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Phenotypic plasticity is normally quantified as a reaction norm which details

how trait expression changes across an environmental gradient. Sometime

reaction norms are linear, but often reaction norms are assumed to be

linear because plasticity is typically quantified as the difference in trait

expression measured in two environments. This simplification limits how

plastic responses vary between genotypes and may also bias the predictions

of models investigating how plasticity influences a population’s ability

to adapt to a changing environment. Consequently, there is a pressing

need to characterize the real shape of reaction norms and their genetic

variability across ecologically relevant environmental gradients. To address this

knowledge gap we measured the multi-trait plastic response of 7 Daphnia

magna clones from the same population across a broad resource gradient.

We used a Random Regression Mixed Model approach to characterize and

quantify average and clone-specific responses to resource variation. Our

results demonstrate that non-linear models outperformed a linear model

for all 4 of the life-history traits we measured. The plastic reaction norms

of all 4 traits were similar in shape and were often best described by a

non-linear asymptotic model. Clonal variation in non-linear plastic responses

was detectable for 3 out of the 4 traits that we measured although

the nature and magnitude of variation across the resource gradient was

trait-specific. We interpret our findings with respect to the impact that

plasticity has on the evolutionary potential of a population in different

resource environments.

KEYWORDS
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Introduction

The concept of phenotypic plasticity, the ability of a single
genotype to produce a range of phenotypes in response to
variable environmental conditions (Via et al., 1995), is a
key feature of evolutionary biology (Bradshaw, 1965; West-
Eberhard, 2003; Wund, 2012). Ubiquitous in nature, plasticity
is an important evolutionary strategy (Bradshaw, 1965), central
in promoting adaptation and persistence at both the individual
and population level (Chevin and Lande, 2010). Life history
traits, those which dictate key life decisions such as growth,
maturation, and fecundity, are often highly plastic (Nussey et al.,
2007), allowing organisms to maximize fitness across a range
of environments (Liefting et al., 2009) and persist in rapidly
changing conditions (Vedder et al., 2013). Phenotypic plasticity
will facilitate rapid adaptation if it creates more opportunity
for selection by increasing genetic variation in traits under
selection in a particular environment. However, the reverse
is true if phenotypic plasticity reduces the genetic variation
in fitness in an environment (Gienapp and Brommer, 2014).
Phenotypic plasticity can also support rapid adaptation to novel
and changing environments (Vedder et al., 2013), allowing
persistence and therefore buying time for selection to act on
the genotype (Pigliucci, 2005). Better understanding of the
mechanics of plasticity with regards to rapid adaptation could
improve knowledge of an organism’s capability to adapt to
new environments (Morrissey and Liefting, 2016), an especially
relevant topic given the prevalence of species range shifts
as a response to human-induced environmental instability
(Chen et al., 2011).

Plasticity is often modeled using the reaction norm
concept, the plotted function that describes the change in a
phenotypic character in response to changes in environmental
condition (de Jong, 1990). Despite both the phenotypic trait
values and the environmental gradient being more often
than not continuous variables (Gavrilets and Scheiner, 1993),
reaction norms are currently modeled using only two points
along an environmental axis (Murren et al., 2014; Arnold
et al., 2019). This forces a linear relationship between trait
and environmental change, as such reaction norms are
modeled almost exclusively using linear regression (Chevin and
Hoffmann, 2017). The original intention of such a simplifying
approach was to create a model that was easily replicable but still
captured the essential pattern of the data (Rocha and Klaczko,
2012). The linear parameters of slope and intercept also made
for easy comparison between reaction norms of different genetic
units (Morrissey and Liefting, 2016). However, the decision
to utilize only two experimental environments rather than
a continuous range is often done for the sake of simplicity
(Moreteau et al., 1997) rather than for any real scientific merit
of the linear model. So far, little attention has been given to
how good an approximation of reality the linear model really
is (Scheiner, 1993).

