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China is the largest carbon emitter in the world; thus, reducing carbon

emissions while maintaining economic growth has become an important

issue. Within the context of carbon neutrality strategies, calculation of

the carbon footprint and embodied carbon transfer can help policymakers

formulate reasonable carbon reduction plans. The multi–regional input–

output (MRIO) model can clarify carbon flow pathways between regions,

and social network analysis (SNA) can comprehensively evaluate the different

positions of individual sectors. Combining these two approaches, the

specific characteristics of carbon emissions in complex production and trade

relationships can be analyzed. China has become the world’s top total

carbon emitter, and the Hanjiang River basin (HJRB) constitutes an important

economic link between the developed and less developed regions of China.

Studying carbon emissions in the HJRB can provide a reference for other,

similar regions and is vital for the realization of China’s carbon emission

reduction targets. This paper examines the carbon footprint and embodied

carbon emission transfer among three provinces and 12 sectors in the

HJRB during different periods and identifies the key industries in the carbon

transfer process. The results indicate that (1) the total carbon footprint in the

HJRB exhibits an increasing trend. Energy-based Shaanxi Province exhibits

the highest growth rate of the carbon footprint, agriculture-based Henan

Province shows a decreasing trend, and consumption-based Hubei Province

displays the lowest carbon footprint intensity. (2) There are differences

in the carbon emission coefficient and final consumption rate among

various sectors; construction, metal processing and metal and non-metallic

products, processing and manufacturing of petroleum, coking, nuclear fuel,

chemical products, and other services are the sectors accounting for a high
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proportion of emissions. (3) The more obvious the supply relationship is,

the higher the flow of embodied carbon emission transfer between sectors.

(4) Energy-based regions transfer large amounts of fossil energy, electricity,

steel and coal resources to developed regions and simultaneously assume

more of the carbon reduction pressure imposed on developed regions. (5)

The key industries within the embodied carbon emission transfer network

notably control the carbon emissions of other industries and can provide

breakthroughs to achieve challenging carbon emission reduction targets.

KEYWORDS

carbon neutrality, carbon reduction, carbon footprint, embodied carbon emission
transfer, MRIO model, SNA method, Hanjiang River basin

Highlights

- This study proposes a new approach to characterizing
complex production and trade of carbon emissions.

- Embodied carbon emission transfer leads to subtle transfers
in carbon emission responsibilities originally shouldered by
developed regions to less-developed regions.

- Focusing on direct and embodied carbon emissions is
necessary to achieve more challenging carbon reduction
targets.

Introduction

Global warming is one of the most important environmental
problems facing human society today. Carbon emission
reduction to combat climate change has become a global
consensus, and as of March 2022, more than 130 countries
worldwide have committed to achieving carbon neutrality
(Adams and Acheampong, 2019; Richardson, 2022). In
December 2015, the success of the Climate Conference in Paris
demonstrated the world’s determination to cooperate to protect
the environment, and this conference resulted in concrete
arrangements for countries worldwide to take action against
climate change after 2020, representing a historic point in the
global effort to tackle carbon reduction problems. It should be
noted that carbon emission reduction is not only a regional

Abbreviations: CF, Carbon Footprint; CFPGDP, Carbon Footprint Per
Unit of Gross Domestic Product; CEADs, Carbon Emission Accounts
Datasets; EEIO, Environmentally Expanded Input–Output, GDP, Gross
Domestic Product; HJRB, Hanjiang River Basin; IPCC, Intergovernmental
Panel on Climate Change; IOA, Input–Output Analysis; LCA, Life Cycle
Assessment; MRIO, Multi–Regional Input–Output; Mt, Million Tons;
NBSC, National Bureau of Statistics of China; PCF, Per Capita Carbon
Footprint; SNA, Social Network Analysis; SRIO, Single–Region Input–
Output.

environmental problem but also an environmental problem
that can be transferred to other regions through industrial
transfer and trade transactions. Suppose only a single region
were considered in the formulation of a carbon emission
reduction policy. In this case, the effect of carbon emission
reduction among different regions may be reduced, resulting
in the situation whereby carbon emissions are down in certain
regions but increasing nationwide, which does not facilitate
carbon emission reduction target achievement.

To efficiently achieve carbon emission reduction targets,
specific carbon reduction responsibilities must be allocated and
adjusted among different regions according to local conditions
(Zhou and Wang, 2016; Gopalakrishnan et al., 2021). However,
different regions exhibit varying economic levels, resource
endowments and consumption patterns, and to meet their
economic development needs, goods and services are frequently
traded between regions, especially between developing regions
containing abundant energy resources and developed regions
(Wang et al., 2018c). Currently, the carbon accounting system
based on the producer responsibility principle ignores the
impact of regional trade (Choi, 2017), and a region can avoid
a portion of its carbon emissions while importing products to
meet local production and consumption demands (Lv et al.,
2019). In other words, carbon emission responsibilities are
transferred from one region to another with interregional trade
(Li Y. L. et al., 2018). Therefore, a scientific carbon emission
reduction policy must consider direct carbon emissions and
embodied carbon emission transfer from the perspective of
consumption. In contrast to direct emissions originating from
energy combustion, embodied carbon emissions are hidden
behind trade and flow from one region to another in response
to regional trade. Thus, embodied carbon emissions are
more difficult to account for than direct carbon emissions
(Liu et al., 2015).

The carbon footprint is considered an indicator that can
reasonably reflect carbon emissions (Chen G. et al., 2016;
Moran et al., 2018). The carbon footprint method allows
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a more accurate assessment of consumption-based carbon
emissions, including direct and embodied carbon emissions
resulting from production processes to produce goods for final
consumption. As an assessment indicator, the carbon footprint
greatly expands the application scope of carbon emission policy
formulation and research and provides theoretical support for
carbon emission responsibility division, which has been widely
considered worldwide (Yue et al., 2020; Isz et al., 2021).

There are three main carbon footprint accounting methods:
the life cycle assessment (LCA) method, the methodology based
on the calculation of emission coefficients for fossil fuels [the
Intergovernmental Panel on Climate Change (IPCC) method],
and the input–output analysis (IOA) method. Different methods
rely on distinct calculation ideas with varying application
conditions. The LCA method is a top-down calculation method
that determines the total carbon emissions based on all the
input and output data for a given product throughout its life
cycle (including the entire process of raw material extraction,
production and processing, storage and transportation, use and
waste disposal). This method facilitates comprehensive analysis
of carbon emissions in all segments, but the acquisition and
organization processes of data are highly complex, resulting in
a lack of operability (Fenner et al., 2018; Kavehei et al., 2018;
Correa et al., 2019). The IPCC method is a detailed guide
prepared by the IPCC, which can comprehensively consider
greenhouse gas emissions attributed to the combustion of
different fuels, with easy access to data and a simple calculation
process, but this method is only applicable to study the
carbon footprint of similarly closed silos but cannot obtain the
embodied carbon emissions from a consumption perspective
(Muthu et al., 2011; Zeng et al., 2021). The IOA method is
a bottom-up calculation method that uses input–output tables
to calculate the carbon footprint. Much previous literature
has used the single–region input–output (SRIO) model, which
assumes that production technologies are homogeneous but
does not consider the intermediate products of inputs in the
production process, resulting in notable deviation between
the calculated results and reality (Sun et al., 2017; Wieland
et al., 2020). With further IOA refinement, an increasing
number of studies have used multi–regional input–output
(MRIO) models to calculate the carbon footprint (Lin et al.,
2017). The MRIO model reflects the relationship between
initial, intermediate and total inputs, intermediate and final
products and total output through an equilibrium equation,
which can capture the relationship between the direct and
embodied carbon emissions in each sector of the economic
system and can also overcome the problem of duplication
or omission of carbon emission calculations due to complex
intersectoral production relationships (Sodersten et al., 2018),
providing a practical method to quantify pollutant emissions
and cross-regional transfer of resource consumption (Wang
et al., 2018c; Cabernard and Pfister, 2021; Yuan et al.,
2022).

The MRIO model can analyze the impact of a certain
industry on other industries. However, this model cannot
identify the importance of the considered sector among several
industries nor describe the overall state of the industry
network (Yuan et al., 2022). Social network analysis (SNA)
can complement the MRIO model, which is a method for
the evaluation of the interaction among different parts and
elucidation of the corresponding structural state (Tabassum
et al., 2018; Can and Alatas, 2019). The manufacture of products
and services usually requires the cooperation of multiple sectors,
so embodied carbon emission transfer can occur between
different regions and between various sectors. The SNA method
helps reveal the characteristics of the complex embodied carbon
flows in cross-regional trade.

China is the largest primary energy consumer and carbon
emitter in the world, facing pressure from countries worldwide
to reduce carbon emissions (Zhang et al., 2011). With the
rapid development of China’s economy, the extensive economic
growth model has led to an exponential increase in resource and
energy consumption, pollutant discharge and carbon emissions,
posing very high environmental and climate risks to society (Cai
et al., 2018). Although the growth rate of carbon emissions in
China has declined due to aggressive environmental policies
and slowing economic growth, China still poses a challenge
to international carbon reduction targets because of its large
economy and dependence on fossil fuels. The Hanjiang River
is the longest tributary of the Yangtze River, with a total length
of 1,577 km and a basin area of approximately 159,000 km2.
Figure 1 shows that the Hanjiang River basin (HJRB) is
an important economic link between Northwest and Central
China. The mainstream flows through Shaanxi, Henan, and
Hubei Provinces (Zhu et al., 2022). The study of carbon
emissions in the HJRB is important for the realization of
challenging carbon reduction targets in China.

This study calculated the carbon footprint in different
provinces and constructed an embodied carbon emission
transfer network, choosing the HJRB in China as an example.
Compared to previous studies, the main contribution of
this study includes the adopted methodology and data.
Methodologically, we combined the MRIO model with the SNA
method to identify core industries with a key carbon reduction
position (Fu et al., 2017; Wen and Wang, 2019). Compared
to previous methods, the proposed method can quantify the
direct and indirect linkages between sectors, which can help
identify sectors with key positions in complex production and
consumption processes. This study can support decision-makers
in the development of targeted carbon reduction policies. In
terms of data, previous studies mainly used single-year data to
calculate the carbon footprint, which cannot reflect temporal
changes (Weinzettel et al., 2014; Wu and Liu, 2016; Lin et al.,
2017; Yuan et al., 2022). This study combined MRIO tables for 3
years to analyze changes in the carbon footprint and embodied
carbon emission transfer on temporal and spatial scales.
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FIGURE 1

Location of the HJRB and provinces influenced by the Hanjiang River.

Theoretical background

The carbon footprint is generally used to characterize the
direct and indirect greenhouse gas emissions of a product
or service over its life cycle (Matthews et al., 2008). The
result is expressed in terms of its carbon dioxide equivalent to
distinguish it from the general concept of carbon emissions,
which uses the absolute mass of carbon dioxide as the unit of
measurement. In terms of carbon footprint accounting, there is
a more mainstream consensus that the carbon footprint refers
to all greenhouse gas emissions from the final consumption of
a product or service and its production process (Hertwich and
Peters, 2009; Shi and Yin, 2021). Accounting for greenhouse
gas emissions from a whole-industry perspective can provide
a basis for finding key carbon emission sectors, optimizing
the layout of industrial structure, and quantifying emission
reduction responsibility. Therefore, carbon footprints have
become an important indicator for evaluating sustainability
(Cucek et al., 2012).

