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Pollen accumulation rates (PAR, grains cm−2 year−1) have been shown

to be a reliable but methodologically complex bioproxy for quantitative

reconstruction of past tree abundance. In a prior study, we found that the

PARs of major tree taxa – Pseudotsuga, Pinus, Notholithocarpus, and the

pollen group TC (Taxaceae and Cupressaceae families) – were robust and

precise estimators of contemporary tree biomass. This paper expands our

earlier work. Here, we more fully evaluate the errors associated with biomass

reconstructions to identify weaknesses and recommend improvements in

PAR-based reconstructions of forest biomass. We account for uncertainty

in our biomass proxy in a formal, coherent fashion. The greatest error was

introduced by the age models, underscoring the need for improved statistical

approaches to age-depth modeling. Documenting the uncertainty in pollen

vegetation models should be standard practice in paleoecology. We also

share insights gained from the delineation of the relevant source area of

pollen, advances in Bayesian 210Pb modeling, the importance of site selection,

and the use of independent data to corroborate biomass estimates. Lastly,

we demonstrate our workflow with a new dataset of reconstructed tree

biomass between 1850 and 2018 AD from lakes in the Klamath Mountains,

California. Our biomass records followed a broad trend of low mean biomass

in the ∼1850s followed by large contemporary increases, consistent with

expectations of forest densification due to twentieth century fire suppression

policies in the American West. More recent reconstructed tree biomass

estimates also corresponded with silviculture treatments occurring within the

relevant source area of pollen of our lake sites.

KEYWORDS
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Introduction

A more difficult recommendation to follow . . . is that
estimates of past forest composition should be quoted with an
indication of associated errors.

Parsons et al., 1983

Reconstruction of past plant abundance from fossil pollen
records is a long-standing research aim in paleoecology (Cain,
1939). Quantitative reconstructions of past vegetation from
pollen records are particularly informative because they offer
insight into ecosystem dynamics over long ecological timescales
that cannot otherwise be obtained (Prentice and Parsons,
1983). For example, Jackson and Overpeck (2000) used pollen
and macrofossils to document trends in vegetation recovery
following the recession of the last glaciers in North America.
Gaillard et al. (2010) estimated historical plant populations
from pollen to test the interactions between land cover and
climate in contemporary climate models. These quantitative
reconstructions are also relevant to policy and management
(Davies and Bunting, 2010). For example, reconstructed
forest biomass records can inform current debates about the
viability of long-term carbon sequestration in forestlands given
increasing threats from biotic and abiotic disturbances (Morris
et al., 2015; Knight et al., 2022).

Pollen accumulation rates (PAR, grains cm−2 year−1) have
proven to be a reliable proxy for estimating historical trends
in plant biomass (Morris et al., 2015; Knight et al., 2021). For
forests, tree biomass is a crucial metric that informs estimates of
ecosystem productivity and carbon storage (Köhl et al., 2015).
Thus PAR-based reconstructions of forest biomass provide
valuable insights. However, the workflow to calculate PAR values
and calibrate them with plant population data is challenging.

Pollen accumulation rates is a measure of the rate of
pollen deposition at the sediment surface per unit area
during a given time period (Davis and Deevey, 1964). It
depends on the abundance of the plant taxa producing
that pollen type around the collection site and the basin
size. PAR values from different regions can be directly
compared, irrespective of other taxa in the investigations
(Hicks and Hyvarinen, 1999; Giesecke and Fontana, 2008).
Once PAR values are obtained, transfer functions (sensu
Birks, 1995) must be developed to quantitatively link PAR
values to the modern plant population data. To ensure
success, undisturbed lake sediments, high resolution sediment
chronologies, and finely resolved vegetation data are needed
(Seppä and Hicks, 2006). A critical element needed to
parameterize the PAR-population relationship is an estimate
of the spatial sensitivity of the record present in the pollen
assemblage (Sugita, 1993; Bunting et al., 2004), called the
relevant source area of pollen (RSAP) or, colloquially, the
“pollen shed.”

