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How asymmetric mating patterns
a�ect the rate of neutral genetic
substitution

Emma Belanger, Aisha Seard, Aysha Hoang, Amanda Tran,

Lorhena Guimaraes Antonio, Yulia A. Dementieva,

Christine Sample and Benjamin Allen*

Department of Mathematics, Emmanuel College, Boston, MA, United States

Introduction: A population under neutral drift is expected to accumulate genetic

substitutions at a fixed “molecular clock" rate over time. If the population is

well-mixed, a classic result equates the rate of substitution per generation to the

probability of mutation per birth. However, this substitution rate can be altered if

individual birth and death rates vary by class or by spatial location.

Methods: Here we investigate how mating patterns a�ect the rate of neutral

genetic substitution in a diploid, sexually reproducing population. We employ a

general mathematical modeling framework that allows for arbitrarymating pattern

and spatial structure.

Results: We demonstrate that if survival rates and mating opportunities vary

systematically across individuals, the rate of neutral substitution can be either

accelerated or slowed. In particular, this can occur in populations with uneven

sex ratio at birth, or with reproductive skew.

Discussion: Our results suggest that estimates of the rate of neutral substitution,

in species with uneven sex ratio and/or reproductive skew, may need to take

asymmetries in mating opportunity and survival into account.

KEYWORDS

neutral drift, molecular clock, non-random mating, fixation probability, reproductive

value, sex ratio

1. Introduction

In a well-mixed population, for a genetic locus experiencing rare, neutral mutation, the

expected rate of genetic substitution per generation,K, is equal to the probability of mutation

per birth, u. This result, first demonstrated by Kimura (1968), can be derived simply as

follows: the expected number of substitutions per generation is K = nuρ, where n is the

number of alleles (equal to the population size N for haploids, or 2N for diploids), and ρ is

the probability that a neutral mutation will become fixed. In a well-mixed population, this

neutral fixation probability is ρ = 1/n, leading to K = u. This result underpins the idea of

the “molecular clock”—that substitutions at neutral loci can be used to estimate the timing of

events in evolutionary history (Ayala, 1997; Bromham and Penny, 2003; Kumar, 2005). The

K = u result also extends to spatially structured populations with a high degree of symmetry

(Maruyama, 1970; Nagylaki, 1982).

However, Allen et al. (2015) showed that asymmetries in the spatial structure can lead

to either ρ > 1/n or ρ < 1/n, thereby altering the rate K of substitutions per generation.

This occurs because both the fixation probability and the rate of replacement can vary across

spatial locations. Sites that are frequently replaced have a higher rate of new mutations. If a

frequently-replaced site is favorable to mutant fixation, this can increase the average fixation

probability ρ above 1/n. In this way, asymmetric spatial structure can either speed up or slow

down the neutral substitution rate K.
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The results of Allen et al. (2015) were derived for haploid,

spatially structured populations. Here we show that the same

phenomenon can arise for diploid populations with asymmetric

mating patterns. We present a general method for calculating the

neutral fixation probability ρ under arbitrary mating pattern. This

fixation probability can be compared to the corresponding value of

ρWM = 1
2N for a well-mixed population of N individuals.

We apply this framework to two hypothetical scenarios:

a randomly mating population with uneven sex ratio, and a

population with reproductive skew in one sex. In each case we

show that asymmetries in the mating pattern and replacement

rate can lead to ρ > 1
2N or ρ < 1

2N , accelerating or slowing

the rate K of neutral genetic substitution. Specifically, we identify

two circumstances in which the neutral substitution rate is altered:

(1) the sex ratio is unequal at birth and there is differential

mortality between the sexes, or (2) there is reproductive skew

in one sex, and differential mortality between high-reproducing

and low-reproducing individuals. The first scenario may arise in

reptiles with temperature-dependent sex determination (Ferguson

and Joanen, 1982; Ewert and Nelson, 1991), while the second may

apply to a variety of birds (Wiley, 1973; Petrie et al., 1991; Höglund

and Alatalo, 1995; Magrath et al., 2004), mammals (Boesch et al.,

2006; Raihani and Clutton-Brock, 2010; Sherman et al., 2017;

Higham et al., 2021), and insects (Adams and Atkinson, 2008;

Shimoji and Dobata, 2022).

2. Modeling framework

We begin by summarizing the mathematical framework from

which our results are derived. A formal description of this

framework is given in the Supplementary material.

2.1. Mating and replacement

We consider a diploid population of fixed size N, which can be

monoecious (one sex) or dioecious (two sexes). The individuals are

indexed I = 1, . . . ,N. Depending on the model in question, each

index I may also designate other relevant information, such as the

sex and/or spatial location of individual I.

Each time-step, some subset of individuals are replaced by

new offspring. Each new offspring has two parents (which may

be the same individual in the case of self-mating). The set of

individuals to be replaced, as well as the parents of each new

offspring, are sampled from a fixed probability distribution. This

probability distribution can be chosen arbitrarily, subject only

to the requirement that it be possible for a mutant allele to

spread throughout the population. In this way, our framework

can incorporate a wide variety of spatial structures and mating

patterns, with no assumption of symmetry or uniformity. This

level of generality is achieved using an abstract mathematical

representation of population structure, which was developed in

previous works (Allen and Tarnita, 2014; Allen et al., 2015;

Allen and McAvoy, 2019) and is further extended in the

Supplementary material to include arbitrary mating patterns.