As an example of the application of economic principles
in the environmental field (Lenzen et al., 2012; Kanemoto
et al., 2014; Sun et al., 2020), the MRIO model is able to track
information on the geospatial distribution of environmental

impacts, thus providing a practical way to quantify the
cross-regional transfer of waste emissions or resource
consumption. Currently, the MRIO model has become the
most widely used and effective carbon footprint accounting
model (Dawkins et al., 2019). The MRIO model is a “top-down”
analysis that reflects the relationship among initial inputs,
intermediate inputs, total inputs and intermediate outputs, final
outputs, and total outputs in a sector (Kucukvar et al., 2016).
It allocates the final consumption of a product to the various
stages of production and tracks the nodes that contribute the
most to carbon emissions (Ali, 2017). Essentially, it converts
the economic relationship among sectors or regions into the
physical relationship of carbon emissions, whereby the exchange
process of emissions is reflected and apportioned to each sector
or region, thus clarifying the direct and indirect carbon
emission relationships (Wiedmann, 2009). Carbon footprint
accounting based on the MRIO model can be summarized into
four steps: input–output table selection and processing, carbon
footprint model construction, carbon footprint accounting,
and result analysis. It is necessary to select input–output tables
of appropriate scale and time according to the object and
preprocess them, such as through sector aggregation, to reduce
errors caused by factors such as differences in production
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technology and scale between sectors. The core of carbon
footprint calculation with the MRIO model is the determination
of the carbon intensity factor matrix, Leontief inverse matrix
and final demand matrix. The carbon intensity factor matrix
can be calculated from the energy consumption, energy carbon
emission factor and sectoral output value from the statistical
yearbook, and the Leontief inverse matrix and final demand
matrix data are usually calculated from the input–output table.

The MRIO model has become the main method for carbon
footprint accounting at the macro level (Sun et al., 2019), as it
can reflect the direct and indirect carbon emission relationships
among sectors within the economic system, overcome the
problem of duplication or omission of calculation due to the
complex production relationship among sectors, and reduce the
uncertainty caused by system boundary delineation. However,
there are some limitations in using the MRIO model to calculate
carbon footprints. First, it takes considerable time and effort to
compile input–output tables, which leads to a lag in using these
tables to account for carbon footprints (Wiedmann et al., 2011;
Malik et al., 2021). Second, there may be differences between
the energy consumption data and the sectoral aggregation in
the input–output table, leading to errors in the carbon footprint
accounting results; moreover, sectoral aggregation also results
in insufficient precision of the corresponding carbon emission
factors (Heinonen et al., 2020). In addition, this method can
only be applied at the sectoral or regional level, as there are large
obstacles at the micro level (Hambÿe et al., 2018).

MRIO models are often combined with other methods
to research carbon footprint issues, among which SNA
has been widely adopted (Wei et al., 2017; Pompermayer
Sesso et al., 2020). Production involves various complex
relationships, and scholars have examined a series of
characteristics behind these complex relationships in the
attempt to abstract these relationships and explore their basic
internal characteristics. Against this background, the concept
of the SNA method has gradually been clarified, and its basic
model has been established.

SNA is a method of applying graph theory and linear algebra
to illustrate the structure of a network, defining the state of the
system by analyzing the positions or roles of its participants and
relationships (Zaw and Lim, 2017). An SNA system includes
many objects and relationships; objects are treated as nodes
in the network, relationships between objects form network
connections, and a complex network system is built through
these connections, which can be weighted or unweighted. SNA
system networks can be classified into four types: undirected
unweighted networks, undirected entitled networks, directed
weighted networks, and directed unweighted networks.

The SNA method is a useful system modeling technique
for complex problems (Maltseva and Batagelj, 2021). SNA has
become one of the most widely used tools for visualizing the
major intercountry/interindustry carbon emission flows along
global production chains (Duan and Jiang, 2018) and has been

applied to explore the drivers behind embodied energy flows
(Shi et al., 2017; Chen B. et al., 2018; Gao et al., 2018), assess the
contribution of supply chain clusters to global carbon emissions
(Kagawa et al., 2015), and assess the impact of import/export
trade on country carbon emissions (López et al., 2020).

Numerous studies have conducted industrial carbon
transfer analyses, and while these studies have enriched our
knowledge, some aspects of these studies need to be further
addressed. Targeted policies on reducing carbon emissions must
target the characteristics of carbon emissions across sectors to
clarify their direct effects (Chen X. et al., 2016). Identifying key
sectors based on province-specific industrial linkages allows for
more precise control of sector-level carbon emissions. There
are close and complex intersectoral production and carbon
emission linkages between provinces, which vary in natural
resources, energy consumption and industrial technology.
Therefore, strategies to reduce carbon emissions need to vary
from province to province. However, most previous studies
have either selected key sectors at the national level (Kagawa
et al., 2015; Shi et al., 2017; Chen B. et al., 2018; Duan and Jiang,
2018) or in individual provinces (Gao et al., 2018).

To address the above issues, key sectors in specific provinces
were selected to determine the potential for carbon reduction
in China based on the MRIO model and SNA method.
The cross-regional transfer of carbon emissions is hidden in
interregional trade flows, and the MRIO model is able to
allocate the final consumption of products to various stages
of production (Hubacek et al., 2014; Wiedmann and Lenzen,
2018). However, the MRIO model is unable to evaluate the
spatial network characteristics of carbon footprints from the
perspective of industrial structure (Serrano and Dietzenbacher,
2010). Therefore, combining the SNA method with the MRIO
model is particularly important to research the spatial network
characteristics of carbon emissions. The SNA method is used
to construct an industrial carbon footprint network, and the
analysis of network nodes is used to determine the position
of each industry in the whole network, find the production
link that contributes most to the carbon footprint, and provide
a basis for industrial carbon reduction policies (Sun et al.,
2020). In addition, the SNA method can study the interregional
flow of embodied carbon emissions along with the trade of
products and services, which can reveal the overall structural
characteristics of the embodied carbon emission transfer
network among regions and reflect the pattern of regional trade
relations and carbon emissions.

Data and methods

Data and preprocessing

The data used in this study include China’s MRIO tables
(Zheng et al., 2021), provincial energy consumption, emission
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coefficients for the major energy sources, and other statistical
information (population, GDP, etc.). The data are listed in
Table 1.

Due to the different statistical methods between energy
consumption data and MRIO tables, to maintain a consistent
data quality for subsequent analysis, we referred to a previous
method in the literature to merge the MRIO table containing 42
sectors into an MRIO table containing 12 sectors and divided
these sectors into 3 major industries (Yuan et al., 2022). The
merged results are summarized in Table 2.

Methods

Multi–regional input–output model
This study used the MRIO model to calculate the carbon

footprint and embodied carbon emission transfer. The MRIO
model is suitable for multiregional environmental studies and
can track trade relationships among different regions or sectors
(Wiedmann et al., 2011; Martinez et al., 2018; Wang et al., 2018c;
Cabernard and Pfister, 2021; Xu et al., 2022). In such an MRIO
model, different regions are linked by interregional trade. The
basic framework is provided in Table 3.

In region r of the MRIO model, production activity can be
formulated in a balanced form as follows:

Xr
i =

m∑
s=1

n∑
j=1

Xrs
ij +

n∑
s=1

Yrs
i (1)

where Xr
i denotes the total output of sector i in region r, which is

the sum of the intermediate input and final consumption. More
specifically, Xrs

ij denotes the intermediate input originating from
sector i in region r to sector j in region s, and Yrs

i denotes the
final consumption, which refers to the amount of final product
supplied by sector i in region r and consumed in region s. The

TABLE 1 Data and sources used in this study.

Type Time Source

China multi–regional
input–output table
(non-competitive)

2012; 2015; 2017 Carbon Emission Accounts
Datasets (CEADs)

https://www.ceads.net.cn/
accessed on 12 March 2022

Provincial energy
consumption

2012; 2015; 2017 National Bureau of Statistics of
China (NBSC)

https://data.stats.gov.cn/
accessed on 12 March 2022

Emission coefficient for
the major energy sources

2016 Intergovernmental Panel on
Climate Change (IPCC)

https://www.ipcc.ch/
accessed on 12 March 2022

Other statistical
information

2012; 2015; 2017 NBSC
https://data.stats.gov.cn/

accessed on 12 March 2022

direct consumption coefficient arsij can be expressed as follows:

arsij =
Xrs
ij

Xs
j
, (i, j = 1, 2, · · · n) (2)

where arsij denotes the amount of input provided by sector i in
region r required to satisfy the needs of one unit of output of
sector j in region s, Xrs

ij is the total input stemming from sector j,
and 0 ≤ arsij < 1. Then, Equation (1) can be rewritten as:

Xr
i =

m∑
s=1

n∑
j=1

arsijX
rs
ij +

n∑
s=1

Yrs
i (3)

The mathematical structure of the MRIO model comprises a
set of (m × n) linear equations, in which n refers to the number
of regions and m refers to the number of sectors. Then, Equation
(3) can be extended in matrix form as follows:

X1

X2
...

Xm

 =


A11 A12 · · · A1m

A21 A22 · · · A2m
...

...
. . .

...

Am1 Am2 · · · Amm




X1

X2
...

Xm

+


Y11 + Y12 + · · · + Y1m

Y21 + Y22 + · · · + Y2m
...

Ym1 + Ym2 + · · · + Ymm

 (4)

which, with obvious definitions, exhibits the following form:

X = AX + Y (5)

where X is the matrix of the total output, A is the matrix of
the direct consumption coefficients arsij , and Y is the matrix of
the final consumption Yrs

i . Solving for X, we can obtain the
following:

X = (I − A)−1Y (6)

where (I − A)−1 is the Leontief inverse matrix, which can be
expressed as L = (I − A)−1. This matrix represents the total
amount of both the direct and indirect inputs to satisfy one unit
of final consumption and exhibits the following matrix form:

L =

I −


A11 A12 · · · A1m

A21 A22 · · · A2m
...

...
. . .

...

Am1 Am2 · · · Amm




−1

=


L11 L12 · · · L1m

L21 L22 · · · L2m
...

...
. . .

...

Lm1 Lm2 · · · Lmm


(7)

Carbon footprint accounting
The prerequisite for carbon footprint determination is the

calculation of the total direct carbon emissions in each province.
Based on carbon emission coefficient data published by the
IPCC, the total direct carbon emissions in each province can be
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TABLE 2 Aggregated and original sectors in the MRIO table.

No. Original sectors (42) Aggregated sectors (12) New no. Major
industries (3)

1 Agriculture, forestry, animal husbandry, and fishery Agriculture, forestry, animal husbandry, and fishery S1 Primary industry (P)

2 Mining and washing of coal Mining and washing of coal, petroleum and natural
gas

S2 Secondary industry
(S)

3 Mining and washing of petroleum and natural gas

4 Mining and processing of metal ores Mining and processing of metal ores, non-metal
ores and other ores

S3

5 Mining and processing of non-metal ores and other ores

6 Manufacture of food and tobacco Manufacturing of food, tobacco, textiles, timber,
paper printing and stationery, and sporting goods

S4

7 Manufacture of textiles

8 Manufacture of apparel, footwear, caps, leather, fur, feather, and
related products

9 Processing of timber and manufacture of furniture

10 Papermaking, printing, and manufacture of articles for cultural,
educational and sports activities

11 Processing of refined petroleum, coking products and nuclear fuel Processing and manufacturing of petroleum, coking,
nuclear fuel, and chemical products

S5

12 Manufacture of chemical products

13 Manufacture of non-metallic mineral products Metal processing and metal and non-metallic
products

S6

14 Metal smelting and rolling products

15 Manufacture of metal products

16 Manufacture of general-purpose machinery Equipment, machinery, and other manufacturing
industries

S7

17 Manufacture of special-purpose machinery

18 Manufacture of transport equipment

19 Manufacture of electrical machinery and apparatus

20 Manufacture of communication equipment, computers, and
other electronic equipment

21 Manufacture of measuring instruments

22 Other manufacture, scrap and waste

23 Repair of fabricated metal products, machinery, and equipment

24 Production and supply of electricity and steam Production and supply of electricity, steam, gas, and
water

S8

25 Production and supply of gas

26 Production and supply of water

27 Construction Construction S9

28 Transport, storage, and mailing services Transport, storage, and mailing services S10 Tertiary industry (T)

29 Wholesale and retail trade Wholesale, retail trade, accommodation, food, and
beverage

S11

30 Accommodation, food, and beverage services

31 Information transmission, software, and information technology
services

Other services S12

32 Finance

33 Real estate

34 Renting and leasing and business services

35 Development of research and experiments

36 Comprehensive technical services

37 Management of water conservancy, environment, and public
facilities

38 Services to households, repair, and other services

39 Education

40 Healthcare and social work activities

41 Culture, sports, and entertainment

42 Public management, social security, and social organization
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calculated based on energy consumption data (Sperow, 2020) as
follows:

Pa =
n∑

i=1

Ei × NCVi × CEFi × COFi ×
44
12

(8)

where Pa denotes the total direct carbon emissions in province
a, n is the number of energy types, Ei, NCVi, CEFi, and COFi
denote the energy consumption, average net calorific value,
average carbonation rate and carbon oxidation rate, respectively,
of different energy sources in province a, and their values can
be obtained from guidelines for the preparation of provincial
greenhouse gas inventories. The carbon emission coefficient for
standard coal is the recommended value by the Energy Research
Institute of the National Development and Reform Commission
(Yu et al., 2014).

