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Introduction: Coronavirus transmission is strongly influenced by human mobilities
and interactions within and between different geographical regions. Human mobility
within and between cities is motivated by several factors, including employment,
cultural-driven, holidays, and daily routines.

Method: We developed a sustained metapopulation (SAMPAN) model, an agent-
based model (ABM) for simulating the effect of individual mobility and interaction
behavior on the spreading of COVID-19 viruses across main cities on Java Island,
Indonesia. The model considers social classes and social mixing affecting the
mobility and interaction behavior within a sub-population of a city in the early
pandemic. Travelers’ behavior represents the mobility among cities from central cities
to other cities and commuting behavior from the surrounding area of each city.

Results: Local sensitivity analysis using one factor at a time was performed to test
the SAMPAN model, and we have identified critical parameters for the model. While
validation was carried out for the Jakarta area, we are confident in implementing the
model for a larger area with the concept of metapopulation dynamics. We included
the area of Bogor, Depok, Bekasi, Bandung, Semarang, Surakarta, Yogyakarta,
Surabaya, and Malang cities which have important roles in the COVID-19 pandemic
spreading on this island.

Discussion: Our SAMPAN model can simulate various waves during the first year
of the pandemic caused by various phenomena of large social mobilities and
interactions, particularly during religious occasions and long holidays.

Indonesia, metapopulation, pandemic, COVID-19, human movement, social interaction
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Introduction

Standard models of COVID-19 transmission mostly use
a numerical model to provide insight into disease dynamics.
Predictions are developed for a single area, such as in the Wuhan
district, China (Zhou et al., 2020), or a single country, such as Italy
(Pedersen and Meneghini, 2020). For example, Wuhan prediction
is made using a YJ-SEIR model in which the improved version
of Susceptible-Exposed-Infective-Recovered (SEIR) is improved.
The new categories of the improved model are divided into Y-type
(suspected/with the symptom but not confirmed in time) and
J-type (indirectly infected people) (Zhou et al., 2020). A susceptible-
infectious-quarantine-recovered (SIQR) model is considered a
suitable model in Italy. The model included a sub-population of
those who were quarantined (Q = Quarantine), which calculates the
infectious case’s estimation since its outbreak and the endless number
of undetected positive cases (Pedersen and Meneghini, 2020).

In contrast, as COVID-19 is transmitted via droplets, a close,
person-to-person interaction will drive the spread of the disease
through the population (World Health Organization [WHO], 2020).
During the early days of the pandemic, statistics from several
European countries showed that large urban agglomerations such as
London, Paris, and Madrid registered many cases due to their size
and population density (Hantrais and Letablier, 2021). As such, the
contact rate is influenced by many different factors. Contact patterns
are usually influenced by age-specific mixing patterns, for example,
children mixing with children at school and adults mixing with an
adult. However, it is also influenced by demographic characteristics,
family structure, and culture-specific practices (Hunter et al,, 2018;
Liu et al, 2021). For example, intergeneration contact is less likely
in developed countries such as Europe than in developing countries
where extended family is still widely practiced. This heterogeneity in
social network and contact patterns can result in a differential impact
on transmission (Muller et al., 2020; Liu et al., 2021).

Furthermore, mobile activities that involve people commuting by
public transportation led to the different interactions of a group of
people in various locations. Therefore, this mobility is a potential
leading source to picture disease transmission dynamics (Perez
and Dragicevic, 2009). However, a numerical model has limited
flexibility to accommodate the complexity of social interaction in
influencing COVID-19 transmissions, mainly when the population
is heterogeneously mixed with a complex social network (Frias-
Martinez et al,, 2011; Pellegrino et al., 2022). In this situation, an
agent-based model (ABM) provides a high-resolution simulation of
both temporal and spatial epidemic dynamics at the individual level
(Truszkowska et al., 2021). In addition, ABM is more flexible in
simulating non-linear relations influenced by multiple levels and
interpersonal interactions than other approaches (Tracy et al., 2018).

