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Interpopulation variability in seed traits may drive the regeneration capacity of a 
species to colonize different environments. In the present study, we evaluated 
the variation in seed physical traits (mass / size, water imbibition, shape index) 
and physiological traits (germination) of five Polygonaceae species. Seeds of 
Polygonum lapathifolium var. salicifolium, P. lapathifolium, Reynoutria japonica, 
Rumex trisetifer, and R. obtusifolius were collected from two or three populations 
in Jiujiang, China. Physical seed traits were measured before germination tests 
conducted under different combinations of light and temperatures. Most species 
had a significant variation in seed physical and physiological traits, although 
populations are geographically close. Interpopulation variation in seed traits 
appeared to be  species-specific, with the highest variation for R. japonica and 
lowest for R. trisetifer seeds. Germination response to temperature and light 
conditions also varied among species and populations, being mostly inhibited 
in the dark treatments. The light dependence of germination can be related to 
the small seed size, except for the round-seeded Rumex, depending on the 
temperature regime. Optimal temperature ranges mainly varied from 10/20°C to 
25/35°C, with significant decreases in germination percentage at both coolest and 
warmest extremes. Germination requirements seem to be  related to altitudinal 
gradients in populations of P. lapathifolium and R. japonica seeds.
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Introduction

Variability in seed traits has been reported in different species, populations or individuals 
(see, e.g., Susko and Lovett-Doust, 2000; Lopez et al., 2008; Cervantes and Martín Gómez, 2019). 
Differences in seed (germination) traits among populations (i.e., within species) have been 
considered an effective evolutionary strategy that influence on species resilience by increasing 
the chances of reproduction under heterogeneous environmental conditions, thus minimizing 
the extinction risk (Venable and Brown, 1988). Hence, understanding interpopulation 
differences might help us addressing issues related to the evolution of variability patterns 
regarding plant regeneration from seeds. Seed physical traits (e.g., seed size/mass, shape, color, 
seed coat thickness, permeability, etc.), for instance, are directly or indirectly involved in 
regulating germination responses and many seed functions such as dispersal, type and level of 
dormancy, formation of the soil seed bank, seedling establishment, survival, and competitive 
ability (Eriksson, 1999; Larios et al., 2014; Larson and Funk, 2016; Saatkamp et al., 2019). 
Therefore, these traits have been related to plant fitness and species persistence across ecosystems 
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(Atis et al., 2011; Xu et al., 2014; Bhatt et al., 2016, 2021a; Bu et al., 
2016). Evolutionary history, environmental context, genetic 
constraints, and plasticity are responsible for variation in seed traits at 
both intra- and inter-species levels (Violle et al., 2012; Ge et al., 2020).

Within species, interpopulation variation is vital to distinguish the 
ecological and evolutionary drivers shaping regeneration traits 
(Moreira et al., 2012). Interpopulation variability of ecological traits 
generally occur either due to (i) differences in environmental 
conditions among the different populations (Nicotra et  al., 2010; 
Cochrane et al., 2014) or (ii) hereditary characteristics of populations 
(Cheptou et al., 2008; Cochrane et al., 2015). In addition, other factors 
can be responsible for shaping the interpopulation variability in seed 
traits, including local climate, habitat characteristics, inter- and intra-
species competition levels, predation, resource provisioning, and 
epigenetics (Kleunen et al., 2001; Tautenhahn et al., 2008; Saatkamp 
et al., 2019). The variability in seed germination within a species, when 
seeds are collected from different populations, has been linked to 
spatial variability due to climatic and edaphic parameters or a 
differentiated gene pool (Elnaggar et al., 2019; Bhatt et al., 2021b,c). 
Most of the studies so far focused on testing interpopulation variation 
regarding seed mass or size and their effect on seed germination (Xu 
et al., 2016; Kołodziejek, 2017; Moya et al., 2017; Bhatt et al., 2019). 
However, few studies investigated interpopulation variation in other 
physical traits, like seed shape and color and their role in regulating 
seed dormancy and germination (but see Zhang and Maun, 1990; 
Mölken et al., 2005; Atis et al., 2011; Bhatt et al., 2016).