After direct carbon emission calculation, the direct carbon
emission coefficient is multiplied by the Leontief inverse
matrix L = (I − A)−1 and the final consumption Y to obtain
the complete carbon emission coefficients for each sector in
province a. The corresponding equations are as follows:

ei = Pi/xi,E = (ei) (9)

C = E
(
I − Ad

)−1
Yd (10)

where C is the carbon footprint, ei, Pi, and Xi are the direct
carbon emission coefficients, direct carbon emissions and total
output, respectively, and E is the direct carbon emission
coefficient matrix. Ad is the matrix of direct consumption
coefficients (production activities to meet domestic needs), and
Yd is the matrix of domestic final consumption.

It is important to note that this study focused only
on carbon emissions generated within China and excluded
carbon emissions contained in international imports of goods
due to insufficient provincial information. On the one hand,
international imports in the HJRB accounted for only 4.05%
of the total production in 2017. On the other hand, previous
literature has suggested that the impact of this component is
relatively limited (Wang et al., 2018c).

Embodied carbon emission transfer accounting
The embodied carbon emission transfer calculated with

the MRIO model must be combined with the direct carbon
emissions. Therefore, an environmentally expanded input–
output (EEIO) model was developed. The core of the EEIO
model entails the construction of multilateral regional trade
input–output relationships (Jiang et al., 2020), which can be
formulated as follows.

Lr = E (I − A)−1 (11)

E =


E1 0 · · · 0
0 E2

· · · 0
...

...
. . .

...

0 0 · · · Em

 (12)

where Lr denotes the total emission coefficients of the MRIO
table, and E is a diagonal matrix comprising the direct carbon
emission coefficients for each sector. Combining the Leontief
inverse matrix L = (I − A)−1 and final consumption Y of the
MRIO model, the embodied carbon emission transfer matrix CT
can thus be formulated as:

CT = E× L× Y

=


CT11 CT12

· · · CT1m

CT21 CT22
· · · CT2m

.

.

.
.
.
.

. . .
.
.
.

CTm1 CTm2
· · · CTmm



=


E1 0 · · · 0
0 E2

· · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · Em




L11 L12
· · · L1m

L21 L22
· · · L2m

.

.

.
.
.
.

. . .
.
.
.

Lm1 Lm2
· · · Lmm




Y11 Y12
· · · Y1m

Y21 Y22
· · · Y2m

.

.

.
.
.
.

. . .
.
.
.

Ym1 Ym2
· · · Ymm


(13)

where CTrs denotes the embodied carbon transfer from region r
to region s. More specifically, the row vector denotes the scale
of embodied carbon input from region r to region s, and the
column vector denotes the scale of embodied carbon output
from region s to region r.

The variation coefficient of carbon input/output is a statistic
used to evaluate the degree of variation. The commonly used
standard variation coefficient is denoted by CV, which is the
ratio of the standard deviation to the mean and is expressed as
follows:

CV = σ/µ (14)

Social network analysis
The embodied carbon transfer network collects carbon flow

relationships accompanying trade and industrial transfer (Lv
et al., 2019). The industries in each province of the HJRB are
the nodes of the embodied carbon emission transfer network,
and the carbon relationships between industries are the network
links. All the nodes and links constitute the embodied carbon
emission transfer network, and the degree centrality, closeness
centrality, and betweenness centrality are the main indicators
used to measure the characteristics of this network.

All nodes and linkages form the embodied carbon emission
transfer directed network matrix CT, and ctrs is an element of
matrix CT, which denotes the carbon emission transfer from
regions r and s. ct is the critical value of the average carbon
flux between different regions. The CT matrix is converted to
a binary matrix R and can thus be formulated as:

ct =
1

m(m− 1)

∑
i6=j

ctrs (15)
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TABLE 3 Basic framework of the multi–regional input–output model.

Input/Output Intermediate input Final consumption Total output

Region 1 . . . Regionm Region 1 . . . Regionm

Sector 1 . . . Sector n . . . Sector 1 . . . Sector n

Intermediate
input

Region 1 Sector 1 X11
11 . . . X11

1n . . . X1m
11 . . . X1m

1n Y11
1 . . . Y1m

1 X1
1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sector n X11
n1 . . . X11

mn . . . X1m
n1 . . . X1m

nn Y11
n . . . Y1m

n X1
n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Region m Sector 1 Xm1
11 . . . Xm1

1n . . . Xmm
11 . . . Xmm

1n Ym1
1 . . . Ymm

1 Xm
1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sector n Xm1
n1 . . . Xm1

nn . . . Xmm
n1 . . . Xmm

nn Ym1
n . . . Ymm

n Xm
n

Import IM1
11 . . . IM1

nn . . . IM1
1m . . . IMm

nn YIM1
1 . . . YIMm

n /

Total value added TVA1
1 . . . TVA1

n . . . TVAm
1 . . . TVAm

n / / / /

Total input X1
1 . . . X1

n . . . Xm
1 . . . Xm

n / / / /

If ctrs is greater than or equal to the critical value, the
corresponding element of the matrix R is assigned as 1.
Otherwise, it is assigned as 0.

The overall structure of the network is generally
characterized by the network density. Network density (Dn) is
used to indicate the number and complexity of interregional
carbon emission transfer network relationships. A higher
network density indicates a greater impact on the carbon
emission transfer relationship of each region.

Dn =
L

N × (N − 1)
(16)

where Dn is the network density, L is the actual number of
carbon transfer relationships, N is the number of nodes in the
carbon transfer network, and N × (N − 1) is the maximum
number of relationships that can be carried in the carbon
transfer network.

The degree centrality is a measure of the importance of a
given network node. The higher the degree centrality of a node,
the more important the node is within the network (Liu et al.,
2016). In other words, the industry with a high degree centrality
is the center of the embodied carbon transfer network and
strongly influences other industries. Within a directed network,
the degree centrality can be divided into the in- and out-degree
centralities, where the in-degree centrality represents the sum of
all edges pointing to the node, which reflects the node ability to
absorb internally, and the out-degree centrality represents the
sum of all edges emanating from the node, which reflects the
node ability to radiate externally (Wang et al., 2018b). These
indicators can be calculated as follows:

CDI = Dli =
1

n− 1

n∑
j=1

Rji (17)

CDO = Doi =
1

n− 1

n∑
j=1

Rij (18)

where CDI is the in-degree centrality, Rji is the number of
effective connections between nodes j and i, CDO is the out-
degree centrality, Rij is the number of connections between
nodes i and j, and n is the total number of nodes.

The closeness centrality indicates the importance of a
certain node within the network from a distance perspective.
If the distance between a node and other nodes is small, this
suggests that the node is relatively important within the network
(Meghanathan, 2018). Within the embodied carbon transfer
network, a high closeness centrality of a node indicates that the
distance between this node and other nodes is small. Similarly,
if the closeness centrality of a node is low, this indicates that the
node must follow a long path to connect with other nodes. The
closeness centrality can be calculated as follows:

Cci =
n− 1∑n
j=1 l(i, j)

(19)

where Cci is the closeness centrality and l(i, j) is the shortest
distance from node i to node j.

The betweenness centrality measures the interconnectivity
of a node within the network and can reflect the extent to
which the embodied carbon emission transfer between two
other regions is indirectly connected to this region (Szczepanski
et al., 2016). Within the embodied carbon emission transfer
network, the higher the betweenness centrality of a node is,
the more obvious the role of this node in bridging the carbon
relationship to other nodes. The betweenness centrality can be
calculated as follows:

CB =

n∑
i

n∑
j

Rij (ni)
Rij

(20)
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where CB is the betweenness centrality, Rij denotes the number
of shortest paths between nodes i and j, and Rij (ni) is the
number of shortest paths between nodes i and j existing through
node i.

Research design

Figure 2 shows the research design of this study,
which combines the abovementioned methodologies and data
inventories. First, we preprocess the input–output tables for
2012, 2015, and 2017 by combining the original 42 sectors
into 12 sectors and three industries. Second, based on
the IPCC emission coefficient method, each sector’s carbon
emission intensity coefficients are calculated by using energy
consumption data, energy emission coefficients and sectoral
output value. Third, the MRIO model is applied to calculate the
carbon footprint and embodied carbon transfer at the provincial
and sectoral levels. Fourth, the SNA method is combined to
construct a carbon emission transfer network among the three
major industries in each province of the HJRB and identify
the key sectors among them. Finally, we discuss the temporal
and spatial variations in the carbon footprints of provinces
and sectors in the HJRB, analyze the relationship of embodied
carbon emission transfer, and propose policy recommendations
for improving energy use efficiency and reducing embodied
carbon emissions.

Results

Provincial carbon footprint and
changes

The total carbon footprint in the HJRB exhibits an
increasing trend, while the carbon footprint intensity reveals a
decreasing trend. As indicated in Table 4 and Figure 3, the total
carbon footprint in the HJRB increased from 856.521 million
tons (Mt) in 2012 to 879.14 Mt in 2017, with an average annual
growth rate of 2.64%. Among the various provinces, the carbon
footprint in Henan decreased instead of increased, but Henan
remained the province with the highest total amount in the
HJRB. The next fastest growing province is Shaanxi, whose
carbon footprint was nearly four times the basin average. In
addition, the carbon footprint in Hubei was the smallest in the
HJRB. Contrary to the trend of the carbon footprint, the carbon
footprint intensity decreased year by year in all provinces. The
carbon footprint intensity is the carbon footprint contributed
per unit of the gross domestic product (GDP), and this indicator
is often used to measure the carbon contribution of the GDP
(Dong et al., 2018). The total carbon footprint intensity in the
HJRB reached 1.65 t in 2012, indicating that each 10,000 CNY
of the GDP contributed 1.65 t to the carbon footprint, which

decreased to 1.03 and 0.85 t in 2015 and 2017, respectively. It
should be noted that Shaanxi surpassed Henan as the region
with the highest carbon footprint intensity, in contrast to the
carbon footprint ranking.

The carbon footprint per capita in Henan indicated a
decreasing trend, while that in the other provinces exhibited an
increasing trend. The carbon footprint can be divided by the
resident population to obtain the carbon footprint per capita,
which can eliminate the effect of the population size on the
carbon footprint (Solarin, 2019). The maximum-to-minimum
carbon footprint per capita ratio in the HJRB approached 2.23,
indicating a large difference between the different regions. The
carbon footprint per capita in Henan decreased from 3.84 t in
2012 to 3.57 t in 2017, which is lower than the average level in
the HJRB. The main reason is that Henan contains the largest
resident population over the other provinces, accounting for
approximately half of the total population of the HJRB. The
carbon footprint in Henan decreased instead of increased, and
the combination of a decreasing carbon footprint and increasing
population resulted in Henan becoming the province with the
smallest carbon footprint per capita.

