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Ensemble modeling for
American chestnut distribution:
Locating potential restoration
sites in Pennsylvania
Alec F. Henderson*, Jennifer A. Santoro and
Peleg Kremer

Department of Geography and the Environment, Villanova University, Villanova, PA, United States

The American chestnut (Castanea dentata Borkh.) was an economically,

ecologically, and culturally important tree in eastern American hardwood

forests. However, the American chestnut is currently functionally absent

from these forests due to the introduction of an invasive fungus

(Cryphonectria parasitica (Murr.) Barr) and causal agent of chestnut blight

in the early 1900s. Field experiments are being carried out to develop

a blight-resistant American chestnut tree, but range-wide restoration

will require localized understanding of its current distribution and what

factors contribute to suitable American chestnut habitat. While previous

studies have researched species distribution of the American chestnut,

it is important to understand how species distribution modeling (SDM)

technique impacts model results. In this paper we create an ensemble

model that combines multiple different SDM techniques to predict areas

of suitable American chestnut habitat in Pennsylvania. Results indicate that

model accuracy varied considerably by SDM technique – with artificial

neural networks performing the worst (Area-Under-the-Curve, AUC = 0.705)

and gradient boosting models performing the best (AUC = 0.877). Even

though SDM technique accuracy varied, most models identified the

same environmental variables as the most important: ratio of sand to

clay in the soil, canopy cover, topographic convergence index, and

topographic position index. This study offers insight into the best SDM

techniques to use, as well as a method of combining SDMs for higher

prediction confidence.
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Introduction

American chestnut background

Until the beginning of the 20th century, the American
chestnut (Castanea dentata Borkh.) was a hallmark tree of
eastern American hardwood forests, ranging from Ontario
to Alabama and spanning from the Atlantic coast to Illinois
(Russell, 1987; Collins et al., 2017). Throughout this range,
C. dentata had crucial ecological, economic, and cultural
importance–providing a valuable nut crop for wildlife
(Diamond et al., 2000), rot resistant and durable timber
for manufacturing (MacDonald et al., 1978), and properties
enabling the ways of life of Native Americans and Appalachian
communities (Steiner and Carlson, 2006). In 1904, an invasive
chestnut blight, cased by the ascomycete fungus Cryphonectria
parasitica (Murr.) Barr, was discovered on C. dentata trees
(Rigling and Prospero, 2018). This fungus was unintentionally
introduced to eastern American forests prior to 1904, probably
on nursery stock from Japan (Milgroom et al., 1996; Dutech
et al., 2012; Rigling and Prospero, 2018) and the blight spread
rapidly, functionally extirpating C. dentata from the overstory
in just 50 years (Paillet, 2002).

Since the loss of C. dentata from the forest overstory,
considerable efforts have been made to introduce genes
for blight resistance via introgression from the Asian
species of Castanea into locally adapted populations of C.
dentata throughout its native range. The American Chestnut
Foundation (TACF) is piloting per-state chestnut backcross
breeding programs to develop a hybrid American chestnut tree
with C. dentata traits but blight resistance from other chestnut
species, including C. crenata, C. henryi, and C. mollissima.
Researchers at SUNY-ESF have independently been developing
a transgenic method enhancing blight resistance in C. dentata
(Steiner et al., 2017); recently, both TACF and SUNY ESF
have converged these methods into one united approach
(Westbrook et al., 2019). Both methodologies seem promising,
but both require finding genetic material from surviving mature
C. dentata trees. Field breeding methods are important, but it
is also crucial to understand C. dentata habitat preferences to
determine where to plant blight-resistant trees in the future.

Species distribution models

Species distribution models (SDMs) are useful tools to
predict probable areas of species presence as well as areas of
suitable habitat for a given species and can contribute valuable
knowledge on species extent across a landscape (Elith and
Leathwick, 2009). By using SDMs over large areas, managers
can efficiently isolate the most ideal locations for C. dentata
habitat before using boots-on-the-ground approaches such as
soil samples to choose the best sites for restoration. SDMs use

layers of environmental data, species occurrence points, and
species absence points to generate statistics and predictions of
species distribution (Franklin, 2010). Environmental variables
used for SDM are often layers describing the topography,
land cover, climate, or soil attributes of the region that
may impact suitable habitat. For example, historical accounts
of C. dentata in Pennsylvania suggest that chestnut was
typically found on sandy soils and ridge topography, which
describe important environmental layers to include in SDMs
(Nowacki and Abrams, 1992).