To this end, we aim to develop an agent-based model for
understanding the roles of social interaction and individual decisions
to move from the main cities on Java Island, Indonesia. Indonesia is
unique as it is a large archipelago country with a diverse demographic
and cultural situation. These diversities affecting the mobility
behavior of the people and the interactions among individuals are

essential mechanisms in the spreading of COVID-19.
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Materials and methods

We developed the sustained metapopulation (SAMPAN) model,
an agent-based model for simulating the dynamics of COVID-19
spreading across various main cities on Java Island, Indonesia. The
SAMPAN model considers the variation of social classes among
individuals, affecting social mixing in each city. In addition, we
also consider mobility among cities and within cities which leads to
interaction, consider the metapopulation concept among cities on
Java Island, and the variation among individuals (age classes and
occupations), which lead to mobility behavior and affect the infection
rate of the population for the context in Indonesia. To describe the
SAMPAN model, we followed the Overview, Design, and Details
(ODD) protocol format (Grimm et al,, 2010, 2020) for clarity and
possible replication. The study area of our model is the main cities
on Java Island (Jakarta, Bodetabek, Bandung, Semarang, Surakarta,
Yogyakarta, Surabaya, and Malang), as shown in Figure 1.

Study setting

Indonesia is a large archipelago country with a diverse
demographic and cultural diversity. It has five main inhabited islands,
with a population of 270 million in 2020. Java Island has the
highest population density in Indonesia, with more than 50% of
the total population of Indonesia inhabiting this island (Central
Statistical Bureau of Indonesia, 2020). The population has a multi-
ethnic and cultural background, which plays an essential role in
individual interaction. In addition, good infrastructure, mainly roads
and airports, plays an essential role in showing a picture of people’s
mobility between cities.

The first two cases of COVID-19 were reported in Jakarta on 2
March 2020. Shortly after, the virus spread among the main cities
on Java Island. Since the pandemic, Java Island has always had
Indonesia’s highest number of cases.

Overview

Purposes

The model aims to simulate the dynamics of COVID-19
transmission due to interaction between infected and contagious
individuals and other individuals within and between different social
classes and mobility roles within and between populations of eight big
cities on Java islands.

Entities, state variables, and scales

The main agent of the SAMPAN model is humans, which is
unique in each state variable. Each individual is assigned to a
different city with three main social classes and has its social-
mixing modes. Furthermore, individuals can have mobility within
and between cities. Thus, the metapopulations are represented by
interconnected compartments comprising 500 x 200 patches divided
into 10 squares of 100 x 100 patches representing 1 km? of each
city (Figure 2). The time step is 1 day, and the model is simulated
for 143 days starting from 1 March 2020, which is important for
understanding how the spreading mechanism occurs in Indonesia
from the main cities. Table 1 describes the model parameters. Table 2
describes the eight main sub-populations of Java Island included in
the simulation.

frontiersin.org


https://doi.org/10.3389/fevo.2022.958651
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/

Ahmad et al.

BODETABER®'

X

BANDUNG

FIGURE 1

SEMARANG

10.3389/fevo.2022.958651

MALANG

Study area of the SAMPAN model in various prominent cities on Java Island. Jakarta and Bodetabek are the closest sub-population in the SAMPAN model
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FIGURE 2
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SAMPAN model interface in NetLogo: (A) Jakarta, (B) Bodetabek, (C) Semarang, (D) Surabaya, (E) Malang, (F) Bandung, (G) empty compartment, (H)

Yogyakarta, (I) Surakarta, and (J) isolation room.

Process overview and scheduling
Mobility and social interaction

Individual mobilities are categorized into three modes: locals,
land travelers, and air travelers. Local mobility results in an
interaction of individuals within a sub-population, while traveler
mobility (land and air) causes individuals’ interaction between sub-
populations. Locals are individuals with local mobility, while land
travelers have local and inter-city mobilities. Air travelers are those
upper or medium social class who travel from or to Jakarta from other
cities. All cities have a direct air connection to Jakarta (the capital city
of Indonesia) and between cities via land routes. We used flight data
records from Flight Radar! to simulate the numbers of air travelers’
mobility between the city of origin and the capital city, assuming only

1  www.flightradar24.com
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the medium and upper classes who travel between cities using this
mode of transportation. Mobility among sub-populations/cities is
also modeled with a land traveler using mobility data from Facebook.