Generally, seed germination requirements are synchronized with 
the population’s environmental condition to increase the possibility of 
seedling survival and establishment (Baskin and Baskin, 2014). 
Studies have shown that interpopulation variation in seed dormancy 
and germination is broadly correlated with abiotic factors, such as 
altitude, latitude, temperature, soil moisture, and habitat type 
(Wagmann et  al., 2012; Fernández-Pascual et  al., 2013; Cochrane 
et  al., 2014; Pendleton and Pendleton, 2014). Because different 
populations among different localities may experience different 
natural selection pressure, they may lead to local adaptation over time. 
For instance, higher interpopulation variability in germination 
responses has been reported in populations living in unpredictable 
environmental conditions than those living in more stable (i.e., less 
variable) conditions (Meyer and Allen, 1999). Therefore, the same 
species growing in different populations can respond differently to the 
same environmental signals based on the selective pressures acting on 
the population (Oduor et al., 2016; Amini et al., 2017).

Given that interpopulation variation usually reflects the 
environmental adaptation of species (Kyle and Leishman, 2009), the 
present study focused on interpopulation variation in seed physical 
(mass, size, shape, color, etc.) and physiological (germination 
responses) traits of five Polygonaceae species. Germination at species 
level has been previously investigated for this family, but mostly using 
seeds from a single population, as reported for seeds of Polygonum 
lapathifolium (Timson, 1965; Staniforth and Cavers, 1979), Reynoutria 
japonica (Mariko et al., 1993), and Rumex obtusifolius (Hand et al., 
1982; Van Assche and Vanlerberghe, 1989; Benvenuti et al., 2001). In 
the present study, we  hypothesized that different populations of 
species growing in different microclimates might also differ in their 
seed morphology and germination strategy. To test this hypothesis, 
we examined the following questions (i) is there a difference in seed 
physical traits (size, mass, shape, and color) according to the seed 

population? (ii) are there any light and temperature mediated 
mechanisms affecting seed physiological (germination) traits under 
laboratory conditions? (iii) is there a different seed germination 
response to light and temperature among the seed populations within 
each study species?

Materials and methods

Seed collection

In 2020, we collected seeds of five species of Polygonaceae from 
two to three populations at the time of their natural dispersal to ensure 
that the seeds were physiologically in their mature stage (Table 1, 
Figure 1). We obtained permission from Jiujiang Forestry Bureau, 
China, for seed collection. The voucher specimens for each species 
were collected from each location and deposited in the herbarium of 
Lushan Botanical Garden, China. For each species and each 
population, seeds were collected from 25 to 30 randomly chosen 
plants to represent the genetic diversity. After collection, the seeds 
were cleaned and tested for germination within a week.

The seed collection areas fall under the wet subtropical monsoon 
climatic zone. The lower altitude of the mountain is subtropical with 
warm and humid climate, whereas the higher altitude is warm 
temperate with cool and humid climate. The mean annual temperature 
is 16–18°C and mean annual precipitation range between 1,000 and 
1,600 mm. The average temperature of January is 4.4°C. The average 
temperature in July is 29.6°C, with an extreme maximum temperature 
of 40.2°C (Hong et al., 2013; Xie et al., 2013).

To determine the seed dispersal syndrome, we have taken into 
account fruit/seed morphology, the available literature, as well as our 
personal observations, and come to conclusion that seeds of all five 
species have a relatively high potential to be dispersed by more than 
one of these three dispersal modes (anemochory, hydrochory, and/or 
zoochory). These multiple dispersal vectors may facilitate seed 
dispersal even among fragmented populations.

Seed physical traits

A Stereo Microscope (Nikon SMZ800N) fitted with a microscope 
camera IMG-SC600C was used to examine the shape, dimensions 
(length, width, and height), and color of the seed. Fifteen seeds were 
examined for each species/population by ventrally attaching them to 
filter paper using double-sided sticky tape. Seed mass was determined 
at the time of collection (fresh mass) from three 100-seed replicates 
per species, using a Sartorius electronic balance (Sartorius Co., 
Göttingen, Germany).

Water imbibition

Seed permeability to water was assessed by recording the mass of 
three 25-seed replicates before and after moistening them in 
9-cm-diameter Petri dishes containing two sheets of Whatman No. 1 
filter paper. Seeds were moistened for 24 h at room temperature 
(22 ± 2°C) using 10 mL of distilled water. The water uptake by seeds 
was calculated using the formula (Water absorption (%) = [(W2 − W1)/
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TABLE 1 Location and other details of the study species.

