically similar to each other (Morales
et al., 2016). Our study adds to the evidence that long-
distance reproductive-related movements are also observed for
bat species in the Neotropics, and that bat caves in northeastern
Brazil may be considered a network of reproductive roosts used
by P. gymnonotus bats.

Conservation implications

Our results suggest that bat caves in northeastern Brazil are
priority areas for national bat conservation. In a scenario of
strong anthropogenic impacts, maintaining gene flow between
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bat populations in these bat caves is essential, as studies
indicate losses in species and genetic diversity of bat assemblages
and populations from fragmented habitats compared to those
occurring in continuous habitats (Meyer et al., 2009; Struebig
et al., 2011; Ripperger et al., 2013; Lino et al., 2019, 2021). These
bat caves are essential for the preservation of Pteronotus bats, as
the species of this genus are mostly cave-dwelling (de la Torre
and Medellín, 2010; Pavan and Tavares, 2019) and the large
colonies they form are essential to control both environmental
and body temperature, being a very specialized expression of
eco-evolutionary adaptation (de la Torre and Medellín, 2010).

Furthermore, bat caves are very important from an
ecological point of view due to a wide range of ecological
interactions in which large Pteronotus aggregations participate
(Mittermeier et al., 2003; Furey and Racey, 2016; Pimentel et al.,
2022). For instance, recent studies show that energy input into
bat caves is strongly related to their presence in the caves, with
guano deposition on the ground in some bat caves reaching
738 g/m²/96 h (Pimentel et al., 2022). Thus, the presence of
bats is essential for the maintenance of the cave ecosystem as
part of the cave biota is totally dependent on guano deposition
(Furey and Racey, 2016), in a way that entire communities can
disappear without guano input into the caves (Trajano, 1995;
Gilbert and Deharveng, 2002; Ferreira, 2004). In addition, caves
are hotspots of subterranean invertebrate diversity (Myers et al.,
2000; Gilbert and Deharveng, 2002; Deharveng and Bedos, 2012;
Furey and Racey, 2016) and bat caves are identified as hotspots
for fungal diversity (Cunha et al., 2020; Pereira et al., 2022).
Along with P. gymnonotus, other bat species can also be found
in the analyzed bat caves, including endangered species such
as Natalus macrourus and Furipterus horrens (e.g., Rocha et al.,
2011; Feijó and Rocha, 2017; Delgado-Jaramillo et al., 2018;
Vargas-Mena et al., 2018, 2020; Otálora-Ardila et al., 2019; Leal
and Bernard, 2021). Therefore, in addition to their relevance as
sites holding thousands of individuals, bat caves can also act as
umbrella sites for bat conservation.

The finding of genetically connected populations in bat
caves 700 km distance apart also has legal implications in Brazil.
Currently, Brazil’s national legislation on the environmental
licensing process of mining activities (Burland and Wilmer,
2001; Brasil, 2022) establishes that caves within those areas have
to pass a classification process and only those with “maximum
relevance” will be under strict protection. Bat caves are identified
as caves of maximum relevance (Brasil, 2022). Moreover, in the
licensing process, mining companies should identify how far
a cave can influence its surroundings (Brasil, 2017) However,
this is rarely done and most of the companies adopt a 250-
m buffer surrounding the cave. Thousands of caves are found
within mineral exploration areas in Brazil, and this concept of
an area “under the influence” of a cave is crucial, as mining
activities must stop at its limits. However, bats have remarkable
mobility and the 250m established by law is not sufficient to
represent such an area of influence (e.g., Bernard and Fenton,

2003; Delgado-Jaramillo et al., 2018; Otálora-Ardila et al.,
2019; Leal and Bernard, 2021). The lack of genetic structure
and the existence of gene flow between colonies in bat caves
700 km apart, as we observed, emphasizes that the 250-m buffer
around the caves adopted by Brazilian mining companies is an
underestimated measure and clearly insufficient to maintain all
ecological interactions those animals have with the caves and
their surroundings. Therefore, our data provides a warning call
that the current practices adopted in the licensing of mining
activities in Brazil must be reviewed in the face of the new
existing evidence.
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