The main reason for the above characteristics lies in
the structural differences in industries between the different
provinces. Shaanxi is a typical energy-based province, where
coal, petroleum and chemical industries with high energy
consumption levels and high carbon emission coefficients are
relatively well developed, while light industry and services,
with a greater contribution to the GDP, are developing more
slowly. Therefore, energy-based regions, prone to high carbon
emission coefficients and low GDP growth rates, and developing
regions with a large total carbon footprint and high carbon
footprint intensity, should constitute the main breakthrough
point for future carbon reduction efforts. Henan is a typical
agricultural and populous province, relying mainly on grain
production and processing and other labor-intensive industries.
The shares of non-fossil energy consumption and the resident
population increased year by year, leading to a trend of year-
to-year reduction in both the total carbon footprint and carbon
footprint per capita. Hubei is a typical consumption-based
province dominated by industrial manufacturing and service
industries, with lower carbon emission coefficients and less fossil
energy consumption, but this province notably contributes to
the GDP growth rate. Therefore, the carbon footprint intensity
in consumption-based regions is lower than that in energy- and
agriculture-based regions.

Sectoral carbon footprint

Metal processing and metal and non-metallic products (S6),
processing and manufacturing of petroleum, coking, nuclear
fuel and chemical products (S5), other services (S12) and
construction (S9) are the sectors with a large carbon footprint.
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FIGURE 2

Research design for this study.

An uneven distribution of resources and heterogeneity of the
industrial structure lead to significant differences in the carbon
footprint between different sectors (Wang et al., 2020). As

indicated in Table 2, we reconstructed the original 42 sectors of
the MRIO table into 12 sectors and denoted these sectors as S1–
S12, and Figure 4 shows the sectoral composition characteristics
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TABLE 4 Carbon footprint, carbon footprint per unit of the GDP, and per capita carbon footprint in the provinces of the HJRB in 2012, 2015,
and 2017.

Province 2012 2015 2017 CF Growth
(%)

CF (Mt) CFPGDP
(t/104 CNY)

PCF (t) CF (Mt) CFPGDP
(t/104 CNY)

PCF (t) CF (Mt) CFPGDP
(t/104 CNY)

PCF (t)

Shaanxi 279.42 1.93 7.45 290.79 1.60 7.67 305.17 1.39 7.96 9.22

Henan 361.31 1.21 3.84 353.31 0.95 3.73 341.07 0.76 3.57 −5.60

Hubei 215.79 0.97 3.73 229.22 0.78 3.92 232.91 0.64 3.95 7.93

HJRB 856.52 1.65 4.52 873.31 1.03 4.57 879.14 0.85 4.56 2.64

CF, carbon footprint; CFPGDP, carbon footprint per unit of gross domestic product; PCF, per capita carbon footprint. 1 Mt = 106 tons.

FIGURE 3

Carbon footprint, per capita carbon footprint, and carbon footprint per unit of the GDP in the provinces of the HJRB in 2012, 2015, and 2017.

of the carbon footprint in different years. In 2012 and 2015, the
top 4 carbon footprints among the 12 sectors occurred in S9
(50.6%), S6 (40.9%), S5 (44.0%), and S12 (24.7%). In 2017, S6
jumped to the top with a high share of 58%, while the other
sectors did not change significantly.

Metal processing and metal and non-metallic products
(S6) and processing and manufacturing of petroleum, coking,
nuclear fuel and chemical products (S5) are supply sectors in
the upper part of the production chain and achieve high carbon

emission coefficients due to their high energy consumption and
low production values, resulting in a large carbon footprint (Ma
et al., 2019). The carbon footprint share of S5 in Shaanxi was
much higher than that of the other provinces because Shaanxi
is an energy-based province with abundant coal, oil, and natural
gas resources, which provide energy and raw materials for other
sectors (Lu et al., 2010). In addition, the carbon footprint share
of S6 in Hubei was significantly higher than that of the other
provinces. Hubei has a long history in the steel processing
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FIGURE 4

Sectoral composition of the carbon footprint in the provinces of the HJRB in 2012, 2015, and 2017.

industry. A large number of steel products are used in the
construction of buildings, machinery, vehicles, railroads and
infrastructure, which require the consumption of large amounts
of energy resources.

Although the other services (S12) sector attains a low carbon
emission coefficient, its high final consumption rate results in
a large carbon footprint. Since the service industry is mostly
concentrated in less polluting industries, such as the restaurant,
tourism and education sectors, its impact on the environment
is easily overlooked. In fact, the service industry is not an
emission-free sector. The energy consumption structure of the
service industry mainly includes electricity, coal and natural
gas, and the industrial scale is expanding globally (Yu et al.,
2022). This indicates that the service sector has become a major
sector of energy consumption and carbon emissions, and more
attention should be given to energy restructuring and energy
saving in the service sector in the future.

The carbon footprint in the construction (S9) sector
increased with increasing urbanization. Urbanization plays
an important role in the global carbon emissions process,
especially in intercity transportation infrastructure such
as high-speed railways and subways (Du et al., 2018). The
demand for urbanization has led to the rapid development
of various industries, such as highways, urban transportation
and large urban buildings. The upstream sectors of these

industries include carbon-intensive industries such as
petrochemicals, steel, metals and chemicals. In addition,
the current construction process is characterized by inefficient
energy use and disordered construction methods, and effective
measures are needed to obtain a balance between infrastructure
expansion and environmental sustainability.

Embodied carbon emission transfer
within the province

The embodied carbon emission transfer paths between
sectors reflect the flow relationships in the supply chain.
Figure 5 shows the embodied intersectoral carbon emission
transfer within each province in different years. S2–S5 and S2–
S8 were the two pathways with the highest embodied carbon
transfer flow in Shaanxi. As an energy-based region, Shaanxi
contains abundant fossil energy resources, whose extraction
requires large amounts of electricity, natural gas and water,
and the extracted coal, oil, and natural gas are heavily invested
in the production of local chemical products. The embodied
carbon emission transfer was higher under S1–S4 and S6–
S9 in Henan. As an agriculture-based region, the agriculture,
forestry, animal husbandry, and fishery industry in Henan
provides raw materials for the production of grain, tobacco,
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and other agricultural byproducts. In addition, the rapid
urbanization of Henan is an important reason for the large
carbon footprint in the construction industry, which uses a
large number of raw materials, such as metal products. In
Hubei, the embodied carbon emission transfer flows of S12–S9
and S12–S10 were highly significant. As a consumption-based
region, industries such as commerce, education, culture, and
tourism are growing rapidly. Their upstream and downstream
industries include a variety of sectors, such as construction,
transportation, warehousing and accommodation and catering,
which have become a major source of incremental carbon
emissions (Mingxing et al., 2014; Li K. et al., 2018).

The above results demonstrate that the implementation
of efficient carbon reduction policies requires the full
manifestation of intersectoral linkage effects. The supply
relationships of raw and auxiliary materials, products, and
byproducts between sectors with high carbon transfer flows are
very obvious, and carbon emission reduction in sectors with a
high embodied carbon output could reduce carbon emissions
in other related sectors. For example, the implementation of
carbon reduction measures in the agriculture, forestry, animal
husbandry, and fishery industries can simultaneously reduce
carbon emissions originating from the food processing industry.

Embodied carbon emission transfer
between provinces

The embodied carbon emission transfer paths between
provinces reflect the flow relationships in the interprovincial
trade chain. Figure 6 shows the interprovincial embodied
carbon emission transfer in the HJRB in different years,
and AS1–AS12, BS1–BS12, and CS2–CS12 represent the 12
sectors in Shaanxi, Henan, and Hubei, respectively. The total
interprovincial embodied carbon emission transfer increased
from 18.40 Mt in 2012 to 50.92 Mt in 2017, indicating that
the flow of goods and services between provinces frequently
occurred. The embodied carbon emission transfer between
Shaanxi and Hubei was substantial and rapidly increased over
time, indicating a close trade link between these provinces.
As a consumption-based region with a focus on industrial
manufacturing and service industries, there exist no abundant
energy resources suitable for extraction, so this region must
import large amounts of electricity, steel, coal and other
resources from energy-intensive regions to sustain its social
development and normal economic operations.

The embodied carbon emission transfer from less developed
to developed regions suggests that the pressure of carbon
emission reduction is transferred from developed regions to
other regions. Shaanxi remained the dominant province in
terms of the embodied carbon emission output, exporting a large
amount of heavy industrial products (e.g., steel and cement)
and energy products (e.g., oil, coal, and electricity) to other

regions, thus indicating that energy-based provinces play a
pivotal role in regional economic development. The carbon
emission reduction pressure is positively proportional to the
output of embodied carbon emissions, which demonstrates that
energy-based regions with the highest embodied carbon output
bear a larger share of the carbon pressure than that borne
by agricultural and consumption-based regions. Therefore,
optimization of the energy consumption structure in regions
with the highest embodied carbon emission output and carbon
emission reduction can play a positive role in the carbon
emission reduction efforts of the entire region.

Embodied carbon emission transfer
among the three major industries

Given today’s increasingly pressing carbon emissions
problems, it is necessary to examine the economic structure
in terms of carbon emissions. As indicated in Table 2, the 12
sectors in each province were combined into 3 major industries,
where S1 indicates the primary industry, denoted as P, S2–S9
indicate the secondary industry, denoted as S, and S10–S12
indicate the tertiary industry, denoted as T. There are 9 nodes
in the embodied carbon emission transfer network after sector
merger, and A, B, and C represent Shaanxi, Henan, and Hubei,
respectively. For example, AP denotes the primary industry in
Shaanxi Province. To clarify the intersectoral trade relationship,
we ignored carbon emission transfer between the three major
industries in each province, recorded as 0. However, if the
embodied carbon emission transfer between two industries in
different provinces was less than 5% of the total amount, the
effect could be considered negligible and was also recorded as
0. We use Ucinet, Gephi, and Visio to calculate centrality, create
and embellish carbon transfer networks.

Analysis of the structural characteristics of carbon
emission transfer networks can help identify the key industries
influencing embodied carbon emission transfer across regions.
As shown in Figure 7, the embodied carbon emission transfer
networks in 2012, 2015, and 2017 showed increasing correlation,
with a more stable network shape and good accessibility between
nodes in the network. From 2012 to 2017, the carbon linkage
between AP and BS became increasingly tight, while BS and CS
became increasingly detached. The carbon linkage between AP
and BP showed a change from tight to distant, while the change
between AS and BS showed the opposite trend. The network
tended to diversify in direction and tighten in connection,
and most nodes moved closer to the center through their
connection with the central nodes. However, the CP, BP, and
CT industries had the lowest degree centrality in 2012, 2015,
and 2017, indicating that these industries take long paths to
connect to other industries and are vulnerable to influence by
other industries. In other words, agriculture and the service
industry in Hubei and agriculture in Henan occupied the edge
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FIGURE 5

Carbon emission transfer between sectors in (A) Shaanxi, (B) Henan, and (C) Hubei of the HJRB in 2012, 2015, and 2017 (million tons).

of the embodied carbon emission transfer network. Overall,
the embodied carbon emission transfer network showed a clear
“core-edge” pattern.

The central node had high point degree centrality, high
influence on the whole network, and the core position in the
network. Both BS and AS yielded a more significant betweenness
centrality than that of the other industries in 2012, 2015, and
2017, indicating that the secondary industries in Henan and
Shaanxi strongly control other industries as they had the highest
linkage as an absolute measure among all industries. This result
indicates that the carbon emissions in these industry clusters not

only increase by supplying products to downstream industries
but also induce more carbon emissions in similar industries
than in other provinces. If these industries are affected, it could
disrupt the carbon emission linkages between their upstream
and downstream industries. However, the ability to control these
industries can also be used to reduce carbon emission levels
in other industries and contribute to overall carbon emission
reduction in the HJRB.

The secondary industries in Henan and Shaanxi comprise
the core of the embodied carbon emission transfer network,
combining the ability to control outward and absorb inward.
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FIGURE 6

Embodied carbon emission transfer between the three
provinces of the HJRB in (A) 2012, (B) 2015, and (C) 2017 (million
tons).

They occupied the dominant and key position in the whole
network and had very strong control over other nodes. Most
industrial sectors establish carbon relationships with other
industries through them. The above results suggest that the
control of these core industries over peripheral industries could
be fully utilized to reduce carbon emissions and ultimately to
reduce carbon emissions in the entire region.