To date, PAR-based reconstructions of forest biomass
(Seppä and Hicks, 2006; Seppä et al., 2009; Matthias and
Giesecke, 2014; Morris et al., 2015) have not assessed errors
associated with this bioproxy. Quantitative reconstructions of
past environmental conditions ought to include assessments of
both precision and accuracy (Juggins and Birks, 2012). Thus,
despite the value of these innovative efforts, the workflow
requires improvement. In our prior study, we fit linear
models to relate PAR values from modern lake sediments
with empirical, distance-weighted estimates of aboveground live
biomass (Knight et al., 2021). We found that the PARs of
major pollen types – Pseudotsuga, Pinus, Notholithocarpus, and
the pollen group TC (representing undifferentiable pollen from
the Taxaceae and Cupressaceae families; formerly called “TCT”
prior to Taxodiaceae being integrated with Cupressaceae) –
were statistically robust and precise estimators of 21st
century tree biomass.

This paper expands our earlier work and more fully
considers errors associated with biomass reconstructions.
Knight et al. (2022) concluded that the contemporary increase
in tree biomass for two lake sites in the Klamath bioregion
of California was largely attributed to the change in land
stewardship from Indigenous to Euro-American. To test the
generality of this trend, we reconstruct tree biomass from five
additional lake sites in the region. To evaluate the uncertainty of
our proxy results more fully, we quantify the errors associated
with the key parameters in our pollen vegetation model and
validate observed trends against independent data. The main
goal of this case study is to identify weaknesses and suggest
best practices for improvements in PAR-based reconstructions
of forest biomass.

Materials and methods

Overview

Study area: Site description of the western
Klamath Mountains

Our study was located in the low elevation forests of
the western Klamath Mountains. These forests are dominated
by Pseudotsuga menziesii (Douglas fir). Multiple Pinus (pine)
species are also common including Pinus lambertiana (sugar
pine), Pinus jeffreyi (Jeffrey pine), and Pinus ponderosa
(ponderosa pine). The most common broadleaf tree species
in the low-elevation forests are Notholithocarpus densiflorus
(tanoak), followed by Arbutus menziesii (Pacific madrone),
Chrysolepis chrysophylla (golden chinquapin), and Quercus
kelloggii (California black oak). Chamaecyparis lawsoniana
(Port Orford cedar) can be found in riparian areas and on
slopes. Higher-elevation montane forests are dominated by
Abies concolor (white fir) and Abies magnifica (red fir; Sawyer
and Thornburg, 1977). Sub-alpine (above ∼1700 m) zones
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support Tsuga mertensiana (mountain hemlock) and Picea
breweriana (Brewer spruce) (Sawyer and Thornburg, 1977). On
areas of ultramafic soils derived from serpentinite and peridotite
bedrock, Jeffrey pine, Pinus monticola (western white pine), and
Calocedrus decurrens (incense cedar) are the dominant forest
taxa (Whittaker, 1960; nomenclature follows Hickman, 1993).

Core sampling
Sediment cores from seven lakes in Six Rivers National

Forest in California, United States, were collected and
subsampled, and age models were developed for each record
based on 210Pb dating (see Knight et al., 2021). From each core,
the five subsamples with mean age closest to 1850, 1880, 1930,
1970, and 2018 were selected for pollen analysis. Samples were
prepared using standard procedures (Fægri and Iversen, 1989)
with two modifications: (1) sieving with 5- and 153-µm mesh
under vacuum and (2) swirling, with the less dense fractions
retained (Doher, 1980). One Lycopodium spore tracer tablet
containing 20,848 spores (error ± 1,546 grains) was added to
each sample to calculate pollen concentration (Stockmarr, 1971;
Maher, 1981; Fægri and Iversen, 1989). Pollen samples were
mounted in silicone oil and examined at 500x magnification.
At least 500 terrestrial grains per sample were counted and
identified (except one sample where 350 grains were counted
before the sample was exhausted) using the UC Berkeley
Museum of Paleontology modern pollen reference collection,
as well as pollen atlases (Knapp, 1969; Halbritter et al., 2018).
Pollen data from the seven lakes are available from Knight
(2022). We recommend increasing the total pollen count size or
the number of samples counted and used in the reconstruction
could reduce the size of the error bars (uncertainty calculation
shown in section 3.4). Once PAR values were calculated based
on pollen counts and the sedimentation rate for that sample
(Eqn. 1), we applied transfer functions developed in Knight
et al. (2021) to calculate biomass values. This approach assumes
a constant RSAP over time (as estimated by Knight et al.,
2021). We organized sources of uncertainty in our workflow
as described in Harmon et al. (2015): measurement, sampling,
model prediction, and model selection.