The key quantities describing any particular model within this

framework are the mating and replacement rates EKIJ , where the

FIGURE 1

Neutral drift in a diploid population. In each time-step, some

individuals are replaced by the o�spring of others. These mating and

replacement events are sampled from a fixed probability distribution,

which captures all e�ects of spatial structure and mating pattern.

The key quantities are the marginal probabilities EK
IJ
that, in a given

time-step, individual K is replaced by the o�spring of I and J. There

are two allele types, mutant and resident. Each new o�spring

inherits alleles from its parents according to Mendelian inheritance.

indices I, J, and K run from 1 to N, representing individuals in

the population (Figure 1). For I 6= J, EKIJ is equal to the marginal

probability that, in a given time-step, individualK is replaced by the

offspring of I and J. The subscript indices in EKIJ are understood as

an unordered pair, meaning that EKIJ and EKJI both refer to the same

marginal probability. In the case of self-mating, EKII is set equal to

twice the marginal probability that K is replaced by the self-mated

offspring of I (the factor of two accounts for the doubled chance

to spread one’s alleles under self-mating). These EKIJ quantities

take into account the population’s spatial structure and dispersal

patterns as well as its mating pattern.

For each individual I = 1, . . . ,N, we define the death rateDI as

the marginal probability that I is replaced, and the birth rate BI as

half the expected offspring number of I. In terms of the mating and

replacement rates EKIJ , the birth and death rates are given by

BI =
1

2

∑

J,K

EKIJ , (1)

DI =
1

2

∑

J,K

EIJK . (2)

The factors of 1
2 in BI andDI arise for different reasons: forDI a

1
2 is

needed to avoid double-counting in the J andK indices, while for BI
the 1

2 represents the chance of transmitting a particular allele under

Mendelian inheritance. We also define the overall rate of turnover,
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B, as

B =
N
∑

I=1

BI =
N
∑

I=1

DI =
1

2

∑

I,J,K

EKIJ . (3)

2.2. Alleles and states

Within the population we consider two allele variants: a

resident allele R, and a neutral mutant allele M. Each new offspring

inherit alleles from its parents according to Mendelian inheritance.

We assume there is no recurring mutation, so that, over time,

either the mutant or the resident allele will become fixed in the

population.

The state of the population at any given time can be

specified by identifying the genotype (MM, MR, or RR) of each

individual I = 1, . . . ,N. Since the mutant allele is neutral,

the mating and replacement rates EKIJ do not depend on the

current population state. The overall process of neutral drift is

represented as a Markov chain on the set of population states (see

the Supplementary material for details).

3. Fixation probability

Over time, the neutral drift process will ultimately converge to

a state where either only mutant or only resident alleles are present.

We are interested in the fixation probability of themutant type; that

is, the probability of reaching the all-mutant state when starting

from a state with only a single mutant allele.

3.1. Deriving fixation probability

Let ρI denote the probability that the all-mutant state is

reached, when starting from a state with a single mutant allele

copy in individual I. The neutral fixation probability ρI can also be

understood as the reproductive value of individual I (Taylor, 1990;

Lehmann, 2014;Maciejewski, 2014; Allen andMcAvoy, 2019), since

it quantifies I’s contribution to the future gene pool.

In the Supplementary material we derive the recurrence

equation for the reproductive values ρI :

ρI = (1− DI)ρI +
1

2

∑

J,K

EKIJρK . (4)

The two terms on the right-hand side correspond to survival

and transmission, respectively, of a mutant allele. The 1
2 in the

second term reflects the chance of transmission to offspring

under Mendelian inheritance. These probabilities of survival or

transmission are multiplied by the reproductive values, ρI or ρK ,

of this allele and its copies in the next time-step.

We can write Eq. (4) in simpler form as

DIρI =
1

2

∑

J,K

EKIJρK . (5)

In order to solve for the fixation probabilities, we also require the

equation

2

N
∑

I=1

ρI = 1. (6)

Equation (6) represents the fact that exactly one of the 2N

initial alleles will ultimately spread its descendants throughout the

population, and the probability of this occurring for an allele in

individual I is ρI .

Together, Eqs. (5) and (6) form a system of equations that

uniquely determine ρI for each I = 1, . . . ,N. Although this system

involves N + 1 equations, one case of Eq. (5) is always redundant

and can be eliminated. If the population can be subdivided into

classes (by sex, spatial location, etc.) such that individuals in a given

class are interchangeable, only one equation per class is needed.

This will be the case in the examples we explore later.

To determine the overall fixation probability, we must take into

account where mutations arise. Supposing that mutations occur

with constant probability per birth, the likelihood of a new mutant

allele arising at individual I is proportional to the turnover rate DI .

We therefore suppose the initial mutation has probability DI/B of

arising within individual I, for each I = 1, . . . ,N. This leads to an

overall fixation probability of

ρ =
1

B

N
∑

I=1

DIρI . (7)

3.2. Comparing to well-mixed population

A well-mixed, monoecious (one sex) population with uniform

random mating has the same value of EKIJ for each triple I, J,K.