While some reaction norms really are linear in nature
(Charmantier et al., 2008), scientific understanding of
physiological limits suggests that when measured over a
sufficiently broad scale most reaction norms will be non-
linear (Arnold et al., 2019). The current “two-point” linear
approach to modeling reaction norms may be unrealistic to the
natural setting as it often fails to account for environmental
extremes (Stinchcombe et al., 2012). Extreme conditions are
often excluded because they are more difficult to recreate
experimentally, resulting in a poor understanding of plastic
responses to these environments (Chevin and Hoffmann,
2017). This is especially true in the case of life history
assays, where poor environmental conditions such as low
temperature or nutrition prolong the length of the experiment
due to their negative effects on growth and development.
However, extreme conditions are increasingly common in
the wild, with climate change exposing organisms to an
increasingly wide environmental gradient on a regular basis
(Easterling et al., 2000).

The assumption of linear reaction norms may obscure
important aspects of plasticity leading to inaccurate estimations
of the degree of heritable phenotypic variation in populations
(Schlichting, 2008). For example, models that assume that
reaction norms are linear necessarily predict that additive
genetic variance increases in extreme environments (Chevin
and Hoffmann, 2017) leading to the conclusion that plasticity
plays an important role in facilitating adaptation to extreme
environments (Chevin and Lande, 2011). However, plastic
responses to extreme environments are unlikely to be linear
because physiological constraints will generate non-linear
reaction norms (Day and Rowe, 2002; Nussey et al., 2007)
that are often not accounted for in models of phenotypic
plasticity. This incorporation of the biology of the trait into
its reaction norm creates a more realistic representation of the
plastic phenotypic variation generated by genotypes within a
population. Models based on realistic reaction norm shapes
would vastly improve our understanding of the effects of
environmental change on phenotypic expression (Nussey et al.,
2007). It may also reveal more about a population’s potential
for rapid adaptation, and how the plastic response itself can
be shaped by selection (Via and Lande, 1985). By imposing
the linear assumption and ignoring extreme environmental
conditions, current reaction norm studies limit the inferences
that can be made regarding the evolution of plasticity (Murren
et al., 2014). The study of genetic variation in plastic responses
(genotype by environment interactions, or GxE), is almost
entirely defined in the context of linear reaction norms (Rocha
and Klaczko, 2012). Moreover, studies of multivariate plasticity
are also invariably linear in approach.

Information on the true shape of reaction norms is sparse
(Gavrilets and Scheiner, 1993; Gibert et al., 1998). Beyond
studies investigating thermal plasticity in Drosophila (David
et al., 1997; Moreteau et al., 1997; Gibert et al., 1998), threshold

Frontiers in Ecology and Evolution 02 frontiersin.org

https://doi.org/10.3389/fevo.2022.982697
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-982697 September 9, 2022 Time: 15:20 # 3

Plaistow et al. 10.3389/fevo.2022.982697

traits (West-Eberhard, 2003; Chevin and Lande, 2013) and
performance curves (Huey and Kingsolver, 1989; Izem and
Kingsolver, 2005) a more general assessment of reaction norm
non-linearity has only begun recently (Rocha and Klaczko,
2012, 2014; Murren et al., 2014; Morrissey and Liefting, 2016;
Gomulkiewicz et al., 2018). When reaction norms are non-
linear, the slope of the reaction norm changes across certain
environments, becoming steeper or shallower as conditions
change (as described in Rocha and Klaczko, 2014). This may
impact the range of phenotypic targets available for selection
to act upon under certain environmental conditions and
alter patterns of trait co-variation. The expression of genetic
variation and a population’s capacity to adapt is a pressing
concern, especially in extreme environments (Chevin and
Hoffmann, 2017). Improved understanding of plasticity and
species’ adaptive capacity may have important environmental
and economic implications, with ramifications for species
conservation (Heino and Dieckmann, 2008), invasive species
management (Davidson et al., 2011), and even crop production
(Ly et al., 2018).

Understanding the evolution of extant species and their
adaptive capacity therefore requires an accurate representation
of reaction norm shape (Arnold et al., 2019). To begin to address
this problem we measured the multi-trait plastic response of 7
Daphnia magna clones from the same population across a broad
resource gradient. Daphnia population densities often vary by
orders of magnitude across a season, demonstrating exponential
population growth early in the season followed by one or
more density-dependent declines due to food shortage later
in the season (Ebert, 2005). As a result, Daphnia populations
typically experience extreme resource fluctuations each year.
We used a Random Regression Mixed Model approach (Arnold
et al., 2019) to characterize and quantify population-level and
clone-specific responses to resource variation over a broad
environmental gradient and correlation matrices to examine
how phenotypic correlations change across an environmental
gradient. We demonstrate that when phenotypes are measured
over a sufficiently broad range of environments, linear models
cannot adequately describe plastic responses to a resource
gradient. We discuss the implications of our findings for
understanding how plasticity influences the likelihood of
observing rapid adaptation in Daphnia populations.