Sources of uncertainty in pollen
accumulation rates

Although PAR is the independent variable in the PAR-
biomass function, it is an estimate with its own uncertainty.
Specifically, it represents the combined uncertainty in the pollen
concentration and the sample sedimentation rate:

PAR =
ni

x
∗

X
V
∗ S (1)

Where ni = the taxon specific pollen count in the sample,
x = the count of marker grains in the sample, V = the volume
(cm3) of the sample, X = the total number of marker grains

added, and S = the pollen sedimentation rate (cm year−1). To
simplify, we assumed that the pollen and marker grains in the
sample are identified and counted without error. And thus,
only sampling error contributes to the uncertainty in pollen
concentration ( ni

x ). Following Maher (1972), we calculated the
standard deviation in pollen concentration using a negative
binomial distribution. Measurement errors for X and V were
modeled as normal distributions with the standard deviation
defined by the accuracy of the instruments (Table 1).

Sedimentation rate (S) depends on the precision of the
age model and its error reflects the uncertainty in the
model prediction. Recent advances in 210Pb age modeling
using Bayesian-based software Plum provide estimates of
uncertainty in ages (Aquino-López et al., 2018) compared to
older approaches such as the constant rate of supply model
that assume normal distributions for errors of the estimated
ages (Appleby and Oldfield, 1978). In the context of PAR
to biomass modeling, Plum software provides estimates of
error continuously down core. We approximated uncertainty
for specific ages at known depths by estimating the standard
deviation from the 95% credible intervals reported by Plum
(version 0.2.2 using default priors) in R (R Core Team, 2020;
Table 1). Plots of all seven age-depth models can be found in
Knight et al. (2021) Supplementary Material.

Pollen accumulation rates -biomass
transfer function: Sources of
uncertainty and recommended steps
to apply the function

This function relies on estimating two key metrics: (1) the
assemblage-level RSAP and (2) the modern biomass around lake
sites. It is important to quantify the spatial extent represented
by the pollen assemblage because the calibration of pollen-
vegetation relationships is only effective when the scale of the
vegetation sampling exceeds or is close to the scale of the RSAP
(Bunting et al., 2004). An RSAP is unique to a given set of lakes
and must be determined. However current practice (e.g., Seppä
et al., 2009) is to rely on qualitative determinations of the pollen
shed (e.g., “calibration zones”). Without an RSAP estimate, it is
unknown whether the “calibration zones” of vegetation survey
data from previous research were sufficiently extensive to create
the PAR to biomass model.

Hence, we used the Extended R-Value method – we applied
this using PolERV from the software suite HUMPOL (Bunting
and Middleton, 2005) – to estimate pollen sheds (Knight
et al., 2021). To evaluate the impact of model selection, we
calculated both assemblage-level (aRSAP, 650 m) and taxa-
specific (tRSAP) relevant source area pollen. Specifically, we
compared results based on our chosen aRSAP to the four
major tRSAPs on our landscape. The aRSAP and tRSAPs gave
consistent interpretations of the source area of pollen and thus
provided a means to cross-check an important model selection
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TABLE 1 Uncertainty estimates for the constituent metrics used to calculate tree biomass from pollen accumulation rates.