Local mobility is characterized by radius mobility and probability
of mobility within and between social classes. Radius mobility for
everyone is set into random 26 per time step. Every time step, the
model assigns different random values for individuals and is used
to detect any target individuals for each mobility. Mobility is the
frequency of each mobility per time step. It is generated through
a random number which equals the number of individuals being
met per individual with close contact and a minimum of 15 min
of each meeting.

Incubation periods and case detection

We follow Lauser et al. (2020) to represent incubation periods
of each stage (no symptoms, mild/moderate, severe, and critical).
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TABLE 1 Parameters values and settings for the SAMPAN model.
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Parameter Values and units | Setting in the model | Notes and references ‘
Mobility Frequency 0-13 Frequency of mobility each day
e Mobility = 0; for individuals who stay at home (“residential”)
© Mobility = random 2; for individuals who go to a transit station
e Mobility = random 4; for individuals who go to grocery and pharmacy
© Mobility = random 7; for individuals who go to a workplace
e Mobility = random 10; for individuals who go to parks
© Mobility = random 13: for individuals who go to retail and recreational
Interaction and radius mobility Km Random values 26 The radius of maximum mobility each day
Infected status Individuals No-infection o No infection is an individual who is not infected
No-symptoms o No-symptoms is an infected individual without symptoms
Moderate o Moderate is an infected individual with mild symptoms
Severe o Severe is an infected individual with severe symptoms
Critical o Critical is an infected individual with critical symptoms
Cured o Cured is an individual who has recovered
Dead o Death is an individual who died
Contagious status Individuals Yes/no The status of the infected individual’s ability to transmit the virus to other
individuals
Immunity status Individuals Yes/no The immune system of an individual who has been infected
t-infected Days 0-25 Duration of time for infected individuals (Lauser et al., 2020)
Social classes Individuals Upper, medium, lower
Social mixing Individuals Exclusive; non-exclusive Types of interaction intra-classes
Working mode - Locals Locals are individuals who work only in each population
Air traveler Air travelers are individuals who travel to the center population (Jakarta or
Land traveler Bodetabek)
Land travelers are individual which travel between cities
Detection level Percentage 2 The probability of individuals with no symptoms or moderate symptoms
being detected
Detection time Days 18 If ticks > detection time, then individuals with no symptoms and moderate
symptoms have a possibility of being detected
Prob-infection Percentage 2.65 Probability of individuals being infected (Lauser et al., 2020)
Inter-execut prob Percentage 86 Probability of individuals with an exclusive social-mixing mode interacting
with others from the same social class
Inter-non-execut prob Percentage 60 Probability of individuals with a non-exclusive social-mixing mode
interacting with others from the same social class

Infected individuals with no symptoms have a contagious period
of 14 days after infection. Meanwhile, moderate symptoms have
a contagious period from 0 to 21 days. The severe and critical
individuals have 25 days of contagious periods, including death.
Individuals with no symptoms and mild symptoms continue to have
mobility and interaction with others, which may transmit to others
through the probability of infection. Therefore, only individuals in
severe and critical conditions are directly assigned as isolated and
do not have any chance to meet other individuals. If individuals
with no or moderate symptoms have a high probability of detection
level, when the time is equal to detection time, they will have a high
probability as detected and then isolated. Thus, there is no mobility
chance to meet other individuals.