In this case, Eqs. (1)–(7) yield an overall fixation probability of

ρWM = 1
2N , which we take as our baseline value. We are interested

in when and how ρ can differ from ρWM, in populations for

which the replacement rates EKIJ take on non-uniform values due

to asymmetric mating patterns and/or spatial structure.

We first note that, by combining Eqs. (3), (6), and (7), we can

write

ρ − ρWM =
N

B

(

1

N

N
∑

I=1

DIρI −

(

1

N

N
∑

I=1

DI

)(

1

N

N
∑

I=1

ρI

))

=
N

B
CovI[D, ρ]. (8)

Above, CovI[D, ρ] is the population covariance of DI with ρI over

I = 1, . . . ,N, which is equal by definition to the quantity inside

parentheses in the second expression. It follows that ρ > ρWM

if DI and ρI are positively correlated, ρ < ρWM if DI and ρI are

negatively correlated, and ρ = ρWM if they are uncorrelated.

In particular, we will have ρ = ρWM if either DI or ρI are

constant over individuals. These two cases correspond to Results

1 and 2 of Allen et al. (2015), which we extend here to diploid

populations. First, Eq. (8) immediately leads to

Result 1. If DI constant over all I = 1, . . . ,N, then ρ = ρWM (=
1
2N ).
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That is, if mortality is constant across individuals—mathematically,

if
∑

I,J E
K
IJ is uniform over K—the rate of neutral substitution is

unchanged from the baseline rate.

The second case, constant ρI , turns out to be equivalent to each

individual having birth rate equal to death rate:

Result 2. Reproductive values are constant over individuals

(i.e., ρI = 1
2N for all I) if and only if BI = DI for all I.

The condition BI = DI can also be written as
∑

J,K EKIJ =
∑

J,K EIJK for each I. Intuitively, if each individual has birth rate

equal to death rate, then any advantage in reproduction is canceled

by a disadvantage in survival. Consequently, mutations are equally

likely to become fixed no matter where they arise, and the neutral

substitution rate is again unchanged.

Proof of Result 2. Suppose first that ρI = 1
2N for all I. Substituting

in Eq. (5) and invoking Eq. (1), we have

DI

2N
=

1

4N

∑

J,K

EKIJ =
BI

2N
,

and hence BI = DI . Conversely, suppose that DI = BI for all I. By

Eq. (1), this means DI = 1
2

∑

J,K EKIJ . Substituting in Eq. (5) gives

∑

J,K

EKIJρI =
∑

J,K

EKIJρK . (9)

By inspection, ρI = 1
2N for all I is a solution to Eq. (9) as well as to

Eq. (6). Since the solution to this system is unique, we have ρI = 1
2N

for all I.

Finally, Result 3 of Allen et al. (2015) shows that when birth

rates are uniform, the fixation probability can never exceed its

well-mixed value. Extended to diploid populations, this becomes:

Result 3. If BI is constant over all I = 1, . . . ,N then ρ ≤ 1
2N , with

equality if and only if the DI are also constant over I.

Constant BI is equivalent to
∑

J,K EKIJ being uniform over I.

Result 3 implies that uniform birth rates impose a “speed limit" on

the neutral substitution rate, and this speed limit is achieved only

if death rates are also uniform. In contrast to Results 1 and 2, the

proof of Result 3 is rather involved. In the Supplementary material,

we reduce this result to the haploid case, which was proven by Allen

et al. (2015).

4. Scenario 1: Uneven sex ratio

We now proceed to apply the above framework to example

scenarios, showing how ρ can deviate from ρWM under asymmetric

mating and replacement patterns. We first consider a scenario

of uneven sex ratio. Uneven sex ratios may arise at birth, as

in crocodilians (Ferguson and Joanen, 1982; Lang and Andrews,

1994; González et al., 2019) and turtles (Ewert and Nelson, 1991;

Mrosovsky, 1994), or due to differential survival, as is the case in

many bird species (Benito andGonzález-Solís, 2007; Donald, 2007).

To model a population with uneven sex ratio, we suppose the

set of individuals is partitioned into two subsets, labeled M for

males and F for females (Figure 2A). The numbers of males and

females are denotedm and f , respectively. The total population size

is N = m+ f .

Each time-step, one male and one female are chosen, uniformly

at random within each sex, to mate and produce a single offspring.

Each offspring replaces a single individual, with each male having

probability DM to be replaced, and each female having probability

DF . Since exactly one individual is replaced, DM and DF are

constrained by the relationship

mDM + fDF = 1. (10)

We treat DM and DF as tunable parameters in this model, subject

to the above constraint. We observe that DM and DF are equal

to the marginal probability that an individual (male or female,

respectively) is replaced in one time-step, in accordance with the

definition of DI in Section 2.1.

The mating and replacement probabilities EKIJ are then obtained

by multiplying the probability that a specific male-female pair is

chosen ( 1
mf

) by the probability that the offspring replaces a specific

male or female individual (DM or DF , respectively). This leads to

two distinct values, depending on the sex of the replaced individual:

EM
′

MF =
1

mf
DM , EF

′
MF =

1

mf
DF . (11)

The primes in M′ and F′ distinguish the replaced individual from

the parent of the same sex.