Species distribution modelings have been used to model
habitat distribution for a variety of tree species in order to
inform land management strategies in the face of climate
change (Booth, 2018). Matthews et al. (2011) examined 134
tree species responses to climate change using SDMs and
found that species life history characteristics played a role in
range shifts. Previous research has also used SDMs to explore
C. dentata distribution at various spatial scales and extents
across its range. Full-range studies found that temperature,
precipitation, and soil factors influenced C. dentata distribution
(Barnes and Delborne, 2019; Noah et al., 2021). Finer-scale
SDMs for individual states or sub-regions often identified
soil and topographic variables as most influential. Fei et al.
(2007) modeled habitat of American chestnut in Mammoth
Cave National Park using ecological niche factor analysis and
found that ridges and steeper slopes were strong predictors of
chestnut habitat. Tulowiecki modeled the range of American
chestnut trees in western New York using historical tree records
and nine different SDM techniques [artificial neural networks
(stocktickerANN), classification tree analysis (CTA), flexible
discriminant analysis (FDA), generalized additive models
(GAM), gradient boosting models (GBM), generalized linear
models (stocktickerGLM), multiple adaptive regression splines
(MARS), maximum entropy modeling (MaxEnt), and random
forests (RF)], and found that soil pH and slope were important
habitat predictors (2020). These multiple SDMs differ in their
approach to modeling species distribution by whether they
utilize statistical or machine-learning methods, whether they
model linear and/or non-linear relationships between variables,
and whether they can model interactions between variables, and
comparison between approaches can enhance the reliability of
results (Tulowiecki, 2020).

This study contributes to understanding of SDMs of
C. dentata across the state of Pennsylvania, which is central to
its former range, by identifying the strengths and weaknesses
of different SDM approaches and enhancing model robustness
through ensemble modeling. Results of this study can be used
to find further genetic material for development of blight-
resistant American chestnut trees and help identify locations
for pilot restoration projects to focus their money and energy
(Fei et al., 2012). Using an ensemble of species distribution
models, following the methodology outlined in Tulowiecki
(2020), this study aims to better understand the distribution
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of C. dentata across environmental ranges in the state of
Pennsylvania, identify areas most suitable for reintroduction
efforts, and determine how different modeling techniques
perform in modeling spatial distribution of American chestnuts
in Pennsylvania.

Methods

Overview of methods

We used a dataset of mature C. dentata locations
maintained by TACF to model species distribution across all
of Pennsylvania. We utilized nine different SDM techniques
in the “Biomod2” package from R statistical software utilizing
the “ShinyBIOMOD” GUI (Thuiller et al., 2009, 2016; R Core
Team, 2013). All environmental variables used for modeling
were generated and processed using ArcMap 10.7.1 geospatial
software (ESRI, 2011). Determining true absence points for the
whole region was not feasible due to the scale of this study
across the state of Pennsylvania so pseudo-absence points for
C. dentata locations were selected randomly from the entire set
of potential absences within the “Biomod2” modeling process
(Phillips et al., 2009). These pseudo-absence points were used as
absence locations for the SDMs that required these points.

Statewide chestnut data

Surviving C. dentata locations were acquired from TACF’s
“dentataBase” of known and verified mature American chestnut
tree locations (TACF, 2020). Most tree locations in this database
have been collected by volunteers who are asked to send samples
to TACF so that they can be verified by experts. These samples
contain freshly cut twigs with mature leaves attached and the
location of the tree. Presence points collected in this manner can
contain uncertainty and sampling bias due to GPS inaccuracy
and the greater likelihood of finding and marking trees near
roads or trails where humans have access, but these points
represent the most comprehensive dataset of verified surviving
C. dentata locations and are thus the most useful input to SDMs
despite their limitations. We filtered this database so that it
would only include C. dentata records within Pennsylvania.
Filtering the database resulted in 295 non-hybrid C. dentata
points in Pennsylvania.