Infection process

The virus transmission process occurs when an infected
individual meets another individual who is not infected. These
healthy individuals have a possibility of being infected. In the model,
when an individual with contagious status meets or interacts with
uninfected individuals, the uninfected individuals will be infected and
update their contagious status from “none” to “contagious.” However,
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the individuals will not show symptoms from the first to the fifth day
after infection. Thus, their infected status is “no symptom.” On the
50th day after infection, we assume that the individuals have a chance
of 30% being immune, 55% having moderate symptoms, 10% having
severe symptoms, and 5% having acute symptoms following Lauser
et al. (2020).

Design

Basic principle

We applied the SIQR model for COVID-19 (Hongfan et al,
2021) as the basic structure for the SAMPAN model. We assume
that the COVID-19 carrier can infect a susceptible individual. Some
infected individuals are detected and then quarantined, and some die
due to COVID-19. Both infected and quarantined individuals will
eventually be cured after some time.

Their mobility and social interaction determine the probability
of individuals getting infected. In addition, due to their mobility and
interaction,

social susceptible individuals encounter infected

individuals who are not quarantined. In that case, some
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TABLE 2 Sub-populations and their number of air travelers to the main city
of Jakarta (www.bps.go.id accessed 13 July 2020, www.flightradar24.com
accessed 13 February 2021).

Sub- Number of population | Passenger/traveler
population
Actual Actual

Yogyakarta 3,842,932 1,206 1,500 2
Surakarta 519,587 11,799 550 25
Surabaya 3,159,481 9,497 6,216 38
Malang 870,862 8,718 150 4
Bandung 2,507,888 14,550 750 9
Semarang 1,814,110 4,854 1,250 7

individuals may be infected and become a source of infection
for other individuals.

Emergence

The total number and daily cases of infected persons emerge from
interaction among individuals with different social connectedness
and spatially separated.

Adaptation

Adaptation in this model occurred during the movement
restriction implemented in Indonesia. Individuals will reduce their
mobility (through social interaction) and radius movement as soon
as a restriction is implemented. However, the movement within and
among cities will return to normal when the restriction is removed.

Objectives
Each individual aims to move and meet others according to their
social classes and mixing.

Interaction

Interaction between individuals is assigned through social classes
and their probability of social interaction. Individuals are most
likely to meet other individuals within their social classes and have
less probability of meeting individuals from different social classes.
Figure 3 shows the probability of mobility among individuals using
between and within social-classes social interactions.

Interaction among individuals happens when individuals move
toward selected individuals as defined in the mobility behavior. If
an individual interacts with an infected but undetected individual,
the uninfected individual can be infected as much as prob-infection.
This infection-spreading process will be explained further in the
sub-model section.

Stochasticity

The stochasticity in the model appears in some processes.
For example, stochasticity is used in this model when individuals
are placed at a random location when the model is initialized.
Stochasticity is also used in the mobility and radius mobility
parameters to determine the frequency of movement (mobility) and
distance traveled (radius mobility) for a new location of mobility
for individuals.

Collectives
Social classes are collectives: individuals tend to move closer to
others with the same social classes, as shown in Figure 3.
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Observation

We observed the dynamics of the number of individuals detected,
infected with no, moderate, severe, and critical symptoms, death, and
the number of daily new cases.

Details

Initialization

The model is initialized with eight regions (Jakarta;
Bodetabek/cities around Jakarta, that is, Bogor, Depok, and
Bekasi; Bandung; Semarang; Yogyakarta; Surakarta; Surabaya; and
Malang) with each region having a certain amount of population
and spatially separated (Figure 2). The population in each region
is divided into three social classes and two social mixing with each
certain proportion, as shown in Tables 3, 4. Meanwhile, each social
class is divided into two social mixings: exclusive and non-exclusive.
For example, individuals with upper social class consist of 95% agents
with non-exclusive and exclusive social-mixing modes for the rest.
Meanwhile, individuals with middle and lower class consist of 90%
population with non-exclusive social mixing, and the rest is complete
social mixing.