Materials and methods

Experimental procedure

All Daphnia magna used were taken from laboratory lines
hatched from resting eggs collected from Brown Moss Nature
Reserve (52◦57’01.2”N, 2◦39’05.6”W) in 2016. Daphnia were
conditioned at 21◦C for two generations (parental and F1
generations) in the lab before the experiment to reduce any

potential maternal effects (Plaistow and Collin, 2014; Plaistow
et al., 2015). The offspring from the second F1 clutch were then
used for experimentation.

Six concentrations of the algal food solution (spp. Chlorella
vulgaris) were used to form the nutritional gradient along
which Daphnia life history data was recorded. A preliminary
assay was used to determine the nutritional treatments
pertinent to reaction norm shape including curve inflection
points, asymptotic values, and extreme high and low food
concentrations. Concentrations of 10,000, 40,000, 90,000,
145,000, 200,000, and 300,000 cells mL−1 were chosen, forming
a continuous environmental gradient. Seven Daphnia clones
were used, with four replicates reared at each food level.
All Daphnia were kept under controlled conditions of 21◦C
and a 14:10 light: dark photoperiod. Daphnia were housed
individually in glass jars containing 150 mL of artificial pond
water (ASTM) enriched with Marinure, a seaweed solution that
provided necessary base nutrients. All individuals were fed their
respective food treatment once per day, and individuals were
moved to fresh jars every other day to prevent build-up of algae
along the base of the jar and to make sure that food levels
remained constant. Life history observations were collected until
individuals released their first clutch of neonates (rather than
the 3rd clutch) to minimize the time taken to collect life-history
data from each clone in each environment All replicates were
photographed at birth and maturity [determined as the day
when eggs appeared in the Daphnia’s brood pouch (Harney
et al., 2015)] using a Canon EOS 350D digital camera connected
to a Leica MZ6 dissecting microscope at 2.5 × magnification,
and the images were measured using the software ImageJ
(Rasband, 1997). Neonate and maturity size was measured
in millimeters, age was measured in days and first clutch
abundance was measured as number of neonates released.
Growth rate was determined as size at maturity−neonate size

age at maturity . Thus,
four life-history traits were collected for each replicate: size
at maturity, age at maturity, juvenile growth rate, and first
clutch abundance.

Statistical analyses

Modeling population-level reaction norms
All statistics were performed in RStudio Team (2020). The

traits of size at maturity, age at maturity, juvenile growth
rate, and first clutch abundance were modeled individually to
determine the best fit model for their actual reaction norm
shape. For each trait, data was initially plotted graphically to give
a rough estimate of the reaction norm shape, thus allowing the
data itself to guide the modeling process. Each trait was modeled
at the population level using the linear model, as is currently
favored by reaction norm analyses:

y = cx+ b (1)

Frontiers in Ecology and Evolution 03 frontiersin.org

https://doi.org/10.3389/fevo.2022.982697
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-982697 September 9, 2022 Time: 15:20 # 4

Plaistow et al. 10.3389/fevo.2022.982697

in which c represents the gradient, and b the response value
when the environmental gradient is at zero (the intercept). The
data was also modeled using the quadratic equation:

y = cx+ cx2
+ b (2)

for which the parameters b and c are the same as in equation
(1). The inclusion of the x2 variable notates the curvature
of the reaction norm. Finally, the three-parameter asymptotic
exponential function was modeled:

y = a+
(
b− a

)
∗ exp

(
− exp (c) ∗ x

)
(3)

in which a, b, and c are parameters representing the horizontal
asymptote, the response when the input is zero (intercept), and
the natural logarithm of the rate constant (slope), respectively.

Models (2) and (3) were chosen based on the shape of
the raw data and preliminary model fitting, while model (1)
was used to allow comparisons of goodness of fit between
the currently used linear model and non-linear reaction norm
models. Each iteration of the model was tested for goodness of
fit by comparing Akaike Information Criterion (AIC) values,
which balance the fit of each model against its complexity
(Crawley, 2007). AIC values are only comparative between
models of the same trait. Models were plotted using ggplot of
the ggplot2 package.