Generation of environmental variables

Ten environmental variables representing land cover,
topography, and soil attributes were included in the species
distribution models to predict C. dentata habitat suitability.
Variables were identified to represent a range of habitat

characteristics that could describe growing conditions for
C. dentata based on prior knowledge of the species biology
(Paillet, 2002; Collins et al., 2017) and other modeling research
for chestnuts (Fei et al., 2007; Tulowiecki, 2020). These variables
included canopy cover variables acquired from National Land
Cover Database (NLCD) (Homer et al., 2012), soil composition
collected from ISRIC soil grids (Poggio et al., 2021), a Euclidean
distance to streams layer generated from an Environmental
Resources Research Institute streams shapefile (Environmental
Resources Research Institute, 1998), and seven digital elevation
model-derived variables that represent a range of topographic
and moisture conditions. The digital elevation model was
acquired from a U.S. Geological Survey (2000). The digital
elevation model-derived aspect layer was transformed using a
Beers transformation to change a cyclic variable to a linear one
for more accurate consideration in modeling (Beers et al., 1966).
Other variables, such as soil pH, that have been considered
important for chestnut habitat in prior studies were unavailable
at the spatial scale and extent for this study and thus could
not be included in our models. We acknowledge that our
results may be impacted due to exclusion of such layers. All
variables were resampled to a resolution of 238 m to match
the resolution of the soil data. Table 1 shows all environmental
variables used in the models, their value ranges, and their
initial resolutions.

In preparation for SDM, environmental raster data layers
were processed in ArcMap 10.7.1. All rasters were reclassified to
have the same cell snaping, mask, and cell size (approximately
238 m2). We generated Elevation, Slope, Aspect, Curvature,
Topographic convergence index, Topographic position index,
and Topographic relative moisture index (Parker, 1982) layers
from the Pennsylvania digital elevation model acquired from
PASDA (Pennsylvania Spatial Data Access, 2022). We generated
a Distance to streams layer by using the ArcMap Euclidian
Distance tool on the streams shapefile acquired from PASDA.
The species location points were generated from the TACF
dentataBase and we recalculated their coordinates to match with
the coordinate system of the environmental layers.

Species distribution modeling

We used ShinyBIOMOD, a graphical interface for the
R package “biomod2,” to streamline the SDM process. We
defined a geographic region of the state of Pennsylvania and
uploaded the species occurrence data and environmental data
we previously generated to train and apply the models. As our
dataset only contained occurrence records, we generated three
pseudo-absence datasets of 290 randomly generated pseudo-
absence points in order to run the SDMs. We ran nine different
SDMs (summarized in Franklin, 2010) to model C. dentata
distribution. These models were ANN, CTA, FDA, GAM, GBM,
GLM, MARS, MaxEnt, and RF.
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TABLE 1 Environmental variables used in all species distribution models, the range of values present for each variable, and the initial
resolution of the layer.

Environmental
variable

Variable range within
study area

Variable code Initial
resolution (m)

Source

Land cover Canopy cover 0–99% pacanopy 30 m NLCD

Distance to streams 0–3431.82 m padts 238 m PASDA

Topography Elevation 1–890 m padem 30 m PASDA

Slope 0–31.27◦ paslope 238 m PASDA

Aspect 0–2 (Beers transformation of
360◦)

paaspect 238m PASDA

Curvature −0.51 (upwardly convex) – 0.53
(upwardly concave)

pacurvature 238 m PASDA

Topographic convergence
index

2.69 (low water accumulation) –
24.97 (high water accumulation)

patci 238 m PASDA

Topographic position index −129 (valleys) – 149 (peaks) patpi 238 m PASDA

Topographic relative
moisture index

14 (lower soil moisture) – 59
(higher soil moisture)

patrmi 238 m PASDA

Soil Sand to clay ratio 0.64–6.11 pasandclayratio 238 m ISRIC

“Variable code” reports the abbreviation used for the species in the species distribution model.

Presence and pseudo-absence points were randomly
split into 80% training data and 20% validation data. We
ran five replications of all models with each of the three
pseudo-absence datasets (totaling 15 replications of each
model) to determine C. dentata species distribution and
model statistics. Each model replication recorded True Skill
Statistic (TSS) and Area-Under-the-Curve (AUC) error
evaluation metrics which are commonly used to evaluate
model performance (Swets, 1988; Allouche et al., 2006;
Fawcett, 2006). Finally, we built ensemble-models of all
generated SDMs to evaluate C. dentata distribution as
informed by all nine modeling approaches. We generated
three different predictions of C. dentata distribution using
ensemble modeling outputs. These outputs were predicted
probability of presence, binary predictions of presence/absence,
and predicted probability of presence by committee agreement
of binary individual model outputs. Binary predictions were
made by creating a threshold of predicted probability to
maximize sensitivity and specificity of the model. This means
that a threshold was applied to probability predictions to
maximize the true positive rate (sensitivity) and true negative
rate (specificity) across the entire range. Pixels with probability
values below the threshold were categorized as absences
and pixels with probability values above the threshold were
categorized as presences.