Since a single individual is replaced each time-step, the overall

replacement rate is B = 1. For the birth rate of an individual from

each sex, we have

BM =
1

2

(

mfEM
′

MF + f 2EF
′

MF

)

=
1

2m

BF =
1

2

(

m2EM
′

MF +mfEF
′

MF

)

=
1

2f
,

(12)

reflecting the fact that exactly one individual from each sex is

chosen to mate.

Since each new offspring replaces a deceased individual, the

offspring born in each time-step is male with probability mDM

and female with probability fDF . The sex ratio at birth is therefore

(mDM)/(fDF). This may differ from the adult sex ratio of m/f due

to differential mortality.

4.1. Deriving fixation probability

Since members of each sex are interchangeable, there are only

two cases of the recurrence relation for reproductive values, Eq. (5):

DMρM =
1

2
(fmEM

′
MFρM + f 2EF

′
MFρF) (13a)

DFρF =
1

2
(m2EM

′
MFρM + fmEF

′
MFρF). (13b)

Upon substituting from Eq. (11), both equations in Eq. (13)

simplify to

mDMρM = fDFρF . (14)
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FIGURE 2

Two models of mating patterns. (A) For uniform random mating, at any given time-step, one male and one female are chosen uniformly to mate to

produce an o�spring that replaces one individual in the population. However, the sex ratio may be uneven, giving individuals of one sex greater

chances for mating. (B) In a model of reproductive skew, males are divided into two subgroups: M1 and M2. Each M1 males is r times as likely to be

selected for mating as an M2 male.

This means that the reproductive values of the sexes are in inverse

ratio to their frequencies at birth: ρM/ρF = (fDF)/(mDM).

Meanwhile, Eq. (6) becomes

2(mρM + fρF) = 1, (15)

Solving Eqs. (14) and (15) yields:

ρF =
DM

2f (DM + DF)
, ρM =

DF

2m(DM + DF)
. (16)

Substituting into Eq. (7) gives the overall fixation probability:

ρ = mDMρM + fDFρF =
DMDF

DM + DF
. (17)

This solution is illustrated in Figure 3.

4.2. Comparing to well-mixed population

Since the fixation probability in a well-mixed population is

ρWM = 1
2N = 1

2(m+f )
, we have ρ > ρWM if and only if

DMDF

DM + DF
>

1

2(m+ f )
. (18)

Applying Eq. (10), this condition simplifies to

(DM − DF) (mDM − fDF) < 0. (19)

We conclude that the fixation probability is unchanged from the

baseline value, ρ = ρWM, if either DM = DF (equal turnover per

sex) or mDM = fDF (equal sex ratio at birth). The first case is an

instance of Result 1, i.e., ρ = ρWM if each individual is replaced at

the same rate. In the second case, Eqs. (10) and (12) imply

DM = BM =
1

2m
, DF = BF =

1

2f
. (20)

This is an instance of Result 2, i.e., ρ = ρWM if each individual

has birth rate equal to death rate. In this case, since the sex ratio is

equal at birth (mDM = fDF), any bias in the adult sex ratio is solely

due to differential survival. The minority sex gains an advantage in

reproduction, but this is exactly canceled by their higher mortality,

leading to equal reproductive values, ρM = ρF .

According to Eq. (19), ρ > ρWM (meaning the rate of neutral

substitution is accelerated) if and only if DM −DF andmDM − fDF

have opposite signs, meaning that the minority sex at birth has

higher mortality. Conversely, if the minority sex at birth has lower

mortality, then ρ < ρWM and the rate of neutral substitution is

slowed. This can be seen in Figure 3. We observe that ifm = f , the

two solutions to ρ = ρWM coincide, and ρ ≤ ρWM with equality if

and only ifDM = DF . This is an instance of Result 3, since BM = BF
whenm = f .

4.3. Maximizing fixation probability

To determine the extent to which the fixation probability ρ can

deviate from its well-mixed value, we apply Lagrange multipliers to

Eq. (16), with DM and DF as variables and Eq. (10) as a constraint.

This leads to a critical point of

DM =
1

√
m(
√

f +
√
m)

, DF =
1

√

f (
√

f +
√
m)

. (21)
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FIGURE 3

Fixation probabilities in the uneven sex ratio model. Fixation probability, ρ Eq. 7, for the uneven sex ratio model is plotted against (A) the death rate of

males, DM, and (B) the relative death rate of males, DM

DM+DF
. The total population size is N = m+ f = 100. In panel B, the relative death rate, DM

DM+DF
, is

used to highlight the symmetry between males and females, where DM < DF when the curves are to the left of x = 0.5 and opposite to the right. The

maximum point of each curve is determined by Eq. (22). The curves in (A, B) all pass through the line ρ = ρWM twice, with the exception of the case

m = f = 50. One intersection point, which is the same for all curves, occurs when DM = DF = 1
50
, demonstrating Result 1. The second intersection

point occurs when BM = DM = 1
2m

. This is a case of Result 2, where ρ = ρWM when the birth and death rates are equal, and is di�erent in each curve.

Result 3 applies to the case where m = f = 50. In this case, ρ can never be greater than the well-mixed population, ρWM, meaning the birth rates of

males and females are equal and BM = BF = 1
100

.