Modeling clonal variability
Each trait was tested for clonal variability by expanding

the best fit population-level model via the inclusion of clonal-
level random effects. Following (Morrissey and Liefting, 2016),
this was achieved by fitting random regression mixed models
(RRMM) to the data. These models allow the fit of an overall
population-level reaction norm to the data, while allowing for
the addition of increased complexity in the form of clonal-
level variation for each model coefficient. RRMMs were run
using the nlmer function of the lme4 package. The nutritional
gradient was included as a fixed effect and was mean-centered to
address potential biases introduced by non-linear terms (Arnold
et al., 2019). Clone was fitted as a random effect for each
coefficient separately and in combination. AIC values were again
generated to determine the best fit model, and models were
again plotted using ggplot.

Phenotypic correlations across a
resource gradient

7 clones is not sufficient to quantify how genetic correlations
change across an environmental gradient. Instead we used
phenotypic correlations as a tentative proxy for genetic
correlations (Cheverud, 1988). Phenotypic correlations between
all traits were analyzed separately for subsets of the data
representing extreme low resource environments (10,000 cells

mL−1), medium resource environments (145,000 cells mL−1)
and extreme high resource environments (300,000 cells mL−1)
using the corrplot package in R (Wei and Simko, 2021).

Results

Are reaction norms linear or
non-linear?

At the population level, the reaction norms for all four traits
of age at maturity, size at maturity, juvenile growth rate, and
first clutch abundance were each best fit by the three-parameter
asymptotic regression model [model (3) above, see Figure 1].
For the traits of size at maturity and first clutch abundance
the difference between the quadratic and asymptotic models
was only slight, while the difference in fit was much more
pronounced for age at maturity and juvenile growth rate. For
all four traits, the fit of the asymptotic model was significantly
better than that of the linear model (Table 1).

Random regression mixed models

Age at maturity
As resource increases age at maturity sharply decreases to

an asymptote where further increases in resource no longer

FIGURE 1

Population-level reaction norms for (A) Age at maturity, (B) Size
at maturity, (C) Juvenile growth rate and (D) First clutch
abundance modeled using either a linear, quadratic, or three
parameter asymptotic exponential function. Mean-centered
nutritional gradient, spanning from 10,000 to 300,000 cells
mL−1 was fitted as a fixed factor.
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TABLE 1 Measures of goodness of fit for each of the three
population-level reaction norms modeled for each life history trait.
Best fit models are distinguished by their low AIC values and
highlighted in bold.

Trait Model AIC

Size at maturity Linear −55.5

Quadratic −87.2

Asymptotic −93.7

Age at maturity Linear 752.8

Quadratic 685.9

Asymptotic 581.9

Juvenile growth rate Linear −475.2

Quadratic −573.1

Asymptotic −653.8

First clutch abundance Linear 856.7

Quadratic 816.3

Asymptotic 810.3

AIC values are only comparative between models for the same trait.

generate decreases in age at maturity. The two best fitting
models were asymptotic mixed effect models that included
clonal variation in model parameters fitted as random effects
(Table 2). The model with the lowest AIC value was an
asymptotic mixed effect model with clonal variation in slope
fitted as a random effect (Figure 2A and Table 2, Model no. 4).

Size at maturity
As resource increases size at maturity sharply increases to

an asymptote where further increases in resource no longer
generates increases in size at maturity. The best fitting random

TABLE 2 Age at maturity reaction norm models, fitted using random
regression mixed models (RRMM).