Results

Comparison of models performance

Accuracy statistics for each species distribution model are
summarized in Table 2. These values represent the mean values

for AUC (area under the receiver operating characteristics
curve) and TSS (True Skill Statistic) between all model
replications. AUC values range from 0 to 1 and represents
the probability that assigning a predicted suitability value at
a random presence point is higher than assigning a predicted
suitability value at a random absence point (Fawcett, 2006).
Generally, AUC values between 0.6 and 0.7 are interpreted
as “fair” models and AUC values between 0.7 and 0.8 are
interpreted as “good” models (Swets, 1988; Fawcett, 2006).
TSS ranges from −1 to 1, with 0 representing a model that
performs no better than random guesses (Allouche et al.,
2006). Aside from the random forest models which showed
an AUC and TSS value of 1,000, the gradient boosting model
and classification tree analysis had the highest AUC and
TSS values. AUC and TSS values of 1,000 indicate perfect
agreement or fit between errors of sensitivity and specificity
(Allouche et al., 2006) and we suspect model overfitting
occurred in the random forest model, skewing its results.
Artificial neural networks and generalized linear models had the
lowest AUC and TSS values.

Environmental variables importance

We generated variable importance measurements for all
environmental variables in each SDM technique to identify the
most important predictors for C. dentata habitat (Table 3). Sand
to clay ratio of the soil was the most frequent top predictor of
C. dentata distribution, identified in eight out of nine models.
These models identified a positive relationship between sand
to clay ratio of the soil and probability of C. dentata presence
(indicating higher probability of American chestnut presence in
sandier soils). Canopy cover (identified as important in five of
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TABLE 2 Species distribution model performance based on each
model’s validation data against the test data.

Technique AUC* TSS*

ANN 0.705 0.367

CTA 0.836 0.592

FDA 0.731 0.343

GAM 0.729 0.367

GBM 0.877 0.616

GLM 0.719 0.351

MARS 0.730 0.371

MaxEnt 0.752 0.405

RF 1.000 1.000

*Area under the curve (AUC) and true skill statistic (TSS) represent mean values over
all model replications. Higher AUC values indicate better model performance and TSS
values greater than zero indicate model performance better than random guesses. SDM
technique abbreviations are listed in see section “species distribution modeling.”

eight models) showed a positive relationship with probability
of C. dentata presence (indicating higher probability of
American chestnut presence in areas of denser canopies). Other
important variables included topographic convergence index
(three models with a negative relationship) and topographic
position index (three models with a positive relationship).
The negative relationship with topographic convergence index
indicates lower probability of American chestnut presence
in areas of higher water accumulation, while the positive
relationship with topographic position index indicates a higher
probability of American chestnut presence along peaks and
ridgeline formations. The artificial neural network model
differed the most from other models in identification of variable
importance, indicating canopy cover, distance to streams, and
elevation as the three most important variables for modeling
C. dentata distribution.

Ensemble model predictions

We generated three maps representing predicted C. dentata
species distribution across Pennsylvania through ensemble
modeling of all SDMs. The first map (Figure 1A) displays the
mean of SDM predictions with the influence of each SDM being
weighted by the TSS of that model. This means that all models
contributed to determining the suitability of each pixel, but
models determined to be more accurate had more influence than
models determined to be less accurate. This figure shows higher
values of distribution probability in areas such as Pike County
in the northeast of the state and along the Spine of Appalachia
throughout the center of the state. High areas of C. dentata
suitability can also be seen in Allegheny National Forest and
along Lake Erie in the northwest of the state.

Figure 1B represents a model of binary presence/absence of
C. dentata in Pennsylvania based on the combined ensemble
model of SDMs. This model defined a suitability threshold
in order to maximize the sensitivity and specificity of the
prediction. All pixels with suitability values lower than the
optimal threshold were defined as absences and all pixels with
suitability values higher than the optimal threshold were defined
as presences. We determined the optimal threshold to be a value
of 0.58, which – when tested with the presence and pseudo-
absence points – resulted in 74 true positives, 786 true negatives,
75 false positives, and 23 false negative. According to this binary
presence/absence, approximately 16,088 square kilometers of
Pennsylvania are considered suitable for C. dentata occupancy.

Finally, we generated a model of predicted spatial
distribution of C. dentata in Pennsylvania determined by
committee agreement of individual models (Figure 1C). This
model was generated by first creating binary presence/absence
models for each individual SDM technique, applying a threshold
to maximize sensitivity and specificity. Each pixel of the final

TABLE 3 Environmental variables used for SDMs and their median permutation importance* for each SDM technique over five replications.