Substituting into Eq. (17), we obtain the maximal fixation

probability:

ρMAX =
1

(
√

f +
√
m)2

. (22)

This maximal value corresponds to the peaks of the curves in

Figure 3.

The ratio of ρMAX to ρWM can be written in terms of the sex

ratiom/f :

ρMAX

ρWM
=

2(f +m)

(
√

f +
√
m)2

=
2(1+ m

f
)

(

1+
√

m
f

)2
. (23)

As the sex ratio approaches either zero or infinity (the two

possible extremes), the ratio ρMAX/ρWM converges to 2. Thus,

under extreme sex ratios, the rate of neutral substitution may be

accelerated (relative to the well-mixed population) by a factor of up

to two.

5. Scenario 2: Reproductive skew

We next consider a model of reproductive skew (Johnstone,

2000; Nonacs and Hager, 2011), meaning that a subset of one sex

dominates reproduction. Reproductive skew arises in many bird

species (Petrie et al., 1991; Magrath et al., 2004), as well as in social

insects (Adams and Atkinson, 2008; Shimoji and Dobata, 2022),

some mammals (Boesch et al., 2006; Raihani and Clutton-Brock,

2010; Sherman et al., 2017; Higham et al., 2021), and snapping

shrimp (Synalpheus; Chak et al., 2015).

In presenting the model we will refer to reproductive skew in

males, but the labels “male” and “female” are arbitrary, and the

results apply equally to skew in either sex.

As in the earlier scenario, we consider a population consisting

of a setM of males and a set F of females. In this case, however, the

males are partitioned into two subsets,M1 andM2, whereM1 males

have a greater chance of reproducing. Specifically, the reproductive

rate of M1 males exceeds that of M2 males by a factor r > 1. The

numbers of M1 males, M2 males, and females are denoted m1, m2,

and f respectively. The total population size is N = m1 +m2 + f .

Each time-step, a single offspring is produced by a single male-

female pair. Each particular M1 male has probability r/(rm1 +
m2) to reproduce, while each particular M2 male has probability

1/(rm1 + m2). Each female has probability 1/f to reproduce. This

new offspring replaces a deceased adult; each M1 male, M2 male,

and female has probability DM1 , DM2 , and DF , respectively, to

be replaced in a given time-step. Since exactly one individual is

replaced, these death probabilities are constrained by

m1DM1 +m2DM2 + fDF = 1. (24)

Since the new offspring replaces the deceased adult, the new

offspring is a M1 male, M2 male, or female with respective

probabilities m1DM1 , m2DM2 , or fDF . In particular, the sex ratio at

birth is (m1DM1 +m2DM2 )/(fDF).

From this model description, we derive the following

probabilities for a specific male-female pair to replace a specific

individual:

EM1
′

M1F
=
(

r

rm1 +m2

)(

1

f

)

DM1 (25a)
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EM2
M1F

=
(

r

rm1 +m2

)(

1

f

)

DM2 (25b)

EF
′

M1F
=
(

r

rm1 +m2

)(

1

f

)

DF (25c)

EM1
M2F

=
(

1

rm1 +m2

)(

1

f

)

DM1 (25d)

EM2
′

M2F
=
(

1

rm1 +m2

)(

1

f

)

DM2 (25e)

EF
′

M2F
=
(

1

rm1 +m2

)(

1

f

)

DF . (25f)

Each probability EKIJ is the product of three probabilities: that

of choosing a male for reproduction, choosing a female for

reproduction, and choosing an individual for replacement.

5.1. Deriving fixation probability

For this model, the recurrence equation for fixation

probabilities, Eq. (5), becomes

DM1ρM1 =
1

2

(

fm1E
M1

′

M1F
ρM1 + fm2E

M2
M1F

ρM2 + f 2EF
′

M1F
ρF

)

(26a)

DM2ρM2 =
1

2

(

fm2E
M2

′

M2F
ρM1 + fm1E

M1
M2F

ρM2 + f 2EF
′

M2F
ρF

)

(26b)

DFρF =
1

2

(

m2
1E

M1
′

M1F
ρM1 +m1m2E

M2
M1F

ρM1 +m1fE
F′
M1F

ρM1+

m2
2E

M2
′

M2F
ρM2 +m2m1E

M1
M2F

ρM2 +m2fE
F′
M2F

ρM2

)

. (26c)

Substituting themarginal probabilities fromEq. (25), Eqs. (26a) and

(26b) simplify to

2(rm1 +m2)DM1ρM1 = rm1DM1ρM1 + rm2DM2ρM2 + rfDFρF

(27a)

2(rm1 +m2)DM2ρM2 = m1DM1ρM1 +m2DM2ρM2 + fDFρF .

(27b)

Observing that Eqs. (27a) and (27b) differ only in a factor of r on

the right hand side, we conclude that

DM1ρM1 = rDM2ρM2 . (28)

This reduces Eq. (27a) to

(rm1 +m2)DM1ρM1 = rfDFρF . (29)

Meanwhile, Eq. (6) gives

2(m1ρM1 +m2ρM2 + fρF) = 1. (30)

Solving the system of equations formed by Eqs. (28)–(30), we obtain

the solution

ρM1 =
rDM1DF

2(m1rDM2DF +m2DM1DF + (rm1 +m2)DM1DM2 )
(31a)

ρM2 =
DM1DF

2(m1rDM2DF +m2DM1DF + (rm1 +m2)DM1DM2 )

(31b)

ρF =
(rm1 +m2)DM1DM2

2f (m1rDM2DF +m2DM1DF + (rm1 +m2)DM1DM2 )
.