Every region starts with individuals who have not been infected
(infected status = no infection), are not contagious (contagious

status = none), and are shown in a circle shape and white color.
Next, every individual is placed in a random region that would be
set to be their home (my base). The transmission process starts
when an individual from the upper social class in Jakarta and the
Bodetabek area is infected. Then, in the fifth time step, an individual
in Yogyakarta with upper social class status and exclusive social-
mixing mode is also infected. Finally, eight individuals in Surabaya
are infected at the 13th time step. The identification of infected
individuals is based on the actual case data from Indonesia.

Input data
The model used mobility index data from Google Mobility? as the
external input to define the mobility of each individual based on their

2 https://www.google.com/covid19/mobility/

FIGURE 3

Interaction concepts of individuals for each social class and
social-mixing types are implemented in the model. Sc1,
upper-classes; Sc2, medium classes; and Sc3, lower classes. Each
class has stronger interactions within their classes, while intra-classes
have less strong interactions. The arrow's thickness shows the relative
strength of the interaction, with dashed arrows representing weaker
interaction.
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TABLE 3 Actual (a) and model's (b) population density and their air mobility among sub-populations.

Sub-population

10.3389/fevo.2022.958651

Jakarta | Bodetabek | Yogyakarta | Surakarta | Surabaya | Malang | Bandung Semarang

Population a* 15,582 10,041 3,842 6,307 3,159 870 2,507 1,814
b 15,938 11,672 1,206 1,104 9,497 8,718 14,550 4,854
Air travelers March a - - 3,420 2,520 8,820 1,800 540 4,320
b - - 2 1 27 19 4 12
April a - - 576 288 1,224 144 72 504
b - - 1 1 4 2 1 2
May a - - 108 0 108 54 0 54
b . - 1 0 1 1 0 1
June a - - 324 108 432 108 0 216
b - - 1 1 2 2 0 1
July a - - 630 360 1,350 180 0 720
b - - 1 1 5 2 0 2

*In thousand.

activity (retail and recreation, grocery and pharmacy, parks, transit
station, workplaces, and residential). The model also used Facebook
Data for Good to estimate the percentage of individuals with land-
travel mode®.

Sensitivity analysis and validation of the
model

We conducted a local sensitivity analysis with the one-at-a-time
(OAT) technique (Saltelli et al, 2006) to examine the effects of
parameters on the model’s output. We used the Morris’s screening
method, which calculates the relative influence of each factor on
the output of the model relatively and has been used for various
(Campolongo et al,, 2007; Imron et al., 2012). The experimental of
the Morris method was individually randomized one factor at time
experiments. The method started with running a set of parameter
combinations. Then, a parameter was changed gradually; other
parameters were set at their median known values and compared
the output with the previous output. The output of the method is
expressed into p* (effect of parameter’s influence) and o (strength
of parameter interaction). Thep* is an estimate, representing the
mean of the distribution of the absolute values of the elementary
effects (Campolongo et al., 2007). While o estimates the effect of non-
linearity and/or the effect due to the interaction of the parameters
with other factors. We run the sensitivity analysis using Morris
screening method available in the package “nlrx” (Salecker et al,
2019) in R software.

For each simulation, we analyzed the total number of contagious,
critical, detected, infected, moderate, and severe using the SAMPAN
model. Next, we simulated the SAMPAN model with 30 replicates
for each combination of parameters. We used the Jakarta population
to conduct the validation process as it has the complete data we
can access during the pandemic. Finally, we compared the simulated
and observed data and projected it into a graph for early pandemic
periods in Indonesia. We performed the simulation using a high-
performance computer in Universitas Gadjah Mada, Indonesia,

3 https://dataforgood.facebook.com/
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because the model involved more than 50,000 simulated individuals
with a combined variation of input variables (Tables 1, 5) which
required high speed and memory for simulations.

Results

Model sensitivity

Our sensitivity analysis shows that among the parameters used
in the model, all output parameters (contagious, critical, detected,
infected, moderate, and severe) are sensitive to the change in
mobility (Figure 4). The parameter effect (u*) and interaction (o)

are provided in Table 5. The change in each parameter and its effect
on the number of detected individuals is presented in Figure 5.