Model no. Model AIC

1. Agemat∼ SSasymp(cfood, a, b, c) 581.9

2. Agemat∼ SSasymp(cfood, a, b, c)∼ (a | clone) 534.0

3. Agemat∼ SSasymp(cfood, a, b, c)∼ (b | clone) 534.1

4. Agemat∼ SSasymp(cfood, a, b, c)∼ (c | clone) 533.3

5. Agemat∼ SSasymp(cfood, a, b, c)∼ (a | clone)+
(b | clone)

536.0

6. Agemat∼ SSasymp(cfood, a, b, c)∼ (b | clone)+
(c | clone)

−

7. Agemat∼ SSasymp(cfood, a, b, c)∼ (a | clone)+
(c | clone)

−

8. Agemat∼ SSasymp(cfood, a, b, c)∼ (a+b | clone) 533.6

9. Agemat∼ SSasymp(cfood, a, b, c)∼ (b+c | clone) 537.3

10. Agemat∼ SSasymp(cfood, a, b, c)∼ (a+c | clone) 537.4

Goodness of fit is compared for the asymptotic population-level model (Model 1) and
mixed models with varying combinations of the clonally-variable model parameters
(a, asymptotic value; b, intercept; c, slope). Mean-centered food is the fixed variable
throughout. Lower AIC values indicate a better balance between fit and model
complexity. Models without an AIC value are models that failed to converge. The best
fitting model is shown in bold.

regression model included clonal variation in the asymptote and
intercept coefficients (Figure 2B and Table 3, Model no. 5).

Juvenile growth rate
As resource increases juvenile growth rate sharply increases

to an asymptote where further increases in resource no
longer generates increases in juvenile growth rate. The best
fitting random regression model included clonal variation
in the asymptote and intercept coefficients (Figure 2C and
Table 4, Model no. 8).

First clutch abundance
As resource increased first clutch abundance sharply

increased to an asymptote where further increases in resource
no longer generated increases in the number of neonates in the
first clutch. The best fitting model for the first clutch abundance
reaction norm was also an asymptotic mixed effect model with
clone-specific asymptotes and intercepts fitted as a random term
(Figure 2D and Table 5, Model no. 8).

Phenotypic correlations across a
resource gradient

The non-linear reaction norms observed result in changes
in both the strength and direction of phenotypic correlations
between traits in different environments (see Figure 3). Neonate
size was positively correlated with size and age at maturity in
low resource environments but became negative in medium and
high resource environments. Size at maturity was uncorrelated
with other traits in low resource environments but became
strongly positively correlated with age at maturity and first
clutch abundance in medium and high food environments. In
low resources environments, individuals that grew fast matured
quicker, but this effect weakened as resources increased. First
clutch abundance was not strongly correlated with any trait in
low resource environments, but it became positively correlated
with age and size at maturity as resources increased (see
Figure 3).

Discussion

Reaction norm shapes are often assumed rather than
measured. As a result, there is a pressing need for empirical
studies that quantify reaction norm shape and compare it to
the predictions of models that assume reaction norm shape
(Stinchcombe et al., 2012; Arnold et al., 2019). We measured the
multi-trait plastic response of 7 Daphnia magna clones across
a broad resource gradient. For each of the investigated life
history traits of size at maturity, age at maturity, juvenile growth
rate, and first clutch abundance, a non-linear asymptotic model
provided a better fit to the data than the currently assumed linear
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FIGURE 2

Population-level and clonal-level reaction norms for (A) Age at maturity, (B) Size at maturity, (C) Juvenile growth rate and (D) First clutch
abundance. For each trait we utilized the best fitting model from the RRMM analysis. Mean-centered food was included as a fixed effect. Clonal
variation in model parameters were included as a random effect. The solid black line shows the model fit for the population. The colored dots
show the raw data for each clone and the colored dashed lines show the model fit for each clone. For age at maturity the best fitting model
included a clone-specific slope term whereas for all other traits the best fitting model included clone-specific intercept and asymptotes. Clone
21 and 38 did not conform with the asymptotic model for size at maturity and clone 42 did not conform with the asymptotic model for first
clutch abundance so these clones were not included in the plots visualizing clone-specific fits for these traits.

alternative confirming that when a broad enough environmental
gradient is used, reaction norm shape is not adequately
described by linear models. We observed clonal variation in
non-linear plastic responses for all 4 traits that we measured,
demonstrating that non-linear random mixed models are useful
for studying how plasticity influences the adaptive capacity of
populations over broad environmental gradients.