(31c)

The overall fixation probability is therefore

ρ = m1DM1ρM1 +m2DM2ρM2 + fDFρF

=
(rm1 +m2)DM1DM2DF

m1rDM2DF +m2DM1DF + (rm1 +m2)DM1DM2

. (32)

For r = 1 and DM1 = DM2 , Eq. (32) reduces to Eq. (17) for

the uneven sex ratio model, with DM = DM1 = DM2 and m =
m1 + m2. This reflects the fact that when M1 and M2 males are

interchangeable, the two models become equivalent.

5.2. Comparing to well-mixed population

Comparing our solution for ρ in Eq. (32) to the fixation

probability in a well-mixed population of the same size, ρWM =
1/(2N) = 1/(2m1+2m2+2f ), we find that ρ > ρWM is equivalent

to

2(rm1 +m2)(m1 +m2 + f ) >
rm1 +m2

DF
+

rm1

DM1

+
m2

DM2

. (33)

To simplify, let us suppose that the sex ratio is even both for adults,

f = m1 + m2, and at birth, m1DM1 + m2DM2 = fDF = 1
2 . Then

Condition (33) reduces to

2(rm1 +m2)(m1 +m2) >
rm1

DM1

+
m2

DM2

. (34)

Simplifying using the relation m1DM1 + m2DM2 = 1
2 , we obtain

that ρ > ρWM if and only if

(

DM1 − DM2

) (

DM1 − rDM2

)

< 0. (35)

There are two cases where ρ = ρWM, corresponding to the two

factors of the left-hand side of Condition (35). Setting the first factor

equal to zero leads to

DM1 = DM2 = DF =
1

2(m1 +m2)
=

1

2f
. (36)

This is an example of Result 1 from Section 3.2.

Setting the second factor of the left-hand side of Condition (35)

equal to zero leads to

DM1 = BM1 =
r

2(rm1 +m2)
(37a)

DM2 = BM2 =
1

2(rm1 +m2)
(37b)

DF = BF =
1

2(m1 +m2)
. (37c)
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This is an example of Result 2, in that each individual has birth rate

equal to its replacement rate.

According to Condition (35), ρ > ρWM (meaning the neutral

substitution rate is accelerated) when DM1 lies between DM2 and

rDM2 . This arises when M1 males have higher mortality than M2

males, but not so high as to negate their reproductive advantage. If

DM1 is smaller than DM2 or larger than rDM2 , then ρ < ρWM and

the neutral substitution rate is slowed. This can be seen in Figure 4,

where the solution in Eq. (36) is the common intersection point for

all curves, while the solution in Eq. (37) varies depending on the

parameters.

5.3. Maximizing fixation probability

To determine how widely the fixation probability can vary for

fixedm1,m2, f , and r, we seek a maximum of the function

ρ(DM1 ,DM2 ,DF)

=
(rm1 +m2)DM1DM2DF

m1rDM2DF +m2DM1DF + (rm1 +m2)DM1DM2

. (38)

subject to the constraint of Eq. (24). Applying Lagrange multipliers

gives the equations

∂ρ

∂DM1

=
(rm1 +m2)rm1D

2
M2

D2
F

((rm1 +m2)DM1DM2 + rm1DM2DF +m2DM1DF)2

= λm1 (39a)

∂ρ

∂DM2

=
(rm1 +m2)m2D

2
M1

D2
F

((rm1 +m2)DM1DM2 + rm1DM2DF +m2DM1DF)2

= λm2 (39b)

∂ρ

∂DF
=

(rm1 +m2)
2D2

M1
D2
M2

((rm1 +m2)DM1DM2 + rm1DM2DF +m2DM1DF)2

= λf . (39c)

Dividing (39a) by (39b) and simplifying gives

DM1 =
√
r DM2 , (40)

while dividing (39a) by (39c) yields

√

rf DF =
√
rm1 +m2 DM1 . (41)

Invoking (24) and solving, we obtain the maximizing values

DM1 =
√
r

m1
√
r +m2 +

√

f (rm1 +m2)
(42a)

DM2 =
1

m1
√
r +m2 +

√

f (rm1 +m2)
(42b)

DF =
√
(rm1 +m2)

√

f
(

m1
√
r +m2 +

√

f (rm1 +m2)
) . (42c)

Substituting these expressions into (38) gives the maximal fixation

probability of

ρMAX =
rm1 +m2

(m1
√
r +m2 +

√

f (rm1 +m2)2
. (43)

Comparing to the well-mixed population, we find the ratio of

fixation probabilities is given by

ρMAX

ρWM
=

2(m1 +m2 + f )(rm1 +m2)
(

√

f (rm1 +m2)+m1
√
r +m2

)2
. (44)

To determine the most extreme values of fixation probability,

we take r → ∞ in Eq. (43), yielding

lim
r→∞

ρMAX =
1

(
√
m1 +

√

f )2
. (45)