Modeling technique

Predictor ANN CTA FDA GAM GBM GLM MARS MaxEnt RF

Canopy cover 0.408 0.000 0.000 0.073 0.040 0.083 0.000 0.146 0.076

Distance to streams 0.500 0.000 0.000 0.042 0.022 0.021 0.000 0.069 0.029

Elevation 0.462 0.000 0.000 0.013 0.022 0.000 0.000 0.036 0.046

Slope 0.072 0.000 0.084 0.048 0.028 0.000 0.000 0.048 0.036

Aspect 0.005 0.000 0.000 0.018 0.016 0.000 0.000 0.030 0.025

Curvature 0.000 0.000 0.020 0.061 0.011 0.000 0.000 0.046 0.028

Topographic convergence index 0.085 0.000 0.000 0.058 0.031 0.099 0.000 0.116 0.044

Topographic position index 0.271 0.000 0.134 0.140 0.022 0.000 0.106 0.092 0.035

Topographic relative moisture index 0.093 0.000 0.000 0.136 0.009 0.000 0.000 0.076 0.024

Sand to clay ratio 0.053 0.865 0.567 0.440 0.582 0.567 0.595 0.429 0.293

*Permutation importance values range from 0.000 (least important or not selected by the model) to 1.000 (most important). The three most important variables for each model are
highlighted and colored to display the nature of their relationship with probability of Castanea dentata presence (Green = Positive relationship, Red = Negative relationship). SDM
technique abbreviations are listed in see section “species distribution modeling.”
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FIGURE 1

Three panel map showing mean SDM predictions of Castanea dentata distribution weighted by TSS scores of each individual model (A),
modeled binary presence/absence of Castanea dentata in Pennsylvania, with a threshold to maximize sensitivity and specificity of the model (B),
and SDM techniques committee agreement of species distribution of Castanea dentata (C).
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model is then classified based on how many of the individual
SDM techniques classify it as a presence or absence. If 0 models
classify it as presence, there is a high consensus of absence. If
1–3 models classify it as presence, there is low consensus of
absence. If 4–6 models classify it as presence, there is a low
consensus of presence. If 7–9 models classify it as presence,
there is high consensus of presence.

Discussion

This study provides insight on the probable spatial
distribution of C. dentata across Pennsylvania based on various
habitat variables and the effect of different SDM techniques on
modeling American chestnut habitat. Most models generally
agree with other modeling studies indicating C. dentata
suitability is best in high elevation ridgelines with sandy soils
and low moisture (Fei et al., 2007; Tulowiecki, 2020). Eight
out of the nine models we ran identified sand to clay ratio
of the soil as the most important environmental variable,
and furthermore indicated a positive relationship between
probability of C. dentata presence and sand to clay ratio. Based
on this result, we can confidently say that our models are in line
with prior studies of C. dentata habitat modeling in addition
to knowledge of American chestnut biology. Future modeling
studies for C. dentata may consider including additional soil
datasets to study this relationship further.

Five out of the nine models identified a canopy cover as
one of the three most important environmental variables, and
all identified a positive correlation between canopy coverage
and probability of C. dentata presence. This finding suggests
that American chestnut is more abundant in areas with a more
developed overstory. This may be due to the ability of C. dentata
to be competitive in lower light environments as it has a history
as a generalist species able to thrive in a variety of forested
conditions. This result may also reflect the current post-blight
niche that smaller diameter surviving C. dentata trees occupy in
eastern forests.

Three out of the nine models identified topographic position
index as one of the three most important environmental
variables and three out of the nine models identified topographic
convergence index as one of the three most important variables.
These models identified a positive and negative relationship,
respectively between these metrics and C. dentata habitat
suitability. These findings are supported by the literature and
in line with chestnut biology, which indicates that American
chestnut is most frequently found on ridgeline and peak
topography and in areas of lower water accumulation.