At the population level, all four of the traits investigated in
this study were best fit by asymptotic curves. Juvenile growth
rate, size at maturity, and first clutch abundance all increased
linearly whereas age at maturity decreased linearly as resources
increased. However, at a certain point, trait responses leveled
off until increases in resource no longer produced increases or
decreases in traits. In other words, there was a limit to how
much trait plasticity could respond to environmental change.
For age at maturity clonal variation in slopes was observed,
meaning that although there was no difference in the minimum
number of days it took a clone to mature on high food there
was clonal variation in how quickly low resource levels started

to delay maturation. In Daphnia, age and size at maturity is
determined by a maturation threshold (Ebert, 1994) which is
already known to vary between clones (Harney et al., 2013).
For size at maturity, juvenile growth rate and first clutch
abundance the best fitting models included clonal variation in
intercept and asymptote, resulting in clonal variation in the
maximum juvenile growth rate and size at maturity achieved
at high resources levels. A strong non-linear reaction norm
in response to varying resource environments might not be
surprising in a filter feeding organism such as Daphnia, where
consumption rate increases linearly with food abundance up to
a threshold level at which it remains constant (Type 1 functional
response) (Jeschke et al., 2004; Chevin and Hoffmann, 2017).
Thus, although demonstrations of non-linear reaction norms
are currently still rare (Rocha and Klaczko, 2012; Arnold et al.,
2019) we expect them to be widespread.

Fitting non-linear reaction norms requires more work
than studying linear reaction norms, but identifying the
real shape of reaction norms and how genetically variable
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TABLE 3 Size at maturity reaction norm models, fitted using random
regression mixed models (RRMM).

Model no. Model AIC

1. Szmat∼ SSasymp(cfood, a, b, c) −93.7

2. Szmat∼ SSasymp(cfood, a, b, c)∼ (a | clone) −93.2

3. Szmat∼ SSasymp(cfood, a, b, c)∼ (b | clone) −92.8

4. Szmat∼ SSasymp(cfood, a, b, c)∼ (c | clone) −92.4

5. Szmat∼ SSasymp(cfood, a, b, c)∼ (a | clone)+
(b | clone)

−100.9

6. Szmat∼ SSasymp(cfood, a, b, c)∼ (b | clone)+ (c
| clone)

−90.8

7. Szmat∼ SSasymp(cfood, a, b, c)∼ (a | clone)+ (c |
clone)

−91.2

8. Szmat∼ SSasymp(cfood, a, b, c)∼ (a+b | clone) −

9. Szmat∼ SSasymp(cfood, a, b, c)∼ (b+c | clone) −

10. Szmat∼ SSasymp(cfood, a, b, c)∼ (a+c | clone) −89.9

Goodness of fit is compared for the asymptotic population-level model (Model 1) and
mixed models with varying combinations of the clonally-variable model parameters
(a, asymptotic value; b, intercept; c, slope). Mean-centered food is the fixed variable
throughout. Lower AIC values indicate a better balance between fit and model
complexity. Models without an AIC value are models that failed to converge. The best
fitting model is shown in bold.

they are (G× E interaction) is important for understanding
how plasticity influences an organism’s capacity to adapt
to new environments (Morrissey and Liefting, 2016; Arnold
et al., 2019). The random regression mixed model framework
(Morrissey and Liefting, 2016; Arnold et al., 2019) used in this
study showcases the relative ease with which non-linearity can
be incorporated into plasticity research and used to quantify
population-level responses and the variation between genotypes

TABLE 4 Juvenile growth rate reaction norm models, fitted using
random regression mixed models (RRMM).

Model no. Model AIC

1. Jvgrowth∼ SSasymp(cfood, a, b, c) −653.8

2. Jvgrowth∼ SSasymp(cfood, a, b, c)∼ (a | clone) −652.1

3. Jvgrowth∼ SSasymp(cfood, a, b, c)∼ (b | clone) −652.7

4. Jvgrowth∼ SSasymp(cfood, a, b, c)∼ (c | clone) −652.2

5. Jvgrowth∼ SSasymp(cfood, a, b, c)∼ (a | clone)+
(b | clone)

−640.3

6. Jvgrowth∼ SSasymp(cfood, a, b, c)∼ (b | clone)+
(c | clone)

−650.8

7. Jvgrowth∼ SSasymp(cfood, a, b, c)∼ (a | clone)+
(c | clone)

−650.2

8. Jvgrowth∼ SSasymp(cfood, a, b, c)∼ (a+b |
clone)

−678.1

9. Jvgrowth∼ SSasymp(cfood, a, b, c)∼ (b+c | clone) −649.2

10. Jvgrowth∼ SSasymp(cfood, a, b, c)∼ (a+c | clone) −649.8

Goodness of fit is compared for the asymptotic population-level model (Model 1) and
mixed models with varying combinations of the clonally-variable model parameters
(a, asymptotic value; b, intercept; c, slope). Mean-centered food is the fixed variable
throughout. Lower AIC values indicate a better balance between fit and model
complexity. The best fitting model is shown in bold.