This is equivalent to Eq. (22) with m replaced by m1, since for

r → ∞ only M1 males have the opportunity to reproduce. In

this case, an arbitrarily large ratio ρMAX/ρWM can be achieved by

considering a large number ofM2 males:

lim
m2→∞

lim
r→∞

ρMAX

ρWM
= lim

m2→∞

2
(

m1 +m2 + f
)

(
√
m1 +

√

f )2
= ∞. (46)

5.4. Maximization under even sex ratio

The preceding section shows that, in our reproductive skew

model, the neutral substitution rate may be scaled by any positive

factor relative to the well-mixed rate. However, this is achieved only

with an extrememale-biased sex ratio, in thatm2 is taken to infinity

with m1 and f held constant. It is also of interest to determine how

widely the neutral substitution rate can vary when the overall sex

ratio is held even, both at birth and among adults. This is the case

depicted in Figure 4.

To this end, we seek to maximize ρ under the constraints

that the sex ratio is even among adults, m1 + m2 = f , and at

birth, m1DM1 + m2DM2 = fDF = 1
2 . Together, these constraints

imply DF = 1/(2(m1 + m2)). Substituting this into Eq. (32) and

simplifying, we obtain

ρ =
rm1 +m2

rm1D
−1
M1

+m2D
−1
M2

+ 2(m1 +m2)(rm1 +m2)
. (47)

To maximize ρ, we apply Lagrange multipliers in the variablesDM1

and DM2 with the constraint m1DM1 + m2DM2 = 1/2. We obtain

that ρ is maximized when DM1 =
√
rDM2 ; specifically,

DM1 =
√
r

2
(

m1
√
r +m2

) (48a)

DM2 =
1

2
(

m1
√
r +m2

) . (48b)

Substituting in Eq. (47) gives the maximal fixation probability

under these constraints:

ρMAX =
rm1 +m2

2
(

m1
√
r +m2

)2 + 2 (m1 +m2) (rm1 +m2)
. (49)

Eqs. (48)–(49) correspond to the maxima of the curves depicted in

Figure 4. Comparing to well-mixed value of ρWM = 1/(4(m1 +
m2)), we have

ρMAX

ρWM
=

2 (m1 +m2) (rm1 +m2)
(

m1
√
r +m2

)2 + (m1 +m2) (rm1 +m2)
. (50)
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FIGURE 4

Neutral fixation probability in the reproductive skew model. Fixation probability, according to Eq. (32), is plotted against
DM1

DM1
+DM2

for various values of

m1 and r. In all cases, there are 50 individuals of each sex, m1 +m2 = f = 50, and the sex ratio is even at birth, m1DM1
+m2DM2

= fDF = 1
2
. (A) For

r = 1, all birth rates are equal (BM1
= BM2

= BF ), and therefore ρ ≤ ρWM as a consequence of Result 3. Note that equality, ρ = ρWM, occurs only when

death rates are also equal across individuals. (B–D) The e�ects of increasing r. The maximum value of ρ for each curve is given by Eq. (49).

In the extreme scenario r → ∞, in which M1 males completely

dominate reproduction, we obtain

lim
r→∞

ρMAX

ρWM
=

2 (m1 +m2)

2m1 +m2
. (51)

If, in addition, we take the ratiom1/m2 to zero (meaningM1 males

are a very small minority), then ρMAX/ρWM converges to 2, which

is an upper bound for ρMAX/ρWM in the case of even sex ratios at

birth and in adults.

6. Discussion

For the fixation probability of a neutral mutation to differ from

the well-mixed of ρWM = 1
2N , three conditions must be met.

First, the rates of replacement DI must vary across individuals (or

classes of individuals), or else ρ = ρWM by Result 1. Second, the

reproductive values ρI must vary across individuals; by Result 2 this

occurs if and only if at least one individual (or class) has birth rate

not equal to its death rate. Third, the variation inDI and ρI must be

correlated, so that 1
N

∑

I DIρI differs from
(

1
N

∑

I DI

) (

1
N

∑

I ρI
)

.

If these three conditions are met, Kimura’s (1968) result K = u—

which underlies the molecular clock hypothesis (Kimura, 1983;

Ayala, 1997; Bromham and Penny, 2003; Kumar, 2005)—requires

a correction factor of ρ/ρWM. For a diploid population of size N,

the corrected rate of neutral substitution is K = 2Nρu.

A key assumption underlying our results is that mutation

occurs with constant probability per birth. This fact, combined with

unequal replacement rates, means that mutations are more likely

to arise in certain subgroups rather than others; if these subgroups

also have larger-than-average reproductive value, then the rate of

neutral substitution will be accelerated.

It has previously been shown that the rate of genetic

substitution can be affected by selection, varying population

size (Balloux and Lehmann, 2012), mutation rates that vary

by age or sex (Pollak, 1982; Charlesworth, 1994; Lehmann,

2014), or asymmetric spatial structure (Allen et al., 2015). To

this list we now add uneven sex ratio, reproductive skew, and

other asymmetric mating patterns, in combination with unequal

replacement rates.
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For uneven sex ratio, the correction factor ρ/ρWM can take

any value strictly between 0 to 2 (Figure 3). Deviations from the

well-mixed rate occur when there is both differential survival,

DM 6= DF , and unequal sex ratio at birth, mDM 6= fDF . If

the minority sex at birth has higher (resp., lower) mortality, the

neutral substitution rate is accelerated (resp., slowed). According

to Eq. (21), the maximal substitution rate occurs when the ratio

of replacement rates is inversely proportional to the square root

of the sex ratio, DM/DF =
√

f /m—or equivalently, when the

adult sex ratio is the square of the sex ratio at birth, m/f =
(mDM)2/(fDF)

2.