Term Description Uncertainty estimate

ni
x pollen concentration for taxa i negative binomial distribution with p=measured pollen concentration for taxon i and n= number of marker grains

counted (Maher, 1972)

X total number of marker grains normal distribution with mean= total count of marker grain and sd= batch error from marker grain tablets

V volume of sample normal distribution with mean= recorded volume and sd= half the smallest measure on the sampling scoop

S sedimentation rate normal distribution with mean= expected age reported by the Plum model and sd= variation of the age estimate at
depth

PAR-to-AGL transfer equation normal distribution with mean= expected biomass reported by regression estimate and sd= the standard error of the
regression estimate

Relationship among terms defined in Eqn. 1. PAR is defined as the pollen accumulation rate (grains cm−2 yr−1), and AGL is the aboveground live biomass (Mg ha−1).

decision (Knight et al., 2021). The RSAP value has likely changed
over time at these sites but estimating this change is difficult. Our
RSAP estimate is a remaining source of uncertainty. However,
assemblage-level RSAPs of small lakes may be relatively robust
(Hellman et al., 2009).

Accurate estimation of biomass around lake sites is key
to successfully calibrating transfer functions. Satellite-informed
biomass estimates without ground truthing, or an absence of
biomass measurements, are unsatisfactory for PAR-biomass
calibration. For example, Seppä et al. (2009) used a remotely
sensed product with a ± 44% error for aboveground live
biomass. In Matthias and Giesecke (2014), biomass information
was derived from yield tables linking tree age and tree
standing volume. Neither paper provides sufficient detail to fully
evaluate the measurement of biomass surrounding the lakes.
Best practices would indicate that conducting detailed field
surveys of vegetation surrounding the lake sites enhances the
accuracy of biomass estimates conducting detailed field surveys
of vegetation surrounding lake sites. For example, we used
cruising prisms to determine basal area of dominant pollen-
producing taxa within 750 m from the lake’s shore in eight
directions (N,S,E,W,NE,SE,NW, and SW) at 50 m intervals
(Knight et al., 2021). Note that vegetation survey method can
profoundly affect model parameter estimates (Bunting and
Hjelle, 2010) and recommendations for effective surveying
methods for calibration with percentage vegetation cover are
detailed in Bunting et al. (2013).

The last step in building the transfer function is the
development of the PAR-to-biomass regression for each taxon.
As described in Knight et al. (2021), we used an information
theoretic approach to select the best model form. We retained
standard errors of the estimate (SEE) to quantify uncertainty in
the model predictions (Table 1).

Propagating errors

We calculated the uncertainty in our estimates by
propagating the errors associated with the constituent terms
(Table 1). Specifically, we used a Monte Carlo approach (Yanai
et al., 2010; Harmon et al., 2015) to generate realizations of each

term based on a random sample from a defined distribution
(Table 1). We conducted the analysis in two parts.

First, we calculated the PAR terms (mean and standard
error) for each lake at each date for every taxon combination.
We conducted 1,000 simulations drawing samples with
replacement for each constituent metric (Eqn. 1) and then
calculated PAR. Prior to summarizing the PAR terms, we
removed values beyond the 95% confidence intervals (n = 950
simulations retained). This trimming was necessary because
random samples of the age model sometimes resulted in
negative sedimentation rates, a physically unrealistic result. So
as not to skew the error term, we trimmed both low and high
values from the realizations.

In the second step, we used the PAR terms and the errors
in the biomass transfer function to generate 1,000 realizations
of aboveground live tree biomass for each lake at each date
for every taxon combination. When these random realizations
resulted in negative biomass estimates, a result restricted to
instances of low pollen abundance, we set the biomass estimate
to 0. For each realization, we summed tree biomass by lake and
date and reported results (Figure 1) as the mean and standard
error from these 1,000 realizations.