Discussion

Carbon footprint and embodied
carbon emission transfer

In this study, we combined the MRIO model and SNA
method and selected the HJRB as a case site to quantify
the carbon footprint and embodied carbon emission transfer
between the different provinces in 2012, 2015, and 2017. The
following main findings were obtained:

Traditional urbanization and industrialization are marked
by energy consumption, such as the consumption of coal, oil,
and natural gas. In addition to their own emissions, these sectors
contribute to increases in the carbon emissions in coal mining
and dressing through interindustry linkages. Thus, the carbon
footprint in energy-based regions increases at a significantly
higher rate than that in agricultural and consumption-
based regions (Yang and Huang, 2019). However, energy-
based regions usually also belong to less developed regions
with scattered industrial structures and poorly developed
high technology, and most extracted energy products are
transferred to developed regions. In other words, energy-based
regions emit more carbon. However, manufactured energy
products are consumed in developed regions upon trade,
resulting in the transfer of the carbon emission reduction
responsibility originally borne by developed regions to less
developed regions via trade (Chen W. et al., 2018). Therefore,
policy-makers must give more attention to the rationality
and operability of policies when designing carbon emission
reduction policies (Wang et al., 2011). It is necessary to consider
the economic development status, consumption capacity of
residents, and urban development potential in different regions
and the embodied carbon emission transfer due to trade flows
(Wang et al., 2018c).

In recent years, many regions have implemented actions
to reduce carbon emissions in response to climate change.
These actions have achieved the expected results, according to
the decreasing trend of the carbon footprint intensity year by
year. The carbon footprint intensity reflects the contribution
of carbon emissions per unit of the GDP, and a decrease
in the carbon footprint intensity indicates that the GDP is
growing faster than the carbon footprint, demonstrating that
these regions are implementing effective efforts to reduce carbon
emissions while maintaining economic growth. This finding
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FIGURE 7

Carbon emission transfer network among three major industries
in the three provinces of the HJRB in (A) 2012, (B) 2015, and (C)
2017.

is also consistent with that in previous studies (Tian et al.,
2014). In addition, the carbon footprint is largely related to
production activities and residential consumption (Liu et al.,
2022), and considering that the HJRB is still undergoing
rapid urbanization, the total carbon footprint is expected to
continue to increase in the future (Zhang Y. et al., 2020).
Therefore, carbon emission reduction can be promoted from
both production (e.g., encouraging factories to use clean raw
materials) and consumption perspectives (e.g., enhancing the
decarbonization of residential consumption activities).

In contrast to energy- and agriculture-based regions, which
focus on sectors with a large carbon footprint, such as industry
and agriculture, respectively, and occur on the supply side of
the trade relationship, consumption-based regions rely more on
sectors with a small carbon footprint, such as finance, education,
culture, tourism, and high technology (Sun et al., 2021). These
service sectors do not directly consume large amounts of fossil
energy resources. However, their primary upstream industries
include high-carbon emission industries such as electricity,
construction, and transportation, leading to an increasingly
obvious environmental impact on the service sector, which has
become an important part of global carbon emissions.

Traditional industrial sectors, such as the mineral
processing, fossil fuel and construction industries, are the
main sources of carbon emissions. The construction sector is
the largest carbon emissions driver in the HJRB. However, a
side-by-side comparison among provinces revealed that this
was not the case for all individual provinces. For example,
the carbon footprint of the construction sector in Hubei was
significantly higher than for other provinces in the HJRB. Thus,
the construction sector is heterogeneous in different provinces,
and it is inappropriate to adopt the same carbon reduction
strategy in all provinces. The construction sector contributes
significantly to carbon emissions because of its long supply
chain and high demand for construction materials, building
finishes, construction equipment and other construction-
related products. Construction is a key sector in the HJRB, and
thus, modernization and quality improvement are crucial and
require a transition from material and capital-driven industries
to technology-driven industries and from sloppy growth to
intensive growth.

These industries should be encouraged to use cleaner
energy and explore sustainable development models to achieve
carbon reduction targets. However, it cannot be ignored
that the restriction of the development of energy-intensive
industries does not fundamentally solve the problem of carbon
emissions and may even affect local social and economic
development (Adams and Acheampong, 2019; Zhang W.
et al., 2020). In addition, due to the industrial and trade
linkages between different regions, carbon emission reduction
measures implemented in one sector within a specific region
may significantly impact other sectors in other regions (Wen
and Wang, 2019). Therefore, further analysis of carbon
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relationships between different sectors is needed to clarify the
flow and distribution of carbon emissions among sectors. An
environmentally extended key sector analysis in the context of
carbon emissions can help identify the sectors where mitigation
policies are likely to be most effective.

Identifying key sectors and provinces is the basis for
developing effective policies. In the case study in this paper,
to analyze the carbon relationships between different sectors,
we constructed an embodied carbon emission transfer network,
which exhibits a more obvious and stable association structure.
The results indicate that the secondary industries in Henan
and Shaanxi notably control other industries. These findings
can help policymakers better understand the position and role
of each sector in economic development and identify key
industries with significant potential for carbon reduction to
facilitate more targeted carbon reduction programs.

Unlike previous studies, we combine the MRIO model
and the SNA method to identify key provinces and sectors
in the HJRB that deserve more attention with regard to
carbon reduction targets and economic development. In
addition, by combining intersector production and carbon
emission linkages, our approach quantifies direct and
indirect cross-sectoral linkages more clearly than previous
approaches. Moreover, the results generated by SNA elucidate
the relationship between economic structure and carbon
emissions to help researchers better understand the role of
each sector and province in the HJRB in carbon emissions
and economic development and identify key sectors and
provinces for emissions reduction. This information can help
policymakers develop more targeted strategies to ultimately
achieve the economic transformation and carbon reduction
goals in the HJRB.

Policy recommendations

Based on the above analysis, to achieve more challenging
carbon reduction targets, this paper proposes the following
policy recommendations:

First, to achieve long-term overall carbon reduction in
the HJRB, it is necessary for future policies to focus on
both production and consumption. On the production side,
to curb the growth in energy consumption at the source, the
government should encourage key sectors located upstream
in the supply chain to develop low-carbon production
technologies, use cleaner raw materials and intermediate
products, and provide low-carbon products and services to
downstream sectors. On the consumption side, it is necessary
to cultivate awareness of low-carbon consumption among key
sectors and consumers located downstream of the supply chain
and reduce the final consumption of high-carbon products
(Wang et al., 2018a). For example, suppliers or consumers
of products and services should prioritize clean partners and

encourage the industry to move toward low-carbon production
from the consumer side.

Second, policymakers should not ignore the intersectoral
linkages between provinces. Multiregional collaboration
is indispensable for the achievement of ambitious carbon
reduction targets, but the difference in technology level between
regions is the main obstacle to carbon reduction (Suk et al.,
2016). As previously mentioned, due to regional differences
in the production and consumption of energy products, less
developed regions bear more of the carbon emission reduction
pressure than that borne by developed regions. Therefore,
developed regions should invest more effort in the development
of low-carbon technologies and clean energy and proactively
support less developed regions in improving their technology to
replace energy-intensive technologies. To reduce the additional
costs associated with technological upgrading, tax subsidies
should be employed to encourage less-developed regions to
use clean energy in their products as much as possible (Mi
et al., 2016; Wang et al., 2019). In addition, policy instruments
should be used to raise the market access threshold to limit
the entry of high-carbon emission industries into the market
(Xu et al., 2017).

Third, as different resource endowments lead to the
movement of resources and products and the consequent
carbon emission transfer between provinces, there is a need to
implement targeted carbon reduction policies in key provinces.
For provinces that import carbon-intensive products from other
provinces to meet their demand, the demand for carbon-
intensive products can be limited administratively, and the
consumption of cleaner products can be encouraged through
taxes and subsidies (Fang and Chen, 2018; Wen and Wang,
2019). Restructuring a province’s consumption can reduce its
dependence on fossil fuels, which can be achieved by buying
more products from provinces with low-carbon linkages and
encouraging suppliers to reduce their carbon emissions (Feng
et al., 2014). For provinces that export products containing
significant carbon emissions to other provinces, their demand
patterns need to be optimized to reduce carbon emissions and
transfers. Policies such as a carbon tax could be implemented for
these provinces, depending on the actual situation, to encourage
them to produce less carbon-intensive products. In addition,
it is possible to reduce direct emissions from the production
process by providing high-value-added, low-carbon emission
products through technological advances and adjusting the
product production structure (Huang et al., 2015).

Finally, policymakers need to develop targeted sectoral
carbon reduction policies because these key sectors can spread
carbon reduction trends to other sectors. The most common
key carbon reduction sector is the electricity production and
supply sector due to the huge demand for energy, particularly
in Shaanxi Province. As a fundamental industry in China,
the electricity production and supply sector has a very large
carbon footprint, so it is important to take measures to manage
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it. Other industries, such as the mineral processing, fossil
fuel and construction industries, have large carbon outputs,
which are always associated with high energy consumption
and emission intensity. Thus, the emission intensity of these
industries should be reduced through technical means, such
as improving power generation technology, energy extraction
technology, and adjusting the structure of energy consumption.
These measures will enable non-conventional power generation
technologies such as thermal, hydro, wind, and nuclear power to
replace coal (Wen and Wang, 2019).

Limitations

There are certain limitations in this study. First, the
input–output table provides data for 42 sectors, which we
combined into 12 sectors based on intersectoral relationships
to facilitate calculation and analysis. In addition, there may
be differences between the energy consumption data and
the sectoral aggregation in the input–output table, leading
to some errors in the carbon footprint accounting results.
Sectoral aggregation also results in deficient precision of the
corresponding carbon emission coefficients.

Second, carbon footprint accounting with input–output
tables reflects the relationship between economic activities and
environmental emissions in a given year. However, the long time
required to prepare input–output tables and their slow updating
have led to some studies having to use input–output data from
previous years, resulting in errors in the calculation results. The
data used in this study were published in 2012, 2015, and 2017
and may not reflect the current situation. The 2017 MRIO table
was published in July 2020 and contains the most recent data
currently available.

Third, because input–output tables use intersectoral
production relationships to reflect economic activities at the
regional scale, carbon emissions can only be attributed to the
sectoral level when accounting for carbon footprints. Compared
with LCA, the MRIO model has larger errors at the micro level,
such as organization and product, and it is difficult to accurately
account for the carbon emissions of a specific link. Therefore,
carbon footprint studies based on the MRIO model are mainly
restricted to the macro level, such as trade, industry, and region.

Future work

In general, although the MRIO model has greater challenges
in data acquisition, model construction, and department
aggregation, its advantages cannot be ignored. The MRIO model
reflects the complex production relationship among sectors, and
this approach to carbon footprint accounting can distinguish
direct and indirect carbon emissions, avoiding the errors that
exist in the LCA method. In addition, once the input–output

table is constructed, the accounting results can be obtained more
quickly without spending too many resources, which has better
economic benefits.

Input–output tables are the basis of the MRIO model, and
in future work, we can construct input–output tables with more
detailed and reliable sectoral classification, closer environmental
impact, and more regional coverage. In addition, we can use
MRIO models to study the impact of social, economic and
natural factors on carbon emissions and the greenhouse effect,
which is important for the development of environmental and
energy policies. Especially in the context of the Paris Agreement,
the prediction of the carbon footprint under different policy
and technology scenarios may affect the future trends of the
industrial structure and demand structure.

Although the carbon footprint scenario analysis based
on the MRIO model still has some shortcomings (e.g., the
assumption of a linear relationship between inputs and outputs),
the method still has good explanatory power for changes
in the carbon footprint due to long-term discontinuous
changes in production structure. Carbon footprint scenario
analysis has greater potential to predict sectoral technology
levels, intersectoral production structure relationships, demand
structures, energy quality, and technological changes.

Conclusion

This paper proposed a method based on the MRIO model
and SNA method and analyzed the carbon footprint and
embodied carbon emission transfer during different periods
with the HJRB as a case study. The main findings are as follows:

The total carbon footprint in the HJRB exhibits an
increasing trend, and the different provinces reveal significant
differences depending on the industrial structure. The carbon
emission coefficient and final consumption rate are important
factors influencing the carbon footprint in a given sector. The
embodied carbon emission transfer pathways across sectors and
regions reflect intersectoral linkage effects and interregional
trade relationships, respectively. The embodied carbon transfer
network reveals key industries with notable control over carbon
emissions stemming from other industries.