Species Population Collection month Place Latitude Longitude Altitude (masl) Growth form Habitat

Polygonum 

lapathifolium var. 

salicifolium

Pls1 July Yujiahe town 29°41′23.55″ 116°4′15.07″ 5.39 Annual herb Grassland

Pls2 Gutang town 29°40′13.031″ 116°5′33.815″ 13.55

Polygonum 

lapathifolium

Pl1 November Guling town 29°34′46.2″ 115°59′36.24″ 1115.03 Annual herb Grassland

Pl2 Gutang town 29°40′15.159″ 116°5′39.887″ 26.41

Pl3 Guling town 29°32′55.974″ 115°58′46.379″ 1086.66

Reynoutria japonica Rj1 November Guling town 29°33′20.706″ 115°57′04.060″ 687.86 Perennial herb Forest

Rj2 Guling town 29°33′55.612″ 115°59′07.874″ 1229.09 Forest

Rj3 Northern road of 

Lushan
29°37′15.893″ 116°1′28.350″ 530.97 Streamside

Rumex trisetifer Rt1 May Weijia town 29°40′31.39″ 116°5′29.14″ 4.94 Annual herb Streamside

Rt2 June Yujiahe town 29°41′38.05″ 116°2′59.17″ 2.29 Grassland

Rumex obtusifolius Ro1 July Guling town 29°32′55.88″ 115°58′46.13″ 1057.44 Perennial herb Cultivated area

Ro2 July Guling town 29°33′34.65″ 116°0′41.98″ 979.76 Streamside

Ro3 August Guling town 29°34′55.36″ 115°59′22.43″ 1081.14 Cultivated area
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W1] × 100), where W2 is the mass of the seeds after imbibition for a 
given interval and W1 is the initial seed mass (Baskin et al., 2004).

Effect of temperature and light on seed 
germination (physiological traits)

Seeds were surface sterilized in 0.50% sodium hypochlorite 
for 1 min, then washed thrice with deionized water to avoid 
attack by fungi. To determine the effect of temperature and light, 
seed germination tests were conducted in incubators (Kesheng 
incubators, Model- DRX-800C- LED, China) set at five different 
alternate temperature regimes (5/10, 10/20, 20/30, 25/35, and 
35/40°C) in 24-h darkness (dark treatment) and/or 12 h light/12 h 
darkness (light treatment). The incubators were fitted with cool 
white fluorescent tubes (60 μmol photons M−2S−1). These 
temperature regimes were chosen to stimulate the average 
temperature of natural habitat (seed collection site) for different 
months (i.e., 5/10°C—December to February; 10/20°C—March, 
April, and October, November; 20/30°C—May, June and 
September; 25/35°C—July and August). The highest temperature 
regime (35/40°C) was used to investigate the ability of seeds to 
tolerate the high temperature during germination. Seeds were 

exposed to 12 h light at the highest temperature within each 
alternating temperature regime.

Seeds were sown in 9-cm Petri dishes containing three disks of 
Whatman No. 1 filter paper moistened with 10 ml of distilled water 
and placed in incubators. Darkness was achieved by wrapping Petri 
dishes in two layers of aluminum foil. Four replicates of 25 seeds each 
were used for each treatment. The seeds were considered to 
be  germinated with the emergence of the radicle (≥2 mm). 
Germinated seeds were counted and removed daily for a 30-days 
period. However, seeds incubated in the dark regimes were checked 
only at the end of the test. At the end of the germination test, all the 
ungerminated seeds from the light treatment were dissected to 
evaluate the embryo status and viabilities of the nongerminated seeds 
(living and therefore white; turgid and brown and, therefore, dead) 
under a stereoscope.

Data analysis

The seed physical traits (including seed mass, seed dimensions such 
as length, width, height, and water imbibition in 24 h) met the assumptions 
of both the Shapiro–Wilk normality test and Levene’s test for equality of 
variances. Therefore, depending on the number of studied populations (2 

FIGURE 1

Location map of seed collection sites.
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or 3) for each species, the independent-samples t-test or one-way ANOVA 
were used to compare interpopulation variation in seed physical traits. 
The physiological traits (germination data) did not meet the assumptions 
of normality and equality of variances; therefore, the relationship between 
mean percentage of germination (dependent variable) and the value of 
three predictors (population, incubation temperature and light) was 
compared for each species independently using a generalized linear 
model (GLM) with a Poisson probability distribution and identity-link 
functions. The effects of three predictors and their interaction in the 
model were tested by Wald Chi-square (X2) values. All statistical analyses 
were performed using SPSS 16.