Validating results

In QGIS (QGIS Development Team, 2020), the seven lake
boundaries were plotted with spatial records of management
events. Management events were compiled from the U.S.
Forest Service Forest Activity Tracking System (FACTS, USDA
Forest Service Forest Activity Tracking System, 2020) and
an internal U.S. Forest Service dataset for the Six Rivers
National Forest (USDA Forest Service, 2001). Definitions
of the four silviculture treatments discussed below are as
follows and taken from the USDA Forest Service (2019):
patch clear cut (“a type of stand clear cutting where
patches or strips are clear cut within an individual stand
boundary in two or more entries to produce an even-aged
stand”), even-aged cut (“the range of tree ages is usually
less than 20 percent of the rotation after harvest of all
patches”), sanitation cut (“a cutting to remove damaged trees”),
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FIGURE 1

Predicted aboveground live tree biomass (AGL, Mg ha−1) for seven lake sites (A–G) at five time periods in the Klamath bioregion, California. AGL
means and standard errors (calculated from uncertainty analysis) reported. Letters A-G correspond to the lake and its location on the map. Ages
(year AD) were modeled from 210Pb dating presented in Knight et al. (2021) and reflect the mean age for that sampled cm. Biomass estimates
reflect an area of ∼650 m around each lake site. Copyright © 2022 Esri and its licensors. All rights reserved.

and fuel break cut (“vegetative treatment to change fuel
characteristics in such a way that expected fire behavior would
be reduced”). A 650-m buffer was constructed around each
lake, following the size of the sites’ assemblage-level RSAP
(Knight et al., 2021). Using the “extract by location” tool in
QGIS, all management events that fell within the buffers were
extracted and were interpreted as relevant to the reconstructed
biomass record.

Results

Results from seven lake sites

We detail trends in reconstructed tree biomass for five
dates between ∼1850 AD and 2018 AD from seven lakes
(Figure 1). In general, we found low mean biomass values
(mean = 62 Mg ha−1) in the colonial era – a period starting
in c. 1850 AD when colonization began in the Klamath region
of California – and large increases in reconstructed biomass
over time at all sites. Peak biomass varied at each site from
early 20th century to early 21st century. While the overall trend
in increased biomass following Euro-American colonization is
due to effective landscape-level fire suppression starting in 1905
(Taylor and Skinner, 2003; Knight et al., 2020; Knight et al.,
2022), variation in the timing of peak biomass depends on
site-specific management histories.

The impact of these histories on biomass trends could
sometimes be linked to timber harvests documented in the U.S.
Forest Service FACTS database (USDA Forest Service Forest
Activity Tracking System, 2020, also Conners, 1998). Twentieth
century forest management events that occurred within the
RSAP boundary and removed mature trees (e.g., clear cuts)
were sometimes consistent with observed changes in biomass
values across lake sites. For example, North Twin and South
Twin lakes, which are situated within 100 m of each other and
have partially overlapping RSAPs, are reconstructed as seeing
increasing biomass between ∼1850 and ∼1930 (Figure 1). Two
patch clear cuts adjacent to both lakes removed a total of 16.6
ha in 1971 (USDA Forest Service, 2001). At South Twin Lake,
reconstructed biomass is 237 ± 68 Mg ha−1 (mean ± se) in
1969, before the clear cuts, whereas reconstructed biomass at
North Twin Lake is 82 ± 26 Mg ha−1 in 1972, likely reflecting
the loss of biomass from the clear cuts. Although changes in
mean biomass may reflect silvicultural treatments within the
RSAP, overlapping error bars preclude a definite link between
the biomass trends and management events (e.g., the change in
biomass from 1969 to 2018 at Onion Lake).

High biomass values (> 200 Mg ha−1) reflect the potential
productivity of this fertile area. Although the highest biomass
reconstructions were sometimes found in 2018 for our lakes,
Lake Ogaromtoc did not follow this trend. At Lake Ogaromtoc,
reconstructed biomass was relatively low throughout the record,
with a peak of 155± 44 Mg ha−1 in 1971. While this result may
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TABLE 2 Examples of the uncertainty associated with each step in the reconstruction of aboveground live tree biomass from pollen accumulation
rates for seven lakes in the Klamath bioregion of California.