Accuracy statistics such as AUC and TSS allow for model
performance evaluation; our high model accuracy values
obtained in this study add confidence to our habitat predictions.
Most models had AUC values in the 0.7 to 0.8 range, indicating
that they performed very well in accurately predicting C. dentata

species distribution (Table 2). The artificial neural networks
(ANN) model performed the worst out of the nine models with
an AUC value of 0.705 and a TSS value of 0.367, suggesting that
it is less informative for evaluating C. dentata distribution. Aside
from the random forest model (AUC and TSS of 1,000), the
best performing model was the gradient boosting model with
an AUC value of 0.877 and a TSS value of 0.616. Tulowiecki
(2020) also found the gradient boosting model to have the
highest AUC of all SDMs when modeling species distribution
of C. dentata in western New York. This suggests that gradient
boosting models excel in predicting C. dentata distribution
based on environmental data and future modeling attempts
should include them. An AUC and TSS of 1,000 in the random
forest model indicate model overfitting, so these results must
be examined further. Because all SDMs utilized randomly
generated pseudo-absences points as opposed to collecting
true absence data in the field, our models may contain some
introduced error. However, the use of multiple pseudo-absence
datasets mitigates that error and given the high accuracy metrics
of our results and consistency with other studies of C. dentata
habitat, we believe that our results are meaningful and valid for
habitat prediction.

The lower-performing ANN model also varied the most
from other SDM techniques concerning environmental variable
importance. This analysis identified canopy cover, distance
to streams, and elevation as the three most important
environmental variables for determining species distribution of
C. dentata. Furthermore, this was the only model that did not
identify sand to clay ratio as the most important variable and
the only model to identify distance to streams as among the most
important. ANN identified distance to streams as having a mean
variable importance score of 0.500 – the next highest median
variable importance score for distance to streams was MaxEnt
with 0.069. For elevation, the random forest model was the only
other model to identify it as among the three most important
environmental variables. While the ANN model identified the
relationship between elevation and probability of C. dentata
presence as positive, the relationship between elevation and
probability of C. dentata presence identified by the random
forest model was more complex, with suitability values varying
considerably over the range of elevation values as compared
to variation in other models. Even though no other models
showed these same variable importance values or relationships,
it does make ecological sense that American chestnut would be
found at higher elevations further from streams where there
would be less soil moisture. Because the ANN model performed
the worst based on accuracy statistics and identified different
environmental variables as the most important predictors of
C. dentata habitat, it may be a less useful technique compared to
other SDMs for evaluating suitable American chestnut habitat.

Overall, this study shows a variety of metrics explaining
C. dentata species distribution and suggests the usefulness of
ensemble modeling of SDMs. By utilizing nine different SDM
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techniques on the same dataset of species occurrences, pseudo-
absences, and environmental variables, this study highlights
differences between models that may not appear if models
were considered separately. Ensemble modeling also allows for
further confidence in results as it allows for direct comparison
between different models, enabling the ability to predict whether
the same areas are identified as suitable habitat or the relative
influence of different environmental variables. For example,
eight SDM techniques identified sand to clay ratio as the most
important variable in modeling C. dentata distribution and all
showed a positive relationship with probability of presence, thus
adding weight to this finding. Even though the artificial neural
networks model highlighted elevation as a highly important
variable for predicting C. dentata distribution in Pennsylvania,
the fact that none of the other modeling techniques identified
this variable as particularly important suggests that that may be
an error or a less significant relationship and we should study
the relationship further.

Lastly, we acknowledge that the nature of the collection of
C. dentata occurrence records may have introduced some bias
into this study as most recorded American chestnut locations
are often along trails or roads, where citizen scientists can more
readily see the trees. Because we lack accurate data on sampling
bias in this dataset, we used randomly generated pseudo-absence
points to run the SDMs (Phillips et al., 2009). Additionally, this
study is limited by the opacity of some of the modeling outputs.
It would be beneficial to be able to explain differences in the
mechanics and outputs of each individual modeling approach
as it relates to the final ensemble modeling output. This is,
however, addressed by the capacity of ensemble models to
combine the strengths and weaknesses of the individual SDMs.
Future research on C. dentata habitat modeling would benefit
from using multi-model approaches that consider a broader set
of environmental variables.

Conclusion

This methodology-focused paper presents some of the
benefits of using SDM ensemble modeling when studying
C. dentata distribution in Pennsylvania. We found that
while individual SDM techniques generally picked out similar
environmental variables as important predictors of habitat
suitability, there was still variation in effect, importance, and
accuracy. By combining SDM techniques through ensemble
modeling, we can produce distribution maps weighted by
accuracy metrics, allowing us to be more confident in the results.
This streamlined process of ensemble modeling made possible
through “ShinyBIOMOD” and the “biomod2” R package will be
useful in assisting conservationists to both find more surviving
American chestnut trees and confidently identify areas suitable
to reintroduction efforts.
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