Results

Polygonum lapathifolium var. salicifolium

No difference was detected regarding seed mass and seed length 
between the two populations (Pls1 and Pls2), but the other physical 

traits (water imbibition, seed width, height, and shape index) 
differed significantly between populations (p < 0.05; Table 2). GLM 
revealed a significant effect of population, incubation temperature, 
light, and their interactions on the percentage of germination 
(p < 0.001; Table  3). Seeds of both populations had negligible 
germination (<12%) in the dark treatment (Figure 2). In the light 
treatment, optimum temperature regime differed for populations. 
Seeds of Pls1 reached maximum germination of 56% at 20/30°C, 
whereas seeds of Pls2 germinated at comparatively higher 
temperature regimes, reaching germination of 84 and 83% under 
25/35°C and 35/40°C, respectively (Figure 2; raw data available at 
Supplementary Table S1).

Polygonum lapathifolium

There was significant interpopulation variation in seed mass, 
length, width, and seed shape index (p < 0.05). However, seed 
height and water imbibition were not significant among the 

FIGURE 2

Influence of population, incubation temperatures, and photoperiod on mean seed germination percentage of five Polygonaceae species. Significance 
values of different factors are indicated in Table 2. Bars with * or ** signs indicate germination percentage differed significantly (P < 0.01 or  < 0.001) 
between and /or among the populations at particular incubation conditions.
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TABLE 2 Interpopulation variation in seed traits of five Polygonaceae species.

Species Population Seed 
mass 
(mg)

Water imbibition 
within 24 h (%)

Seed 
length 
(mm)

Seed 
width 
(mm)

Seed 
height 
(mm)

Seed 
shape 
index

Seed color Seed 
shape

Presence of 
dispersal 
structure 
(wing)

Polygonum 

lapathifolium var. 

salicifolium

Pls1
0.99

36.65a

2.05 1.78a 0.54a 0.11a
Dark-brown, 

brown

Broad-ovate No

Pls2
1.07

18.86b

2.10 1.63b 0.40b 0.13b
Brown, dark-

brown, fulvous

Broad-ovate

Species mean 1.03 27.76 2.08 1.70 0.47 0.12

Polygonum 

lapathifolium

Pl1

1.68a 29.08

2.36ab 1.67a 0.40 0.17ab

Reddish, 

brown, dark-

brown

Oval, broad-

ovate

No

Pl2

0.93b 29.96

2.27b 1.58b 0.38 0.15b

Reddish, 

brown, dark-

brown

Oval, long-oval, 

broad-ovate

Pl3

1.68a 13.65

2.44a 1.69a 0.40 0.18a

Reddish, 

brown, dark-

brown

Oval, broad-

ovate

Species mean 1.43 24.23 2.36 1.65 0.39 0.17

Reynoutria japonica Rj1 1.73c 49.22 3.75c 2.05b 2.11b 0.16b Dark-brown Long-oval, oval Yes

