
Frontiers in Ecology and Evolution 01 frontiersin.org

TYPE Original Research
PUBLISHED 24 February 2023
DOI 10.3389/fevo.2023.1105832

Uncertainty propagation in a global 
biogeochemical model driven by 
leaf area data
Chenyu Bian 1,2 and Jianyang Xia 1,2*
1 Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, State Key Laboratory of 
Estuarine and Coastal Research, School of Ecological and Environmental Sciences, East China Normal 
University, Shanghai, China, 2 Research Center for Global Change and Complex Ecosystems, East China 
Normal University, Shanghai, China

Satellite-observed leaf area index (LAI) is often used to depict vegetation canopy 
structure and photosynthesis processes in terrestrial biogeochemical models. 
However, it remains unclear how the uncertainty of LAI among different satellite 
products propagates to the modeling of carbon (C), nitrogen (N), and phosphorus (P) 
cycles. Here, we separately drive a global biogeochemical model by three satellite-
derived LAI products (i.e., GIMMS LAI3g, GLASS, and GLOBMAP) from 1982 to 2011. 
Using a traceability analysis, we explored the propagation of LAI-driven uncertainty 
to modeled C, N, and P storage among different biomes. The results showed that 
the data uncertainty of LAI was more considerable in the tropics than in non-
tropical regions, whereas the modeling uncertainty of C, N, and P stocks showed 
a contrasting biogeographic pattern. The spread of simulated C, N, and P storage 
derived by different LAI datasets resulted from assimilation rates of elements in 
shrubland and C3 grassland but from the element residence time (τ) in deciduous 
needle leaf forest and tundra regions. Moreover, the assimilation rates of elements 
are the main contributing factor, with 67.6, 93.2, and 93% of vegetated grids for the 
modeled uncertainty of C, N, and P storage among the three simulations. We further 
traced the variations in τ to baseline residence times of different elements and the 
environmental scalars. These findings indicate that the data uncertainty of plant 
leaf traits can propagate to ecosystem processes in global biogeochemical models, 
especially in non-tropical forests.
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1. Introduction

Over the past few decades, terrestrial ecosystems have absorbed nearly one-third of the CO2 of 
anthropogenic emissions by vegetation canopy (Friedlingstein et al., 2022). However, the terrestrial 
carbon uptake by vegetation photosynthetic is widely limited by the availability of essential nutrients, 
especially nitrogen (N) and phosphorus (P) (Elser et al., 2007; LeBauer and Treseder, 2008; Xia and 
Wan, 2008; Allen et al., 2020; Hou et al., 2020). The availability of N and P affects vegetation 
productivity (Elser et al., 2007; Norby et al., 2010), carbon (C) allocation (Hofhansl et al., 2015), litter 
decomposition (Averill and Waring, 2018), and other processes (Sutton et al., 2008; Melillo et al., 
2011). The availability of N and P also constrains soil carbon storage (Crowther et  al., 2019), 
especially under the scenarios of climate change and increasing atmospheric CO2 (Wang et al., 2020). 
Thus, global distributions of C, N, and P storages are crucial for modeling the global biogeochemical 
feedback to future climate change.
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Many global biogeochemical models have coupled nutrients 
processes to provide more realistic simulations of terrestrial 
ecosystems (Thornton et al., 2007; Wang et al., 2007, 2010; Goll et al., 
2012; Yang et al., 2014; Zhu et al., 2019; Sun et al., 2021). Several 
global models not only incorporated the N cycles (Manzoni and 
Porporato, 2009; Zaehle et al., 2014; Meyerholt and Zaehle, 2015) but 
also implemented the P processes, such as ORCHIDEE-CNP (Goll 
et  al., 2017; Sun et  al., 2021), QUINCY v1.0 (Thum et  al., 2019), 
GOLUM-CNP (Wang et al., 2018), JSM (Yu et al., 2020), JULES-CNP 
(Nakhavali et al., 2022), and E3SM (Zhu et al., 2019). The coupled 
C-N-P cycle reduced the magnitude of disequilibrium in the 
terrestrial C cycle (Wei et al., 2022a), but how to accurately represent 
the nutrient cycles and the effects of N and P limitation in 
biogeochemical models are still challenges (Hungate et  al., 2003; 
Thomas et al., 2015; Wieder et al., 2015; Sun et al., 2017).