Validation

The validation of the SAMPAN model by comparing actual data
and simulated data is shown in Figure 6. The SAMPAN model can
follow the actual data pattern during the first 60 days, while the
pattern diverges after 60 days of simulation (Figure 6).

TABLE 4 Number of social class percentages for each region
(www.bps.go.id, accessed 13 July 2020).

Social class

Upper class (%) | Middle class (%) | Lower class (%)

Jakarta 55 40 5
Bodetabek 40 57 3
Bandung 44 52 4
Semarang 28 60 12
Yogyakarta 47 44 9
Surakarta 40 55 5
Surabaya 40 56 4
Malang 44 52 4
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TABLE 5 Morris screening sensitivity analysis for all parameters in SAMPAN model.

Detected i Critical
1 Detection-level 13.58 13.07 4.23 4.23 1.03 1.61 0.32 0.51
2 Inter-execut-prob-selection 13.81 21.24 33.15 50.54 30.74 46.74 9.85 16.04 1.03 1.68
3 Inter-non-execut-prob 14.92 26.14 34.45 57.88 31.43 53.16 11.64 20.01 1.35 2.23
4 Mobility 111.48 118.13 244.17 257.39 230.38 242.44 90.97 103.72 8.44 9.80
5 Population 70.49 89.20 137.02 176.12 133.70 170.65 44.01 62.81 4.13 5.98
6 Prob-infection 34.11 60.15 69.28 105.18 65.30 100.67 23.77 39.80 2.29 3.90
7 Radius-mobility 69.07 78.25 134.08 144.26 128.97 137.98 44.24 53.27 4.07 5.09
W shows the effect of a parameter on the model’s output, and o represents the interaction of a parameter on the model output.
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FIGURE 4
Sensitivity analysis uses the SAMPAN model's main parameters to investigate their effect on the number of individuals with (A) contagious, (B) critical, (C)
detected, (D) infected, (E) moderate, and (F) severe. The u* represents the effect of a parameter on the model output. The ¢ shows the interaction of a
parameter on the model output.
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Metapopulation dynamics

An illustration of the simulated SAMPAN model is shown in
Figure 7. Our model has shown that the number of contagious
individuals is dynamic over time. The peak number of contagious
individuals did not occur once, and each sub-population has its peak
periods. All sub-populations together contribute to the dynamic of
the metapopulation. The simulation results also show that the model’s
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predicted proportion of reported cases corresponds with the observed
proportion of the reported cases.

Discussion

A SAMPAN is the first agent-based model for simulating
Indonesia’s COVID-19 pandemic with metapopulation. The model
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simulated the social interaction between and within social classes
in the eight main cities of Java Island. Findings from the model
suggest that mobility strongly influences the disease dynamic in
the population. Furthermore, model exploration with available
sociodemographic and mobility data shows that social interaction
and mobility corresponded to the COVID-19 statistics reported in
the eight cities on Java Island. Thus, the model can be used to explain
the COVID-19 transmission dynamics in these cities.

Numerical models have been widely used for simulating
communicable disease dynamics. However, the agent-based model
is becoming more commonly used in simulating infectious disease
transmission (Tracy et al, 2018). Both numerical (Arti and
Bhatnagar, 2020; Chintalapudi et al., 2020; Ferguson et al., 2020;
Lin et al.,, 2020; Moghadas et al., 2020; Rhodes et al., 2020; Verity
et al., 2020; Xu and Li, 2020) and ABM (Silva et al., 2020; Wolfram,
2020; Gomez et al., 2021; Hinch et al., 2021; Pescarmona et al., 2021;
Truszkowska et al,, 2021; Lombardo et al.,, 2022) have been used to
simulate COVID-19 transmission dynamics. The use of ABM in the
extension of SIR models allows the introduction of individual-level
heterogeneity and a more complex social network into the traditional
SIR compartmental model. Thus, ABM is an appropriate tool to
explore and test causal mechanisms in which many interacting and
competing causes interplay for disease spread in a population (Tracy
et al., 2018). In addition, as ABM consists of a series of interaction
rules between agent movement in different places, it can simulate
spatiotemporal transmission at the microscopic level and implement
counterfactual simulations that may be difficult to observe in the
real world. Thus, it can provide what-if scenarios and evidence for
implementing specific public health measures (Tracy et al, 2018;
Kong et al., 2022).