Rj2 2.77b 44.48 4.08b 2.02b 2.12b 0.23a Dark-brown Long-oval, oval

Rj3 4.44a 36.23 4.56a 2.34a 2.36a 0.28a Dark-brown Long-oval, oval

Species mean 2.98 43.31 4.13 2.14 2.20 0.22

Rumex trisetifer Rt1 0.45 23.48 1.57 0.95 0.95 0.02 Reddish, brown Oval Yes

Rt2
0.47 21.24

1.54 0.95 0.94 0.02

Milk-white, 

brown, black

Oval, long-oval

Species mean 0.46 22.36 1.56 0.95 0.95 0.02

Rumex obtusifolius Ro1
1.09 12.49b 2.19 1.35a 1.34 0.04b

Dark-brown, 

brown

Broad-ovate Yes

Ro2
0.85 44.82a 2.24 1.28ab 1.28 0.05a

Dark-brown Broad-ovate, 

oval

Ro3
0.93 22.65b 2.15 1.27b 1.27 0.04b

Brown Broad-ovate, 

oval

Species mean 0.96 26.65 2.19 1.30 1.30 0.05

Values with different letters in lower case represent significant difference (p < 0.05) at population level for respective trait of a respective species.
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populations (Table 2). Populations, incubation temperature, light, 
and their interactions had a significant effect on seed germination 
(p < 0.001; Table  3). Dark treatment significantly inhibited 
germination compared to light treatment in most temperature 
regimes (Figure 2 and Supplementary Table S1). There was also 
a significant variation in the optimum germination temperature 
among populations (Pl1, Pl2, and Pl3). Seeds from Pl1 had a wide 
germination range, showing germination >65% from 10/20°C to 
35/40°C, reaching 89% at 25/35°C (Figure  2 and 
Supplementary Table S1). A narrower germination window was 
found for Pl2 (germination ranged from 72 to 85% at warm 
temperatures of 25/35° and 35/40°C) and for Pl3 (72–73% at 
intermediate temperatures of 20/30° and 25/35°C).

Reynoutria japonica

Except for water imbibition, all other seed physical traits 
differed among populations, with a prominent 2.5-fold variation 
in seed mass (p < 0.05; Table  2). Furthermore, there was a 
significant effect of populations, incubation temperatures, light, 
and their interactions on the percentage of seed germination 
(p < 0.001; Table 3). The overall germination percentage varied 2 
to 3 folds among populations (Rj1, Rj2, and Rj3). Seeds from Rj1 
germinated a relatively low (<30%) in all treatments, irrespective 
of dark and light conditions. The other two populations had 
maximum germination from 52 to 89% at temperature regimes 
from 10/20°C to 25/35°C in the light, with a decrease under the 
dark treatment, which varied from 52 to 22% (Figure  2 and 
Supplementary Table S1).

Rumex trisetifer

Unlike the other species studied, none of the seed physical traits 
of R. trisetifer varied significantly (p =  0.85) between the two 
populations (Table 2). Populations also had no effect on germination 
responses, but incubation temperature, light, and their interactions 
significantly affected germination (p < 0.001; Table 3). Seeds of both 
populations germinated from 86 to 99% in the temperature regimes 

of 10/20° and 20/30°C, both in light and dark treatments (Figure 2 and 
Supplementary Table S1). However, germination decreased 
significantly in all other tested temperature regimes (5/10°C 
or ≥ 25/35°C), mainly in the dark.

Rumex obtusifolius

Three physical traits (water imbibition, seed width, and seed 
shape index) varied significantly among the populations (p < 0.05; 
Table  2), but no differences were found regarding seed mass, 
length, and height. Similar to R. trisetifer, populations had no 
effect on germination responses. However, incubation 
temperature, light, and their interactions significantly affected 
germination (p < 0.001; Table 3). At 10/20°C, all populations had 
a similar percentage of germination compared to light/dark 
treatments, ranging from 77 to 92%; dark conditions tended to 
decrease the percentage of germination at all other temperatures 
(Figure 2 and Supplementary Table S1). Optimal germination 
conditions differed among populations (Ro1, Ro2, and Ro3) in 
the light: germination of Ro1 reached ≥90% at 20/30°C and 
25/35°C, while germination of Ro2 and Ro3 varied from 84 to 
92% in a broader range of temperature regimes of 10/20°C to 
25/35°C. Even at the coolest temperature regime (5/10°C), 70% 
seeds of Ro2 germinated.

Discussion

Germination responses can be difficult to predict over time 
and space, as they are affected by several environmental factors 
such as temperature, light, and soil moisture (Baskin and Baskin, 
2014; Bhatt et  al., 2019, 2020, 2021a). Identification of the 
environmental factors that are responsible for maintaining 
phenotypic variation in nature is essential to understand the 
evolutionary mechanisms of plants (Larios et al., 2014; Manzano-
Piedras et al., 2014). Existence of interpopulation variability in 
seed traits is commonly found, and important for enhancing the 
ability of species to persist against climatic variability (Cochrane 
et  al., 2015). In this study, we  found a relatively high 

TABLE 3 Effect of population (P), incubation temperature (T), and photoperiod (L) on seed germination percentage of five Polygonaceae species.