in this response. Being able to select a function that best reflects
how reaction norm shape changes across an environmental
gradient greatly improves model fit and provides a much better
representation of reaction norm shape than a straight line.
Moreover, the random regression mixed model framework
allows estimates and inferences about genetic variation in non-
linear reaction norms to be obtained using a standard and
relatively familiar statistical approach (Morrissey and Liefting,
2016; Arnold et al., 2019). However, this approach assumes that
all genotypes in a population have the same basic reaction norm
shape. This may not always be true. In our study, size at maturity
could not be modeled using a non-linear asymptotic model for
two clones even though this was the best fitting model at the
population level. Moreover, any fixed function may still be a
simplification of the real reaction norm shape that only fits the
data well across some parts of the environment, or the fit in one
environment may have a large and unwanted impact on the fit
in other parts of the environmental gradient (Schluter, 1988;
Meyer and Kirkpatrick, 2005). One way around this problem
is to fit more complex non-linear models, such as GAMs, that
can incorporate spline functions that captures less conventional
reaction norm shapes better (Hinners et al., 2017; Arnold et al.,
2019). Splines may even be fitted before selecting models to get
a better understanding of the shape of population-level reaction
norms (Gibert et al., 1998).

Reaction norm non-linearity has implications for
understanding the evolutionary potential of a population.
The shape of the reaction norm is critical for determining
how phenotypic plasticity influences genetic variation in
different environments. For example, models assuming linear
reaction norms predict that additive genetic variation increases
in extreme environments, facilitating adaptation to extreme
environments (Chevin and Lande, 2011). Yet, in our study,

TABLE 5 First clutch abundance reaction norm models, fitted using
random regression mixed models (RRMM).

Model no. Model AIC

1. c1∼ SSasymp(cfood, a, b, c) 810.3

2. c1∼ SSasymp(cfood, a, b, c)∼ (a | clone) 812.3

3. c1∼ SSasymp(cfood, a, b, c)∼ (b | clone) 812.3

4. c1∼ SSasymp(cfood, a, b, c)∼ (c | clone) 812.3

5. c1∼ SSasymp(cfood, a, b, c)∼ (a | clone)+ (b | clone) 814.3

6. c1∼ SSasymp(cfood, a, b, c)∼ (b | clone)+ (c | clone) 814.3

7. c1∼ SSasymp(cfood, a, b, c)∼ (a | clone)+ (c | clone) 814.3

8. c1∼ SSasymp(cfood, a, b, c)∼ (a+b | clone) 803.2

9. c1∼ SSasymp(cfood, a, b, c)∼ (b+c | clone) 814.1

10. c1∼ SSasymp(cfood, a, b, c)∼ (a+c | clone) 816.2

Goodness of fit is compared for the asymptotic population-level model (Model 1) and
mixed models with varying combinations of the clonally-variable model parameters
(a, asymptotic value; b, intercept; c, slope). Mean-centered food is the fixed variable
throughout. Lower AIC values indicate a better balance between fit and model
complexity. The best fitting model is shown in bold.
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FIGURE 3

Correlation matrices demonstrating the direction and strength
of phenotypic correlations between all traits in (A) Low resource
environments (10,000 cells Chlorella vulgaris mL−1), (B) Medium
resource environments (145,000 cells C. vulgaris mL−1) and (C)
High resource environments (300,000 cells C. vulgaris mL−1).

heritable variation in trait expression (in our case—clonal
variation) leveled off above a certain resource threshold
suggesting that plasticity will not continue to generate increased
genetic variation in traits as environments become more
extreme as linear models predict. However, the response to
selection doesn’t depend on how much heritable phenotypic
variation is available, it depends on the proportion of phenotypic
variation attributable to additive genetic variance (or clonal
variation in this case) (Falconer, 1989). Since the extent to which
plasticity influences trait expression declines to zero, phenotypic
variation at high resource levels is likely to be genetic, increasing
the likelihood that selection on traits results in genetic change.
In contrast, in low resource environments even small differences
in environment induce large plastic shifts in traits expression,
increasing the likelihood that environmental heterogeneity
obscures genetic differences in traits and makes a response
to selection less likely. This might explain why in Daphnia
populations clonal selection is sometimes only observed in
populations that experience the unlimited resources that fuel

rapid population growth (van Doorslaer et al., 2009) and may
have broader implications for understanding eco-evolutionary
dynamics (Hendry, 2017), the context-dependence of which is
often not fully appreciated (Montejo-Kovacevich et al., 2020).