Our SAMPAN model is agent-based, considering everyone has
unique characteristics represented by social classes, social-mixing
types, mobility, and mobility radius. We introduced the use of social
classes and the social-mixing concept for mobility and interaction
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behavior. Social classes and behavior are a common social-economic
modeling approach (Smajgl and Bohensky, 2013), but a rare approach
is used for epidemiology.

We used a metapopulation approach consisting main cities on
Java Island. While metapopulation ABM models are widely used in
other fields such as ecology (Taylor, 1990; Possingham et al., 1992;
Hess, 1996; Lopez and Pfister, 2001; Lehmann and Perrin, 2006;
Bull et al,, 2007; Ross et al., 2008), only limited studies incorporate
this approach to simulate disease transmission, particularly COVID-
19 (Hinch et al, 2021; Lombardo et al.,, 2022). In contrast, other
models used a metapopulation approach but did not use an agent-
based model (Costa et al,, 2020; Kong et al, 2022). Therefore,
the use of metapopulation in this study is suitable to reflect
the epidemiological situations on Java Island, where COVID-19
transmission is concentrated in several interconnected main cities.

The validation of our agent-based model on COVID-19 using
metapopulation for the main cities on Java Island has shown that
the model performed similar patterns as reproduced by actual data.
We believe the model applies to other Java and island cities using our
simulated parameters if cities have relatively good data to compare.
However, caution should be applied when using SAMPAN data for
the entire population. Although our SAMPAN model can simulate
bounced peaks several times at the metapopulation level, the model
still has limited ability to simulate bounce within a sub-population.
The main sub-population in this model (the Jakarta population) has
increased the contagious population and remains until it reaches its
peak. The next peak has never been reached in this sub-population.
At the same time, studies have warned us that a second wave can
occur (Wu et al, 2020; Xu and Li, 2020). Second waves occur in
each simulated city, while our model cannot perform these details.
However, we do not aim to match our model with actual data
because, in the model, we calculated the emergence of the model
as the number of contiguous individuals. We should change the
output parameter of our emergence into detected individuals because
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there is no available data on the number of contagious individuals
except for detected individuals. Improving the model using sub-
populations or groups might be an alternative solution for producing
local peaks within sub-populations. We also have identified that our
model is limited to the early condition of COVID-19 in Indonesia.
Therefore, we suggest to include more data and the behavior of people
in our current model for better reliability of application of our model
for the current situation of the pandemic.

Our simulation showed that the rise of COVID-19 cases
in different cities in Java was linked to mobility and social
interactions between and within cities. Therefore, coherence
and systematic public health interventions among the different
populations on Java Island are required. However, as Indonesia
has a decentralized governmental structure, it is challenging to
coordinate timely and synchronized interventions. For example, Lele
(2021) documented that before the national government sanctioned
large-scale national mobility restrictions, many local governments
had taken different approaches, albeit controversial. In some cases,
there were contradictory policies between the local and national
authorities. For example, a mobility restriction in one province was
canceled by the central government due to a lack of coordination in
timing (Supriyadi et al,, 2021).

This incoherence to intervention policies arose because lack of
understanding of the mechanism of disease transmission, mainly as
COVID-19 is a new disease with limited scientific evidence during
the early pandemic. Our model can contribute to understanding
the nature of the COVID-19 pandemic from a metapopulation
perspective. Furthermore, the model can provide the what-if
scenarios of different interventions which may affect these cities
differently. Therefore, we expect our model provides a valuable tool
for policymakers to select appropriate intervention policies, taking
into account different scenarios which may arise during the pandemic
in Indonesia in the future.
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