To achieve more challenging carbon reduction targets,
rational and actionable policies based on an analysis of
carbon relationships across regions and sectors are needed
from multiple perspectives, including production, consumption,
regional cooperation, and financial support.

The case study in this paper demonstrated that the MRIO
model can determine the carbon footprint and embodied carbon
emission transfer in complex regional trade relationships. The
SNA method can portray the interrelationships among different
industries through visual network mapping and can identify
key sectors. Compared to previous methods, this method
considers regional trade and sectoral production. Additionally,
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this approach reflects the relationship between trade chains
(production and consumption) and supply chains (supply
and demand side). This study could provide a theoretical
approach for policymakers in the development of more targeted
carbon reduction programs and a case reference for other
similar regions in the assessment of carbon relationships across
regions and sectors.

Data availability statement

The original contributions presented in this study are
included in the article/supplementary material, further inquiries
can be directed to the corresponding author/s.

Author contributions

KZ: methodology, visualization, formal analysis, data
curation, and writing–original draft. QL, XX, and YZ: data
curation. MW: validation and resources. HL: conceptualization,
funding acquisition, supervision, and writing–review and
editing. All authors contributed to the article and approved the
submitted version.

Funding

This research was supported by the National Natural Science
Foundation of China (NO. 41971402).

Conflict of interest

The authors declare that the research was conducted
in the absence of any commercial or financial relationships
that could be construed as a potential conflict of
interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

References

Adams, S., and Acheampong, A. O. (2019). Reducing carbon emissions: the role
of renewable energy and democracy. J. Clean. Prod. 240:118245. doi: 10.1016/j.
jclepro.2019.118245

Ali, Y. (2017). Carbon, water and land use accounting: consumption vs
production perspectives. Renew. Sust. Energy Rev. 67, 921–934. doi: 10.1016/j.rser.
2016.09.022

Cabernard, L., and Pfister, S. (2021). A highly resolved MRIO database for
analyzing environmental footprints and Green Economy Progress. Sci. Total
Environ. 755:142587. doi: 10.1016/j.scitotenv.2020.142587

Cai, B., Wang, X., Huang, G., Wang, J., Cao, D., Baetz, B. W., et al. (2018).
Spatiotemporal changes of China’s carbon emissions. Geophys. Res. Lett. 45,
8536–8546. doi: 10.1029/2018GL079564

Can, U., and Alatas, B. (2019). A new direction in social network analysis:
online social network analysis problems and applications. Physica A 535:122372.
doi: 10.1016/j.physa.2019.122372

Chen, B., Li, J. S., Wu, X. F., Han, M. Y., Zeng, L., Li, Z., et al. (2018). Global
energy flows embodied in international trade: a combination of environmentally
extended input–output analysis and complex network analysis. Appl. Energy 210,
98–107. doi: 10.1016/j.apenergy.2017.10.113

Chen, W., Shen, Y., and Wang, Y. (2018). Evaluation of economic
transformation and upgrading of resource-based cities in Shaanxi province based
on an improved TOPSIS method. Sustain. Cities Soc. 37, 232–240. doi: 10.1016/j.
scs.2017.11.019

Chen, G., Wiedmann, T., Wang, Y., and Hadjikakou, M. (2016). Transnational
city carbon footprint networks - exploring carbon links between Australian and
Chinese cities. Appl. Energy 184, 1082–1092. doi: 10.1016/j.apenergy.2016.08.053

Chen, X., Chan, C. K., and Lee, Y. C. E. (2016). Responsible production policies
with substitution and carbon emissions trading. J. Clean. Prod. 134, 642–651.
doi: 10.1016/j.jclepro.2015.10.083

Choi, T. (2017). Environmental impact of voluntary extended producer
responsibility: the case of carpet recycling. Resour. Conserv. Recycl. 127, 76–84.
doi: 10.1016/j.resconrec.2017.08.020

Correa, J. P., Montalvo-Navarrete, J. M., and Hidalgo-Salazar, M. A. (2019).
Carbon footprint considerations for biocomposite materials for sustainable
products: a review. J. Clean. Prod. 208, 785–794. doi: 10.1016/j.jclepro.2018.10.099

Cucek, L., Klemes, J. J., and Kravanja, Z. (2012). A review of footprint analysis
tools for monitoring impacts on sustainability. J. Clean. Prod. 34, 9–20. doi: 10.
1016/j.jclepro.2012.02.036

Dawkins, E., Moran, D., Palm, V., Wood, R., and Björk, I. (2019). The Swedish
footprint: a multi-model comparison. J. Clean. Prod. 209, 1578–1592. doi: 10.1016/
j.jclepro.2018.11.023

Dong, F., Yu, B., Hadachin, T., Dai, Y., Wang, Y., Zhang, S., et al. (2018).
Drivers of carbon emission intensity change in China.Resour. Conserv. Recycl. 129,
187–201. doi: 10.1016/j.resconrec.2017.10.035

Du, Q., Lu, X., Li, Y., Wu, M., Bai, L., and Yu, M. (2018). Carbon emissions
in China’s construction industry: calculations, factors and regions. Int. J. Environ.
Res. Public Health 15:1220. doi: 10.3390/ijerph15061220

Duan, Y., and Jiang, X. (2018). Visualizing the change of embodied CO2
emissions along global production chains. J. Clean. Prod. 194, 499–514. doi: 10.
1016/j.jclepro.2018.05.133

Fang, D., and Chen, B. (2018). Linkage analysis for water-carbon nexus in China.
Appl. Energy 225, 682–695. doi: 10.1016/j.apenergy.2018.05.058

Feng, K., Hubacek, K., Sun, L., and Liu, Z. (2014). Consumption-based CO2
accounting of China’s megacities: the case of Beijing, Tianjin, Shanghai and
Chongqing. Ecol. Indic. 47, 26–31. doi: 10.1016/j.ecolind.2014.04.045

Fenner, A. E., Kibert, C. J., Woo, J., Morque, S., Razkenari, M., Hakim, H.,
et al. (2018). The carbon footprint of buildings: a review of methodologies and
applications. Renew. Sustain. Energy Rev. 94, 1142–1152. doi: 10.1016/j.rser.2018.
07.012

Fu, X., Lahr, M., Yaxiong, Z., and Meng, B. (2017). Actions on climate change,
reducing carbon emissions in China via optimal interregional industry shifts.
Energy Policy 102, 616–638. doi: 10.1016/j.enpol.2016.10.038

Gao, C., Su, B., Sun, M., Zhang, X., and Zhang, Z. (2018). Interprovincial
transfer of embodied primary energy in China: a complex network

Frontiers in Ecology and Evolution 20 frontiersin.org

https://doi.org/10.3389/fevo.2022.941520
https://doi.org/10.1016/j.jclepro.2019.118245
https://doi.org/10.1016/j.jclepro.2019.118245
https://doi.org/10.1016/j.rser.2016.09.022
https://doi.org/10.1016/j.rser.2016.09.022
https://doi.org/10.1016/j.scitotenv.2020.142587
https://doi.org/10.1029/2018GL079564
https://doi.org/10.1016/j.physa.2019.122372
https://doi.org/10.1016/j.apenergy.2017.10.113
https://doi.org/10.1016/j.scs.2017.11.019
https://doi.org/10.1016/j.scs.2017.11.019
https://doi.org/10.1016/j.apenergy.2016.08.053
https://doi.org/10.1016/j.jclepro.2015.10.083
https://doi.org/10.1016/j.resconrec.2017.08.020
https://doi.org/10.1016/j.jclepro.2018.10.099
https://doi.org/10.1016/j.jclepro.2012.02.036
https://doi.org/10.1016/j.jclepro.2012.02.036
https://doi.org/10.1016/j.jclepro.2018.11.023
https://doi.org/10.1016/j.jclepro.2018.11.023
https://doi.org/10.1016/j.resconrec.2017.10.035
https://doi.org/10.3390/ijerph15061220
https://doi.org/10.1016/j.jclepro.2018.05.133
https://doi.org/10.1016/j.jclepro.2018.05.133
https://doi.org/10.1016/j.apenergy.2018.05.058
https://doi.org/10.1016/j.ecolind.2014.04.045
https://doi.org/10.1016/j.rser.2018.07.012
https://doi.org/10.1016/j.rser.2018.07.012
https://doi.org/10.1016/j.enpol.2016.10.038
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-941520 July 30, 2022 Time: 18:15 # 21

Zhu et al. 10.3389/fevo.2022.941520

approach. Appl. Energy 215, 792–807. doi: 10.1016/j.apenergy.2018.
02.075

Gopalakrishnan, S., Granot, D., Granot, F., Sosic, G., and Cui, H. (2021).
Incentives and emission responsibility allocation in supply chains. Manag. Sci. 67,
4172–4190. doi: 10.1287/mnsc.2020.3724

Hambÿe, C., Hertveldt, B., and Michel, B. (2018). Does consistency with detailed
national data matter for calculating carbon footprints with global multi-regional
input–output tables? A comparative analysis for Belgium based on a structural
decomposition. Econ. Struct. 7:11. doi: 10.1186/s40008-018-0110-6

Heinonen, J., Ottelin, J., Ala-Mantila, S., Wiedmann, T., Clarke, J., and Junnila,
S. (2020). Spatial consumption-based carbon footprint assessments - a review of
recent developments in the field. J. Clean. Prod. 256:120335. doi: 10.1016/j.jclepro.
2020.120335

Hertwich, E. G., and Peters, G. P. (2009). Carbon footprint of nations: a
global, trade-linked analysis. Environ. Sci. Technol. 43, 6414–6420. doi: 10.1021/
es803496a

Huang, G., Ouyang, X., and Yao, X. (2015). Dynamics of China’s regional carbon
emissions under gradient economic development mode. Ecol. Indic. 51, 197–204.
doi: 10.1016/j.ecolind.2014.07.040

Hubacek, K., Feng, K., Minx, J. C., Pfister, S., and Zhou, N. (2014).
Teleconnecting consumption to environmental impacts at multiple spatial scales
research frontiers in environmental footprinting. J. Ind. Ecol. 18, 7–9. doi: 10.1111/
jiec.12082

Isz, A., Aab, C., Mmad, E., and Bd, B. (2021). Magnitudes of households’ carbon
footprint in Iskandar Malaysia: policy implications for sustainable development.
J. Clean. Prod. 315:128042. doi: 10.1016/j.jclepro.2021.128042

Jiang, M., Liu, L., Behrens, P., Wang, T., Tang, Z., Chen, D., et al. (2020).
Improving subnational input-output analyses using regional trade data: a case-
study and comparison. Environ. Sci. Technol. 54, 12732–12741. doi: 10.1021/acs.
est.0c04728

Kagawa, S., Suh, S., Hubacek, K., Wiedmann, T., Nansai, K., and Minx, J.
(2015). CO2 emission clusters within global supply chain networks: implications
for climate change mitigation. Glob. Environ. Change 35, 486–496. doi: 10.1016/j.
gloenvcha.2015.04.003

Kanemoto, K., Moran, D., Lenzen, M., and Geschke, A. (2014). International
trade undermines national emission reduction targets: new evidence from air
pollution. Glob. Environ. Change 24, 52–59. doi: 10.1016/j.gloenvcha.2013.09.008

Kavehei, E., Jenkins, G. A., Adame, M. F., and Lemckert, C. (2018). Carbon
sequestration potential for mitigating the carbon footprint of green stormwater
infrastructure.Renew. Sustain. Energy Rev. 94, 1179–1191. doi: 10.1016/j.rser.2018.
07.002

Kucukvar, M., Cansev, B., Egilmez, G., Onat, N. C., and Samadi, H. (2016).
Energy-climate-manufacturing nexus: new insights from the regional and global
supply chains of manufacturing industries. Appl. Energy 184, 889–904. doi: 10.
1016/j.apenergy.2016.03.068