Pollen Sedimentation Pollen accumulation Aboveground
concentration rate rate (grains biomass live tree
(grains cm−3) (cm yr−1) cm−2 yr−1) (Mg ha−1)

Lake Year Taxa mean se cov mean se cov mean Se cov mean se cov

Blue 1859 Notholithocarpus 1,460 458 0.31 0.0 0.1 8.1 24 165 7.0 6.6 9.3 1.4
Blue 1859 Pinus 5,776 855 0.15 0.0 0.1 10.0 65 620 9.6 3.9 5.7 1.5
Blue 1859 Pseudotsuga 19,844 2,909 0.15 0.0 0.1 6.9 347 2,392 6.9 22.5 29.5 1.3
Blue 1931 Notholithocarpus 2,564 755 0.29 0.1 0.1 0.9 331 283 0.9 10.6 12.3 1.2
Blue 1931 Pinus 15,350 2,633 0.17 0.1 0.1 1.1 1,992 2,049 1.0 16.6 14.9 0.9
Blue 1931 Pseudotsuga 35,819 5,355 0.15 0.1 0.1 1.1 4,315 4,797 1.1 88.9 69.7 0.8
Blue 2018 Notholithocarpus 3,107 631 0.20 0.3 0.0 0.0 1,055 216 0.2 23.5 15.5 0.7
Blue 2018 Pinus 5,206 829 0.16 0.3 0.0 0.0 1,768 288 0.2 13.5 8.4 0.6
Blue 2018 Pseudotsuga 8,077 910 0.11 0.3 0.0 0.0 2,743 316 0.1 48.8 19.8 0.4
Ogaromtoc 1848 Notholithocarpus 2,722 681 0.25 0.1 0.1 0.8 193 165 0.9 8.7 11.0 1.3
Ogaromtoc 1848 Pinus 7,007 963 0.14 0.1 0.1 0.7 480 360 0.7 5.6 6.4 1.1
Ogaromtoc 1848 Pseudotsuga 8,416 1,479 0.18 0.1 0.1 1.1 585 627 1.1 15.7 16.6 1.1
Ogaromtoc 1932 Notholithocarpus 7,666 1,250 0.16 0.2 0.1 0.6 1,264 743 0.6 28.7 20.7 0.7
Ogaromtoc 1932 Pinus 7,802 1,285 0.16 0.2 0.1 0.6 1,255 766 0.6 10.4 8.6 0.8
Ogaromtoc 1932 Pseudotsuga 7,773 1,308 0.17 0.2 0.1 0.5 1,218 651 0.5 24.5 19.9 0.8
Ogaromtoc 2018 Notholithocarpus 1,275 337 0.26 0.4 0.0 0.0 499 133 0.3 13.4 13.6 1.0
Ogaromtoc 2018 Pinus 8,712 1,169 0.13 0.4 0.0 0.0 3,413 471 0.1 25.4 9.1 0.4
Ogaromtoc 2018 Pseudotsuga 5,892 696 0.12 0.4 0.0 0.0 2,312 278 0.1 41.6 19.1 0.5

Results based on 1,000 Monte Carlo simulations of measurement error; mean is the average of the 1,000 simulations; se is the standard deviation of the 1,000 simulations (i.e., the standard
error), and cov is the coefficient of variation calculated as se/mean. Results shown for three common taxa across three time periods. The two lakes were chosen to represent the uncertainty
gradient from Blue Lake (high) to Lake Ogaromtoc (low). For complete results, see Supplementary Table 1.

be due to pollen shed specific characteristics such as the ridge
that creates a scree slope on one side of the lake, the creation
of four patch clear cuts and one fuel break between 1972 and
2008 covering about 40% of the pollen shed may have kept
biomass relatively low (USDA Forest Service, 2001).