Factors Polygonum 
lapathifolium var. 

salicifolium

Polygonum 
lapathifolium

Reynoutria 
japonica

Rumex trisetifer Rumex obtusifolius

Wald’s X2 df Wald’s X2 df Wald’s X2 df Wald’s X2 df Wald’s X2 df

Population (P) 90.0** 1 186.0** 2 672.2** 2 0.490 1 3.81 2

Temp. (T) 978.4** 4 405.9** 4 2458.7** 4 1761.1** 4 1908.6** 4

Light (L) 1036.5** 1 1404.2** 1 295.1** 1 83.5** 1 586.5** 1

P × T 80.4** 3 193.4** 5 494.9** 8 20.8** 3 66.7** 8

P × L 90.1** 1 7.4* 2 114.4** 2 5.6* 1 19.9** 2

T × L 276.9** 3 85.1** 3 190.5** 4 87.7** 3 157.2** 4

P × T × L 74.9** 3 96.1** 5 89.9** 8 15.1* 2 23.0* 8

Significance level: *p < 0.01; **p < 0.001. Data were modeled using a Generalized Linear Model (GLM) with a Poisson probability distribution and an identity-link function.
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interpopulation variation in seed morphology and germination 
response (physical and physiological traits) of five Polygonaceae, 
although these species belong to the same family and were 
collected from geographically close locations (located 
approximately 4–32 km from each other). Despite the multiple 
seed dispersal vectors of the study species and relatively close 
distance between populations, it is important to note that the 
collected populations occur in a fragmented landscape, which 
may limit their gene flux from one population to others.

Intraspecific (interpopulation) trait variation could be due to 
environmental, genetic differences, or a combination of both 
genetic and environmental factors. Understanding the role of 
seed physical traits and their relationship with seed germination 
could thus be important for predicting which seed physical traits 
are more influential in affecting germination. However, until 
now, most of the studies mainly focused on the role of seed mass/
size in germination responses (Wu and Du, 2007; Münzbergová 
and Plačková, 2010; Wu et al., 2011; Alstad et al., 2018; Chen 
et  al., 2018). Despite differences between species, seeds of all 
studied species can be classified as small-sized, with a fresh mass 
varying from 0.45 to 4.44 mg. Small-seeded species have been 
recognized to be  light-dependent (positively photoblastic) in 
different vegetation types worldwide, including temperate 
grasslands (Milberg et al., 2000), arid zones (Flores et al., 2011), 
and tropical rainforests (Aud and Ferraz, 2012). Such physical 
trait-germination relatedness may help to explain the germination 
patterns we found.

Only seeds of P. lapathifolium and R. japonica had significant 
interpopulation variability in seed mass and seed length. The 
smallest seed size found in the Rj1 population proportioned a low 
percentage of germination regardless of light and temperature 
treatments. However, other seed traits, such as seed width, seed 
height, and seed shape index, varied significantly among 
populations of most studied species. Differences in the 
environmental conditions among populations can be responsible 
for seed trait variability, as suggested to vegetative and floral 
plant traits (Kuppler et al., 2020). But in our study, one must take 
in account that seeds of the different species were collected from 
populations growing geographically in close to moderate distance 
localities (4–32 km). Therefore, we  argue that spatial 
heterogeneity in edaphic factors (i.e., nutrients) or differences in 
the gene pool among populations can contribute to determining 
the interpopulation variability, especially in geographically 
distance populations. In addition to subtle contrasts in 
environmental gradients, different populations are highly likely 
to be  subjected to different selection pressures under natural 
conditions, leading to the evolution of interpopulation variability 
in seed traits as an adaptive response that allows the species to 
survive under spatially heterogeneous landscapes (Ge et al., 2020).

The exception was found for R. trisetifer seeds, with no 
difference in seed traits among the studied populations. 
Additionally, both Rumex species had the least light-dependent 
germination responses, despite their small seed size and round 
seed shape. Round and small seeds, due to their compact 
structure, should be more easily incorporated into soil seed banks 
and therefore subjected to dark conditions or minimal light 
penetration in the upper layer of the soil (Benvenuti, 2007; 
Saatkamp et al., 2014). Funes et al. (1999) reported that compact 

seeds tend to persist for longer periods ungerminated in the soil. 
In contrast, in our case, the seeds of R. trisetifer and R. obtusifolius 
had the lowest shape index but high germination under both light 
and dark conditions, under optimal temperature. This indicates 
that their seeds would be  promptly recruited rather form 
persistent seed banks. Factors other than seed physical traits may 
influence germination responses, such as adaptive responses and 
phylogenetic relatedness, regardless of population variability. 
Moreover, interactions of temperature and light have been 
pointed out as important drivers of the capacity of seeds to 
germinate depending on the species and specific temperature 
requirements (see Pons, 1992).