Lenzen, M., Kanemoto, K., Moran, D., and Geschke, A. (2012). Mapping the
structure of the world economy. Environ. Sci. Technol. 46, 8374–8381. doi: 10.
1021/es300171x

Li, K., Fang, L., and He, L. (2018). How urbanization affects China’s energy
efficiency: a spatial econometric analysis. J. Clean. Prod. 200, 1130–1141. doi:
10.1016/j.jclepro.2018.07.234

Li, Y. L., Chen, B., Han, M. Y., Dunford, M., Liu, W., and Li, Z. (2018). Tracking
carbon transfers embodied in Chinese municipalities’ domestic and foreign trade.
J. Clean. Prod. 192, 950–960. doi: 10.1016/j.jclepro.2018.04.230

Lin, J., Hu, Y., Zhao, X., Shi, L., and Kang, J. (2017). Developing a city-
centric global multiregional input-output model (CCG-MRIO) to evaluate
urban carbon footprints. Energy Policy 108, 460–466. doi: 10.1016/j.enpol.2017.
06.008

Liu, H., Liu, W., Fan, X., and Liu, Z. (2015). Carbon emissions embodied in
value added chains in China. J. Clean. Prod. 103, 362–370. doi: 10.1016/j.jclepro.
2014.09.077

Liu, Y., Jiang, Y., Liu, H., Li, B., and Yuan, J. (2022). Driving factors of carbon
emissions in China’s municipalities: a LMDI approach. Environ. Sci. Pollut. Res. 29,
21789–21802. doi: 10.1007/s11356-021-17277-w

Liu, Y., Wei, B., Du, Y., Xiao, F., and Deng, Y. (2016). Identifying influential
spreaders by weight degree centrality in complex networks. Chaos Solitons Fractals
86, 1–7. doi: 10.1016/j.chaos.2016.01.030

López, L. A., Arce, G., and Jiang, X. (2020). Mapping China’s flows of emissions
in the world’s carbon footprint: a network approach of production layers. Energy
Econ. 87:104739. doi: 10.1016/j.eneco.2020.104739

Lu, C., Zhang, X., and He, J. (2010). A CGE analysis to study the impacts of
energy investment on economic growth and carbon dioxide emission: a case of

Shaanxi Province in western China. Energy 35, 4319–4327. doi: 10.1016/j.energy.
2009.04.007

Lv, K., Feng, X., Kelly, S., Zhu, L., and Deng, M. (2019). A study on embodied
carbon transfer at the provincial level of China from a social network perspective.
J. Clean. Prod. 225, 1089–1104. doi: 10.1016/j.jclepro.2019.03.233

Ma, X., Wang, C., Dong, B., Gu, G., Chen, R., Li, Y., et al. (2019). Carbon
emissions from energy consumption in China: its measurement and driving
factors. Sci. Total Environ. 648, 1411–1420. doi: 10.1016/j.scitotenv.2018.08.183

Malik, A., Egan, M., du Plessis, M., and Lenzen, M. (2021). Managing
sustainability using financial accounting data: the value of input-output analysis.
J. Clean. Prod. 293:126128. doi: 10.1016/j.jclepro.2021.126128

Maltseva, D., and Batagelj, V. (2021). Journals publishing social network
analysis. Scientometrics 126, 3593–3620. doi: 10.1007/s11192-021-03889-z

Martinez, S., del Mar Delgado, M., Martinez Marin, R., and Alvarez, S. (2018).
The environmental footprint of the end-of-life phase of a dam through a hybrid-
MRIO analysis. Build. Environ. 146, 143–151. doi: 10.1016/j.buildenv.2018.09.
049

Matthews, H. S., Hendrickson, C. T., and Weber, C. L. (2008). The importance
of carbon footprint estimation boundaries. Environ. Sci. Technol. 42, 5839–5842.
doi: 10.1021/es703112w

Meghanathan, N. (2018). delta-Space for real-world networks: a correlation
analysis of decay centrality vs. degree centrality and closeness centrality. J. King
Saud Univ. Comput. Inf. Sci. 30, 391–403. doi: 10.1016/j.jksuci.2017.04.006

Mi, Z., Zhang, Y., Guan, D., Shan, Y., Liu, Z., Cong, R., et al. (2016).
Consumption-based emission accounting for Chinese cities. Appl. Energy 184,
1073–1081. doi: 10.1016/j.apenergy.2016.06.094

Mingxing, C., Yongbin, H., Zhipeng, T., Dadao, L., Hui, L., and Li, M. (2014).
The provincial pattern of the relationship between urbanization and economic
development in China. J. Geogr. Sci. 24, 33–45. doi: 10.1007/s11442-014-1071-9

Moran, D., Kanemoto, K., Jiborn, M., Wood, R., Tobben, J., and Seto, K. C.
(2018). Carbon footprints of 13 000 cities. Environ. Res. Lett. 13:064041. doi:
10.1088/1748-9326/aac72a

Muthu, S. S., Li, Y., Hu, J. Y., and Mok, P. Y. (2011). Carbon footprint of
shopping (grocery) bags in China, Hong Kong and India. Atmos. Environ. 45,
469–475. doi: 10.1016/j.atmosenv.2010.09.054

Pompermayer Sesso, P., Amâncio-Vieira, S. F., Zapparoli, I. D., and Sesso Filho,
U. A. (2020). Structural decomposition of variations of carbon dioxide emissions
for the United States, the European Union and BRIC. J. Clean. Prod. 252:119761.
doi: 10.1016/j.jclepro.2019.119761

Richardson, M. T. (2022). Prospects for detecting accelerated global warming.
Geophys. Res. Lett. 49:e2021GL095782. doi: 10.1029/2021GL095782

Serrano, M., and Dietzenbacher, E. (2010). Responsibility and trade emission
balances: an evaluation of approaches. Ecol. Econ. 69, 2224–2232. doi: 10.1016/j.
ecolecon.2010.06.008

Shi, J., Li, H., Guan, J., Sun, X., Guan, Q., and Liu, X. (2017). Evolutionary
features of global embodied energy flow between sectors: a complex network
approach. Energy 140, 395–405. doi: 10.1016/j.energy.2017.08.124

Shi, S., and Yin, J. (2021). Global research on carbon footprint: a scientometric
review. Environ. Impact Assess. Rev. 89:106571. doi: 10.1016/j.eiar.2021.106571

Sodersten, C.-J. H., Wood, R., and Hertwich, E. G. (2018). Endogenizing capital
in MRIO models: the implications for consumption-based accounting. Environ.
Sci. Technol. 52, 13250–13259. doi: 10.1021/acs.est.8b02791

Solarin, S. A. (2019). Convergence in CO(2)emissions, carbon footprint and
ecological footprint: evidence from OECD countries. Environ. Sci. Pollut. Res. 26,
6167–6181. doi: 10.1007/s11356-018-3993-8

Sperow, M. (2020). Updated potential soil carbon sequestration rates on US
agricultural land based on the 2019 IPCC guidelines. Soil Tillage Res. 204:104719.
doi: 10.1016/j.still.2020.104719

Suk, S., Lee, S.-Y., and Jeong, Y. S. (2016). A survey on the impediments to low
carbon technology investment of the petrochemical industry in Korea. J. Clean.
Prod. 133, 576–588. doi: 10.1016/j.jclepro.2016.05.132

Sun, C., Ding, D., and Yang, M. (2017). Estimating the complete CO2 emissions
and the carbon intensity in India: from the carbon transfer perspective. Energy
Policy 109, 418–427. doi: 10.1016/j.enpol.2017.07.022

Sun, L., Qin, L., Taghizadeh-Hesary, F., Zhang, J., Mohsin, M., and Chaudhry,
I. S. (2020). Analyzing carbon emission transfer network structure among
provinces in China: new evidence from social network analysis. Environ. Sci.
Pollut. Res. 27, 23281–23300. doi: 10.1007/s11356-020-08911-0

Sun, Y., Qian, L., and Liu, Z. (2021). The carbon emissions level of China’s
service industry: an analysis of characteristics and influencing factors. Environ.
Dev. Sustain. doi: 10.1007/s10668-021-02001-y [Epub ahead of print].

Frontiers in Ecology and Evolution 21 frontiersin.org

https://doi.org/10.3389/fevo.2022.941520
https://doi.org/10.1016/j.apenergy.2018.02.075
https://doi.org/10.1016/j.apenergy.2018.02.075
https://doi.org/10.1287/mnsc.2020.3724
https://doi.org/10.1186/s40008-018-0110-6
https://doi.org/10.1016/j.jclepro.2020.120335
https://doi.org/10.1016/j.jclepro.2020.120335
https://doi.org/10.1021/es803496a
https://doi.org/10.1021/es803496a
https://doi.org/10.1016/j.ecolind.2014.07.040
https://doi.org/10.1111/jiec.12082
https://doi.org/10.1111/jiec.12082
https://doi.org/10.1016/j.jclepro.2021.128042
https://doi.org/10.1021/acs.est.0c04728
https://doi.org/10.1021/acs.est.0c04728
https://doi.org/10.1016/j.gloenvcha.2015.04.003
https://doi.org/10.1016/j.gloenvcha.2015.04.003
https://doi.org/10.1016/j.gloenvcha.2013.09.008
https://doi.org/10.1016/j.rser.2018.07.002
https://doi.org/10.1016/j.rser.2018.07.002
https://doi.org/10.1016/j.apenergy.2016.03.068
https://doi.org/10.1016/j.apenergy.2016.03.068
https://doi.org/10.1021/es300171x
https://doi.org/10.1021/es300171x
https://doi.org/10.1016/j.jclepro.2018.07.234
https://doi.org/10.1016/j.jclepro.2018.07.234
https://doi.org/10.1016/j.jclepro.2018.04.230
https://doi.org/10.1016/j.enpol.2017.06.008
https://doi.org/10.1016/j.enpol.2017.06.008
https://doi.org/10.1016/j.jclepro.2014.09.077
https://doi.org/10.1016/j.jclepro.2014.09.077
https://doi.org/10.1007/s11356-021-17277-w
https://doi.org/10.1016/j.chaos.2016.01.030
https://doi.org/10.1016/j.eneco.2020.104739
https://doi.org/10.1016/j.energy.2009.04.007
https://doi.org/10.1016/j.energy.2009.04.007
https://doi.org/10.1016/j.jclepro.2019.03.233
https://doi.org/10.1016/j.scitotenv.2018.08.183
https://doi.org/10.1016/j.jclepro.2021.126128
https://doi.org/10.1007/s11192-021-03889-z
https://doi.org/10.1016/j.buildenv.2018.09.049
https://doi.org/10.1016/j.buildenv.2018.09.049
https://doi.org/10.1021/es703112w
https://doi.org/10.1016/j.jksuci.2017.04.006
https://doi.org/10.1016/j.apenergy.2016.06.094
https://doi.org/10.1007/s11442-014-1071-9
https://doi.org/10.1088/1748-9326/aac72a
https://doi.org/10.1088/1748-9326/aac72a
https://doi.org/10.1016/j.atmosenv.2010.09.054
https://doi.org/10.1016/j.jclepro.2019.119761
https://doi.org/10.1029/2021GL095782
https://doi.org/10.1016/j.ecolecon.2010.06.008
https://doi.org/10.1016/j.ecolecon.2010.06.008
https://doi.org/10.1016/j.energy.2017.08.124
https://doi.org/10.1016/j.eiar.2021.106571
https://doi.org/10.1021/acs.est.8b02791
https://doi.org/10.1007/s11356-018-3993-8
https://doi.org/10.1016/j.still.2020.104719
https://doi.org/10.1016/j.jclepro.2016.05.132
https://doi.org/10.1016/j.enpol.2017.07.022
https://doi.org/10.1007/s11356-020-08911-0
https://doi.org/10.1007/s10668-021-02001-y
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-941520 July 30, 2022 Time: 18:15 # 22