Results from error analysis

Uncertainty in the age model dominated the PAR error
term (Table 2 and Supplementary Table 1). The coefficient
of variation (cov) for the sedimentation rate was often one to
two orders of magnitude greater than variation in the pollen
concentration. As expected, error greatly increased for the older
age estimates produced by the Plum model (i.e., deeper in the
core). For example, the oldest modeled mean age at Fish Lake
was 1843 AD with a range of 1821 to 1870 AD. By the mid-1900s,
the sedimentation error term was equivalent in magnitude to the
uncertainty in pollen concentrations.

While the age-trend in PAR uncertainty affected estimates
of aboveground live tree biomass (AGL), absolute error rates
were reduced (Table 2). This reduction in error was due to
the replacement of negative biomass predictions with zeros.
This biological correction removed extreme values and thereby
lowered overall estimates of uncertainty. Uncertainty in lake-
by- date estimates of biomass (Figure 1) was further reduced
summing across taxa. As a result, while there are certainly

instances of large errors (e.g., cov= 0.82 for Blue Lake in 1971),
they never exceed 1 (Figure 1).

Discussion

Uncertainty analysis identifies where
error matters most

Accounting for the error in PAR estimates more than
doubled the estimate of uncertainty in the reconstructions of
aboveground live tree biomass. The coefficient of variation
(cov) reported for contemporary to colonial-era biomass at
Lake Ogaromtoc and Fish Lake ranged from 0.16 to 0.20
when only accounting for error in the PAR-to-biomass transfer
function (Knight et al., 2022). Including uncertainty in PAR
increased the range of observed cov from 0.22 to 0.48 (Figure 1).
While this fuller account of uncertainty did not obscure the
patterns observed with the transition from Indigenous to Euro-
American stewardship, it does provide a more realistic estimate
of the magnitude of change in forest biomass that can be
reliably detected.

Our earlier work emphasized the importance of correctly
modeling the RSAP and the PAR-to-biomass transfer function.
In both cases, we applied robust methods to select the best
supported model and thereby limited the potential to introduce
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errors related to model selection (sensu Harmon et al., 2015).
Our expanded investigation of uncertainty highlighted the
sensitivity of PAR estimates to the age model. This result
underscores the need for improved statistical approaches to age
modeling (Aquino-López et al., 2018). Future directions could
include research to improve age-depth modeling techniques and
standardization.

We deployed a combination of measurements (e.g.,
pollen concentration, forest biomass), models (e.g., age and
pollen shed), and Monte Carlo simulations to account for
uncertainty in our biomass proxy in a formal, coherent
fashion. This empirical approach is particularly appropriate
when the questions demand temporally and spatially fine-scale
information (e.g., decadal trends for specific lakes). For more
coarse-scale, regional inferences, Dawson et al. (2016) describe
a bioproxy with full error accounting based on a Bayesian
hierarchical spatial model which can be used when a large
number of pollen records are available. Regardless of the specific
approach, documenting the uncertainty in pollen vegetation
models should be standard practice in paleoecology.

The usefulness of reconstructed
biomass records

Reconstructed biomass records are particularly valuable
where they can aid restoration plans and inform policy. For
example, the state of California has crafted restoration and
conservation strategies to ensure its vast forest ecosystems
remain net sinks of carbon (Forest Climate Action Team,
2018). But these conservation goals may be unrealistic given
recent research. For example, a landscape-wide historical
reconstruction in the Sierra Nevada suggests that the
pre-colonial forest supported low biomass (∼34 Mg/ha)
(Bernal et al., 2022). Our results for the Klamath region
also document low colonial-era biomass estimates (average
62 Mg/ha) consistent with Bernal et al. (2022). These historical
reconstructions from California highlight the tension between
realistic restoration goals and the State’s carbon policy (Forest
Climate Action Team, 2018). The current high biomass and
hence carbon storage is unlikely to be sustainable under climate
change or compatible with acceptable management of fire risk
(Bernal et al., 2022). The application of PAR-biomass transfer
functions may shed light in other ecosystems where natural
climate solutions are sought but there are mismatches in
ecology and policy.
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