In order to affect the neutral substitution rate in our

model, the uneven sex ratio must arise at birth. If, instead,

the uneven sex ratio is solely due to differential survival, then

the reproductive advantage of the minority sex is canceled by

their higher mortality. This limits the range of taxa for which

such effects may arise, since unequal sex ratios at birth violate

random Mendelian segregation as well as Fisher’s (Fisher, 1930)

principle that sex ratios should evolve toward unity. Although

most bird species have even sex ratio at birth (Donald, 2007),

exceptions have been observed, for example, in some tit species

(Cichoń et al., 2005) and in collared flycatchers (Ficedula albicollis;

Rosivall et al., 2004; Cichoń et al., 2005). A richer source of

possible examples are reptiles with temperature-dependent sex

determination (Ferguson and Joanen, 1982; Ewert and Nelson,

1991; Lang and Andrews, 1994; Mrosovsky, 1994; González

et al., 2019), which often have uneven sex ratio under baseline

environmental conditions (Ferguson and Joanen, 1982; Ewert and

Nelson, 1991).

For reproductive skew, the correction factor ρ/ρWM can take

any positive value. If we additionally specify that the sex ratio

is even at birth and among adults, then ρ/ρWM varies strictly

between 0 and 2. Acceleration of the neutral substitution rate

occurs when DM1 lies between DM2 and rDM2 , meaning that

the dominant reproducers have higher mortality than others

of their sex, but not so high as to negate their reproductive

advantage.

Reproductive skew arises in many taxa (Raihani and Clutton-

Brock, 2010), including numerous bird species (Wiley, 1973; Petrie

et al., 1991; Höglund and Alatalo, 1995; Magrath et al., 2004),

social insects (Adams and Atkinson, 2008; Shimoji and Dobata,

2022), non-human primates (Boesch et al., 2006; Higham et al.,

2021), meerkats (Suricata suricatta; Clutton-Brock et al., 2001),

naked mole rats (Heterocephalus glaber; Sherman et al., 2017),

and snapping shrimp (Synalpheus; Chak et al., 2015). For the rate

of neutral substitution to be altered, reproductive success must

correlate (positively or negatively) with mortality. There are many

ways such a correlation may arise. Dominant reproducers may be

more physically robust (Hodge et al., 2008) and so may survive

longer; on the other hand, they may experience greater mortality

due to competition (Leimar and Bshary, 2022). For the northern

mole-vole Ellobius talpinus Pall., Novikov et al. (2015) found that

mortality is negatively correlated with reproduction; in this case,

our model predicts a slower-than-baseline neutral substitution

rate.

Here we have considered effects due to sex and space, but

not age. The age structure of a population has clear implications

for its neutral substitution rate (Pollak, 1982; Charlesworth, 1994;

Lehmann, 2014). Investigating the combined effects of age, sex,

and spatial structure is a promising avenue for future work.

Incorporating age structure would also allow for greater realism in

applying this framework to real-world populations (Charlesworth,

1994; Sample et al., 2018). Age structure could be incorporated

into the framework described in the Supplementary material by

designating a fixed subset of individuals to be juveniles. The mating

and replacement probabilities EKIJ would then be nonzero only if I

and J are adults and K is a juvenile. It would also be necessary to

specify the probability for each juvenile to survive to adulthood.

This would represent a significant—and important—expansion of

the mathematical modeling framework developed by Allen and

McAvoy (2019).

Our analysis has focused on the rate of neutral substitution

at a single genetic locus. It would also be of interest to extend

to multiple loci. This would require amending the framework

presented in the Supplementary material to keep account of the two

alleles at each locus in each (diploid) individual. The probability

of recombination in each new offspring would then be a key

parameter. Such an expanded framework could bring newmethods

to bear on the well-studied question of how mating patterns affect

linkage disequilibrium (Weir and Cockerham, 1969; Golding and

Strobeck, 1980; Nordborg, 2000).

We have also implicitly assumed that the rate of neutral

substitution is primarily limited by the appearance rate and fixation

probability of neutral mutations. This assumption is reasonable so

long as the expected fixation time, T, is significantly less than the

waiting time, 1/(2Nuρ), for successful mutations to arise. Outside

of this regime, fixation time becomes relevant for the neutral

substitution rate (Frean et al., 2013). Fixation times have been

studied extensively for spatially structured populations (Frean et al.,

2013; Hathcock and Strogatz, 2019; Möller et al., 2019; Tkadlec

et al., 2019), and to a lesser extent for populations with asymmetric

mating pattern (Paley et al., 2010). Examining the combined effect

of fixation probability and time on the rate of neutral substitution,

in populations with asymmetric mating pattern, is an interesting

avenue for further study.
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