Zhu et al. 10.3389/fevo.2022.941520

Sun, Z., Tukker, A., and Behrens, P. (2019). Going global to local: connecting
top-down accounting and local impacts, a methodological review of spatially
explicit input-output approaches. Environ. Sci. Technol. 53, 1048–1062. doi: 10.
1021/acs.est.8b03148

Szczepanski, P. L., Michalak, T. P., and Rahwan, T. (2016). Efficient algorithms
for game-theoretic betweenness centrality. Artif. Intell. 231, 39–63. doi: 10.1016/j.
artint.2015.11.001

Tabassum, S., Pereira, F. S. F., Fernandes, S., and Gama, J. (2018). Social network
analysis: an overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 8:e1256.
doi: 10.1002/widm.1256

Tian, X., Chang, M., Lin, C., and Tanikawa, H. (2014). China’s carbon footprint:
a regional perspective on the effect of transitions in consumption and production
patterns. Appl. Energy 123, 19–28. doi: 10.1016/j.apenergy.2014.02.016

Wang, C., Engels, A., and Wang, Z. (2018a). Overview of research on China’s
transition to low-carbon development: the role of cities, technologies, industries
and the energy system. Renew. Sustain. Energy Rev. 81, 1350–1364. doi: 10.1016/j.
rser.2017.05.099

Wang, J., Li, C., and Xia, C. (2018b). Improved centrality indicators to
characterize the nodal spreading capability in complex networks. Appl. Math.
Comput. 334, 388–400. doi: 10.1016/j.amc.2018.04.028

Wang, Z., Yang, Y., and Wang, B. (2018c). Carbon footprints and embodied
CO2 transfers among provinces in China. Renew. Sustain. Energy Rev. 82, 1068–
1078. doi: 10.1016/j.rser.2017.09.057

Wang, M., Li, Y., Li, M., Shi, W., and Quan, S. (2019). Will carbon tax affect the
strategy and performance of low-carbon technology sharing between enterprises?
J. Clean. Prod. 210, 724–737. doi: 10.1016/j.jclepro.2018.10.321

Wang, R., Liu, W., Xiao, L., Liu, J., and Kao, W. (2011). Path towards achieving
of China’s 2020 carbon emission reduction target-a discussion of low-carbon
energy policies at province level. Energy Policy 39, 2740–2747. doi: 10.1016/j.enpol.
2011.02.043

Wang, Y., Zhang, D., Ji, Q., and Shi, X. (2020). Regional renewable energy
development in China: a multidimensional assessment. Renew. Sustain. Energy
Rev. 124:109797. doi: 10.1016/j.rser.2020.109797

Wei, J., Huang, K., Yang, S., Li, Y., Hu, T., and Zhang, Y. (2017). Driving
forces analysis of energy-related carbon dioxide (CO2) emissions in Beijing: an
input–output structural decomposition analysis. J. Clean. Prod. 163, 58–68. doi:
10.1016/j.jclepro.2016.05.086

Weinzettel, J., Steen-Olsen, K., Hertwich, E. G., Borucke, M., and Galli, A.
(2014). Ecological footprint of nations: comparison of process analysis, and
standard and hybrid multiregional input-output analysis. Ecol. Econ. 101, 115–
126. doi: 10.1016/j.ecolecon.2014.02.020

Wen, W., and Wang, Q. (2019). Identification of key sectors and key provinces at
the view of CO2 reduction and economic growth in China: linkage analyses based
on the MRIO model. Ecol. Indic. 96, 1–15. doi: 10.1016/j.ecolind.2018.08.036

Wiedmann, T. (2009). A review of recent multi-region input-output models
used for consumption-based emission and resource accounting. Ecol. Econ. 69,
211–222. doi: 10.1016/j.ecolecon.2009.08.026

Wiedmann, T., and Lenzen, M. (2018). Environmental and social footprints of
international trade. Nat. Geosci. 11, 314–321. doi: 10.1038/s41561-018-0113-9

Wiedmann, T., Wilting, H. C., Lenzen, M., Lutter, S., and Palm, V. (2011).
Quo Vadis MRIO? Methodological, data and institutional requirements for multi-
region input-output analysis. Ecol. Econ. 70, 1937–1945. doi: 10.1016/j.ecolecon.
2011.06.014

Wieland, H., Giljum, S., Eisenmenger, N., Wiedenhofer, D., Bruckner, M.,
Schaffartzik, A., et al. (2020). Supply versus use designs of environmental

extensions in input-output analysis: conceptual and empirical implications for the
case of energy. J. Ind. Ecol. 24, 548–563. doi: 10.1111/jiec.12975

Wu, D., and Liu, J. (2016). Multi-Regional Input-Output (MRIO) study
of the provincial ecological footprints and domestic embodied footprints
traded among China’s 30 provinces. Sustainability 8:1345. doi: 10.3390/su812
1345

Xu, J., Zhang, M., Zhou, M., and Li, H. (2017). An empirical study on the
dynamic effect of regional industrial carbon transfer in China. Ecol. Indic. 73, 1–10.
doi: 10.1016/j.ecolind.2016.09.002

Xu, W.-H., Xie, Y.-L., Ji, L., Cai, Y.-P., Yang, Z.-F., and Xia, D.-H. (2022).
Spatial-temporal evolution and driving forces of provincial carbon footprints in
China: an integrated EE-MRIO and WA-SDA approach. Ecol. Eng. 176:106543.
doi: 10.1016/j.ecoleng.2022.106543

Yang, Y., and Huang, P. (2019). Has the level of green development in the
Northwestern provinces of China truly improved? A case study of Shaanxi.
Sustain. Cities Soc. 51:101779. doi: 10.1016/j.scs.2019.101779

Yu, J., Yu, Y., and Jiang, T. (2022). Structural factors influencing energy carbon
emissions in China’s service industry: an input–output perspective. Environ. Sci.
Pollut. Res. 29, 49361–49372. doi: 10.1007/s11356-022-19287-8

Yu, S., Wei, Y.-M., Guo, H., and Ding, L. (2014). Carbon emission coefficient
measurement of the coal-to-power energy chain in China. Appl. Energy 114,
290–300. doi: 10.1016/j.apenergy.2013.09.062

Yuan, X., Sheng, X., Chen, L., Tang, Y., Li, Y., Jia, Y., et al. (2022). Carbon
footprint and embodied carbon transfer at the provincial level of the Yellow
River Basin. Sci. Total Environ. 803:149993. doi: 10.1016/j.scitotenv.2021.14
9993

Yue, T., Liu, H., Long, R., Chen, H., Gan, X., and Liu, J. (2020). Research trends
and hotspots related to global carbon footprint based on bibliometric analysis:
2007-2018. Environ. Sci. Pollut. Res. 27, 17671–17691. doi: 10.1007/s11356-020-
08158-9

Zaw, T. N., and Lim, S. (2017). The military’s role in disaster management
and response during the 2015 Myanmar floods: a social network approach. Int.
J. Disaster Risk Reduct. 25, 1–21. doi: 10.1016/j.ijdrr.2017.06.023

Zeng, J., Zhang, R., Tang, J., Liang, J., Li, J., Zeng, Y., et al. (2021). Ecological
sustainability assessment of the carbon footprint in Fujian Province, southeast
China. Front. Earth Sci. 15, 12–22. doi: 10.1007/s11707-020-0815-3

Zhang, W., Li, J., Li, G., and Guo, S. (2020). Emission reduction effect and
carbon market efficiency of carbon emissions trading policy in China. Energy
196:117117. doi: 10.1016/j.energy.2020.117117

Zhang, Y., Liu, Y., Wang, Y., Liu, D., Xia, C., Wang, Z., et al. (2020). Urban
expansion simulation towards low-carbon development: a case study of Wuhan,
China. Sustain. Cities Soc. 63:102455. doi: 10.1016/j.scs.2020.102455

Zhang, Y., Zhang, J., Yang, Z., and Li, S. (2011). Regional differences in the
factors that influence China’s energy-related carbon emissions, and potential
mitigation strategies. Energy Policy 39, 7712–7718. doi: 10.1016/j.enpol.2011.09.
015

Zheng, H., Bai, Y., Wei, W., Meng, J., Zhang, Z., Song, M., et al. (2021). Chinese
provincial multi-regional input-output database for 2012, 2015, and 2017. Sci.
Data 8:244. doi: 10.1038/s41597-021-01023-5

Zhou, P., and Wang, M. (2016). Carbon dioxide emissions allocation: a review.
Ecol. Econ. 125, 47–59. doi: 10.1016/j.ecolecon.2016.03.001

Zhu, K., Zhang, Y., Wang, M., and Liu, H. (2022). The ecological compensation
mechanism in a cross-regional water diversion project using evolutionary game
theory: the case of the Hanjiang River Basin, China. Water 14:1151. doi: 10.3390/
w14071151

Frontiers in Ecology and Evolution 22 frontiersin.org

https://doi.org/10.3389/fevo.2022.941520
https://doi.org/10.1021/acs.est.8b03148
https://doi.org/10.1021/acs.est.8b03148
https://doi.org/10.1016/j.artint.2015.11.001
https://doi.org/10.1016/j.artint.2015.11.001
https://doi.org/10.1002/widm.1256
https://doi.org/10.1016/j.apenergy.2014.02.016
https://doi.org/10.1016/j.rser.2017.05.099
https://doi.org/10.1016/j.rser.2017.05.099
https://doi.org/10.1016/j.amc.2018.04.028
https://doi.org/10.1016/j.rser.2017.09.057
https://doi.org/10.1016/j.jclepro.2018.10.321
https://doi.org/10.1016/j.enpol.2011.02.043
https://doi.org/10.1016/j.enpol.2011.02.043
https://doi.org/10.1016/j.rser.2020.109797
https://doi.org/10.1016/j.jclepro.2016.05.086
https://doi.org/10.1016/j.jclepro.2016.05.086
https://doi.org/10.1016/j.ecolecon.2014.02.020
https://doi.org/10.1016/j.ecolind.2018.08.036
https://doi.org/10.1016/j.ecolecon.2009.08.026
https://doi.org/10.1038/s41561-018-0113-9
https://doi.org/10.1016/j.ecolecon.2011.06.014
https://doi.org/10.1016/j.ecolecon.2011.06.014
https://doi.org/10.1111/jiec.12975
https://doi.org/10.3390/su8121345
https://doi.org/10.3390/su8121345
https://doi.org/10.1016/j.ecolind.2016.09.002
https://doi.org/10.1016/j.ecoleng.2022.106543
https://doi.org/10.1016/j.scs.2019.101779
https://doi.org/10.1007/s11356-022-19287-8
https://doi.org/10.1016/j.apenergy.2013.09.062
https://doi.org/10.1016/j.scitotenv.2021.149993
https://doi.org/10.1016/j.scitotenv.2021.149993
https://doi.org/10.1007/s11356-020-08158-9
https://doi.org/10.1007/s11356-020-08158-9
https://doi.org/10.1016/j.ijdrr.2017.06.023
https://doi.org/10.1007/s11707-020-0815-3
https://doi.org/10.1016/j.energy.2020.117117
https://doi.org/10.1016/j.scs.2020.102455
https://doi.org/10.1016/j.enpol.2011.09.015
https://doi.org/10.1016/j.enpol.2011.09.015
https://doi.org/10.1038/s41597-021-01023-5
https://doi.org/10.1016/j.ecolecon.2016.03.001
https://doi.org/10.3390/w14071151
https://doi.org/10.3390/w14071151
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/

	Carbon footprint and embodied carbon emission transfer network obtained using the multi–regional input–output model and social network analysis method: A case of the Hanjiang River basin, China
	Highlights
	Introduction
	Theoretical background
	Data and methods
	Data and preprocessing
	Methods
	Multi–regional input–output model
	Carbon footprint accounting
	Embodied carbon emission transfer accounting
	Social network analysis

	Research design

	Results
	Provincial carbon footprint and changes
	Sectoral carbon footprint
	Embodied carbon emission transfer within the province
	Embodied carbon emission transfer between provinces
	Embodied carbon emission transfer among the three major industries

	Discussion
	Carbon footprint and embodied carbon emission transfer
	Policy recommendations
	Limitations
	Future work

	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