Seeds of all the five species were able to absorb water, 
indicating they do not show physical dormancy. Seeds of only two 
taxa (P. lapathifolium var. salicifolium and R. obtusifolius) had a 
significant variability in seed coat permeability (water imbibition) 
among populations. This variability in water imbibition among 
populations could be  related to variation in coat hardness 
(thickness) due to spatial heterogeneity in habitat conditions, 
genetic background, and their interactions, which may 
be  responsible for interpopulation variability in seed coat 
permeability as reported in other species (Jaganathan et al., 2019; 
Bhatt et  al., 2021b). Bearing non-dormant seeds, all studied 
species were able to germinate immediately after dispersal, 
although the percentage of germination varied between or among 
populations and the tested temperature conditions. Fast 
germination could be  related to the availability of sufficient 
precipitation throughout the year due to subtropical moist 
monsoonal climate in the seed collection sites (Kang et al., 2017). 
This contrasts with seasonal water restrictions, which are 
generally considered one of the main limitations for germination 
in most climatic conditions.

Temperature is one of the main environmental factors that 
regulate the germination, especially where availability of water is 
not a constraint for germination (Fenner and Thompson, 2005). 
Regarding thermal requirements, in the light, optimal 
germination ranges mainly varied from 10/20°C to 25/35°C, with 
significant decrease in germination percentage at both cooler and 
warmer extremes. However, some species, such as Polygonum 
spp., showed a marked variation in the optimal temperature 
requirement for germination depending on the population. Seeds 
of P. lapathifolium var. salicifolium from Pls2, for example, 
germinated equally well at the warmest tested temperatures, 
reaching >80% germination at 25/35°C and 35/40°C. Conversely, 
seeds from Pls1 attained maximum germination (56%) at a 
milder temperature regime (20/30°C). Seeds of P. lapathifolium 
also showed similar trends: The Pl2 population attained 85% 
germination under the warmest conditions (35/40°C), while Pl1 
and Pl3 (both populations collected at elevation >1,000 m) 
attained maximum germination of 72–89% at temperatures 
20/30°C and 25/35°C. Producing seeds with varying germination 
cues (temperature) may enhance fitness of these species in future 
climate change scenarios and reduce the risks of synchronizing 
recruitment in case of unfavorable conditions (Santo et al., 2015; 
Bhatt et al., 2020, 2021b).

An even higher interpopulation variability in maximum 
germination percentage was observed for R. japonica seeds—
from 29% in Rj1 to 89% in Rj3, both at 10/20°C. Although Rj3 
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also germinated well (66%) at 25/35°C. This relatively wide 
temperature niche width (especially in Rj3) indicates such seeds 
(populations collected at elevation from 500 to 1,200 m) can 
better recruit when other environmental factors controlling seed 
germination (light &/or moisture) may be available beyond the 
normal window of seed germination season. Collection sites of 
R. japonica and P. lapathifolium populations had remarkable 
differences in altitude, which may be  responsible for 
microclimatic contrasts. We argue that habitat heterogeneity and 
climatic variability contribute more toward determining the 
interpopulation variability rather than the geographic distance. 
Additionally, differences in germination requirements among 
populations of P. lapathifolium var. salicifolium could be attributed 
to the variation in competition, soil moisture, and mineral 
nutrition (Burton et al., 2000; Allison, 2002; Swain et al., 2006). 
Spatio-temporal heterogeneity in climatic conditions and edaphic 
factors among the population are reported to be the main driver 
for interpopulation variability (Kuppler et  al., 2020), which 
ultimately lead to the interpopulation variability in seed 
morphology and germination traits (Baskin and Baskin, 2014; 
Hudson et al., 2015; Bhatt et al., 2021b).