The fact that there is any genetic variation at all in extreme
environments is important because it suggests that when
plastic responses can no longer keep up with environmental
change, further phenotypic change may be possible through
trait evolution fuelled by standing genetic variation. A study
with many more genotypes would be required to get a
real understanding of the extent that rapid evolution could
rescue a population in an extreme environment. However,
studies often assume that evolutionary rescue takes over
when limits to plasticity are reached, but there is still little
empirical understanding of how the genetic and mutational
variance in traits compares in extreme environments compared
to common environments and whether genetic correlations
between trait expression in common and extreme environments
constrains any response to selection (Chevin and Hoffmann,
2017). Assuming that in our study phenotypic correlations
are broadly reflective of genetic correlations (Cheverud, 1988),
our study demonstrates that there are often correlations
between traits that will limit the extent that any trait can
evolve independently of other traits. However, we found
that correlations between traits changed across the resource
environment, suggesting that genetic architecture itself may
be context-dependent. These findings align with several other
Daphnia studies that have recently demonstrated genetic
variance-covariance matrices are environment-dependent (Lind
et al., 2015; Beckerman et al., 2017). Extreme environments are
assumed to exert a strong selection pressure on populations
because they sometimes cause high mortality but the rarity
of extreme conditions and the fact that they are often
stressful irrespective of genotype make it less likely that these
environments contribute a lot to the evolution of reaction
norms (Chevin and Hoffmann, 2017). Extreme environments
are also not always stressful. In our study, the environment
most likely to result in genetic change in the population
is a benign high food environment in which small genetic
differences in phenotype may translate into significant variation
in fitness (Bruijning et al., 2018). Ultimately, more empirical
work is required to understand how extreme environments
contribute to the evolution of reaction norms. However,
our demonstration that reaction norms are often extremely
non-linear at least makes it clear that the contribution of
plasticity and genetic adaptation to phenotypic evolution
will often be quite different at different points along an
environmental gradient.

Linear reaction norms have sufficed so far in
plasticity research as their parameters of intercept
and mean slope are informative enough to provide
a general understanding of plasticity and its role in
evolution (Morrissey and Liefting, 2016). However, our
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results confirm that the assumption of linearity is sometimes
a poor reflection of the true amount of phenotypic variation
expressed by genotypes. Such a misrepresentation of variation
compromises the conclusions drawn from plasticity studies
and can be misinformative, leading to unrealistic conclusions
about species’ ability to adapt to a changing environment.
Since the shape of a reaction norm is often likely to be a
product of the range over which it is measured (Chevin and
Hoffmann, 2017) failing to incorporate environmental extremes
will often result in the wrong conclusion about the shape
of reaction norms (Stinchcombe et al., 2012). Incorporating
reaction norm non-linearity may improve understanding of
how natural populations adapt to their environments, be it
naturally occurring stressors such as heterogenous predator
regimes (Carter et al., 2017), or the effects of human-induced
climate change on growth and development (Ramler et al.,
2014). It may also be useful in food production industries,
where understanding optimal conditions for trait expression
is important for crossbreeding efforts and producing higher
yielding animals (Su et al., 2009) and more stress-resistant crops
(Ly et al., 2018).

This paper aimed to challenge the use of linear models
in reaction norm analyses, and the fundamental role they
currently play in plasticity research. While the linear regression
parameters of slope and intercept are informative for
comparative purposes, linear models themselves may often
be a poor approximation of reality. Critically, they may
misrepresent the patterns of heritable phenotypic variation
observed in extreme environments. Our study supports the
conclusion from earlier studies (Morrissey and Liefting, 2016;
Gomulkiewicz et al., 2018; Arnold et al., 2019) that non-linear
random regression models provide a better way to capture true
reaction norm shape and it’s likely impact on the evolvability of
populations in different environments.
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