Rumex species had less variation in germination percentage 
among the tested populations within their respective optimal 
ranges. Seeds of R. trisetifer germinated equally well at 10/20°C 
and 20/30°C (≥96%), while R. obtusifolius germinated equally 
well at 10/20°C, 20/30°C, and 25/35°C (89%). The relatively 
broad thermal germination niche indicates that seeds of 
R. obtusifolius can germinate throughout the year, although the 
germination percentage was significantly reduced during winter 
(December to February). Similarly, Polygonum spp. can germinate 
outside their normal germination window, when the temperature 
ranges between 20 and 35°C. These results further support that 
seed recruitment in our study species is widely spread throughout 
the growing season, and this will increase their long-term fitness 
by spreading the risk of germination failure. Besides this, these 
species have higher possibility to establish in a broad 
environmental condition (Carlucci et al., 2015) and will be less 
affected by climate change as compared to those have specific 
temperature requirement for germination. For example, 
R. trisetifer and R. japonica have a specific temperature 
requirement and thus their germination may be restricted to the 
specific time (i.e., between March to June or between September 
to November for R. trisetifer, and between March to April or 
between October to November for R. japonica).

Overall, seed germination was significantly inhibited at the 
lowest temperature regime (except for Ro2), although different 
species showed interpopulation variability in terms of 
germination percentage. Avoiding germination in winter 
(December to February), when the temperature is around 5/10°C, 
could be a survival strategy for these species, as the chances of 
seedling successful establishment would be extremely low due to 
cold and frost. Low-temperature conditions may induce 
physiological dormancy, while the cold stratification period also 
helps seeds to synchronize germination with a favorable season, 
as reported in Polygonum and Rumex spp. (Totterdell and 
Roberts, 1979; Bouwmeester and Karssen, 1992; Batlla and 

Benech-Arnold, 2005). However, at the highest temperature 
(35/40°C), one population of P. lapathifolium var. salicifolium 
(Pls2) and a population of P. lapathifolium (Pl2), both from the 
lowlands, germinated well (>80%). For all other species/
populations, germination percentage was significantly reduced at 
the warmest condition. These results indicate that tolerance to 
high and low temperatures during the germination stage can vary 
between/among populations, depending on species (Cochrane, 
2016). Therefore, it could be imperative to test the interpopulation 
variability under a wider range of temperature, in order to model 
regeneration behavior regarding threshold models 
(Bradford, 2002).

Here, we  found general patterns of seed and germination 
traits common to all five Polygonaceae, such as small seed size 
and predominant light-dependent germination (except Rumex). 
However, we  also identified particularities of the studied 
populations. The optimal temperature requirements for 
germination varied according to the population of the seeds, 
mostly for P. lapathifolium and R. japonica, seeds collected from 
comparatively longer altitudinal gradients. Furthermore, 
interpopulation variability among the studied species could 
be linked to maternal effects (Luzuriaga et al., 2006; Kagaya et al., 
2011; Bhatt et al., 2019, 2021b). Heterogeneity in maternal habitat 
conditions where populations grow is likely to be the main factor 
contributing to interpopulation trait variability. Phylogenetically 
related species have been reported to share similar traits in a 
general sense (Losos, 2008). For example, some studies suggest 
that related species share similarities regarding seed traits, 
dormancy, and germination characteristics (Moles et al., 2005; 
Norden et al., 2009; Carta et al., 2016). Other studies argue that 
seed traits, dormancy, and germination characteristics are 
regulated by environmental cues rather than the phylogeny 
(Vandelook et  al., 2008; Arana et  al., 2016; Fang et  al., 2017). 
Therefore, it is important to compare the physical and 
physiological traits of closely related species to better understand 
which factors (phylogeny and/or environment) are responsible 
for influencing regeneration strategies, aiding to improve our 
predictive capacity to comprehend species distribution related to 
trait variability in changing environments.

Conclusion

Although seeds of the Polygonaceae shared similar physical 
traits, generally displaying small-sized seeds and light-dependent 
germination patterns. We found great variation in germination 
requirements between and/or among populations. For instance, 
optimal temperature regimes may change according to seed 
population, mostly in altitudinal gradients, as we  show for 
P. lapathifolium and R. japonica seeds. Seeds of Rumex spp., on 
the other hand, seemed to be less affected by light availability, 
with similar responses regardless of the collection sites. 
Variability in regeneration traits can be crucial to comprehending 
the species’ ability to colonize different areas, aiding in the 
identification of tolerant/sensitive populations affected by 
environmental changes.
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