Due to the difference in model structure and parameters (Zaehle 
and Dalmonech, 2011), the increased model complexity further 
hinders our understanding of the modeling uncertainty. However, 
most global biogeochemical models share a typical pool-flux structure 
and follow some fundamental properties of terrestrial element cycling 
(Xia et al., 2013; Luo et al., 2015). For example, C atoms enter the 
ecosystem through plant photosynthesis, while plants assimilate N 
and P mainly from mineral soil. The elements of C, N, and P are 
allocated among plant pools, then transferred to litter and soil pools, 
and eventually returned to the atmosphere via the decomposition of 
organic matter (Olson, 1963; Zhang et al., 2008). In biogeochemical 
models, there are a specific soil inorganic-N pool and a few soil 
inorganic P pools, which generally separate to distinct pools based on 
its chemical fractionation (Hedley et al., 1982; Cross and Schlesinger, 
1995; Hou et al., 2018). Labile P usually comes from P mineralization, 
P weathering, and dust deposition (Wang et al., 2010). Some of the 
labile P can enter the sorbed P pool and subsequently become 
occluded, but this form is assumed to be unavailable by plants (Wang 
et  al., 2018). Those specific processes of the coupled C-N-P 
biogeochemical cycles can be found in Figure 1.

Leaf area index (LAI), as a significant uncertainty source of 
simulated photosynthetic carbon uptake (Li et al., 2018; Cui et al., 
2019), is widely used as a critical parameter in the process-based 
biogeochemical models for depicting vegetation canopy structure 
(Forzieri et al., 2017; Zeng et al., 2017; Liu et al., 2018; Chen et al., 
2019). Many inter-model comparisons on Earth system models 
(ESMs) have shown a large spread of LAI on a global scale (Zeng 
et al., 2016), partially leading to their persistent uncertainty in carbon 
storage projections (Wei et al., 2022b). Recently, many studies have 
used satellite-based LAI to directly force the models for a more 
realistic prediction of the global carbon (C) cycle (Zeng et al., 2017; 
Liu et al., 2018; Chen et al., 2019). However, there are significant 
discrepancies in different satellite-based LAI products on temporal 
and spatial scales (Jiang et al., 2017; Xiao et al., 2017; Liu et al., 2018). 
Therefore, understanding whether and how the data uncertainty in 
LAI observations propagates to global biogeochemical models helps 
provide a more accurate prediction of future terrestrial carbon sinks 
(Heinsch et al., 2006; Liu et al., 2018).

This study introduces a framework to decompose a complex 
biogeochemical model coupled with C-N-P processes into its 
traceable components. Considering that the N and P cycles are not a 
closed cyclic system, we only focused on the organic matter of C, N, 
and P in this study. Specifically, the framework traces the modeled 
ecosystem organic C, N, and P storage to the influx of C (i.e., net 

primary productivity, NPP), N, and P uptake and the corresponding 
ecosystem residence time [ i C N P�� �, , ]. The τ i  can be  further 
traced to the baseline residence time [� i i C N P� �� �, , ]  and 
environmental scalars ( ξ ). The former � i

�  usually preset in models 
depends on the soil properties and vegetation characteristics, while 
the latter usually includes temperature and water scalars and is 
determined by climate forcings. Based on the framework, we further 
analyzed the difference among biomes (Supplementary Figure S1) in 
simulated C, N, and P storage caused by the disagreement of LAI 
estimates among three satellite-derived products (i.e., GIMMS LAI3g, 
GLASS, and GLOBMAP) with the Australian Community 
Atmosphere Biosphere Land Exchange (CABLE) model. The primary 
goal of this study is to explore the uncertainty propagation of LAI 
observations to global simulations of C, N, and P storage in the 
biogeochemical models.

2. Materials and methods

2.1. Satellite-derived leaf area index datasets

Leaf area index is an important parameter that consistently monitors 
vegetation structure dynamics over large spatial and temporal scales. 
This study uses three satellite-derived long-term global LAI products: 
GIMMS LAI3g, GLASS LAI, and GLOBMAP LAI. We re-sampled all 
three LAI datasets from their native resolution into 0.5° × 0.5° special 
resolution using the nearest neighbor algorithm and interpolated to the 
hourly temporal resolution to force the model. All three datasets have 
been validated and widely used to monitor terrestrial vegetation 
dynamics (Dardel et al., 2014; Piao et al., 2015; Zhu et al., 2016, 2017; 
Jiang et al., 2017).

2.1.1. GIMMS LAI3g product
The Global Inventory Modeling and Mapping Studies (GIMMS) 

LAI3g product (version 01) was generated by the Feed-Forward Neural 
Network (FFNN) algorithm based on the Advanced Very High 
Resolution Radiometer (AVHRR) GIMMS Normalized Difference 
Vegetation Index (NDVI) dataset and Moderate Resolution Imaging 
Spectroradiometer (MODIS) LAI (Zhu et al., 2013). It provides a global 
observation at 1/12-degree spatial resolution and 15-day temporal 
resolution from July 1981 to December 2011. The GIMMS LAI3g 
dataset was extensively evaluated by comparison with field LAI 
measurements, other satellite-derived data products, statistical climatic 
variables, and the simulation results from land models (Mao et al., 2013; 
Zhu et al., 2013).

2.1.2. GLASS LAI product
The Global LAnd Surface Satellite (GLASS version 03) long-time 

series LAI product was estimated from MODIS and AVHRR remote 
sensing data using the General Regression Neural Networks (GRNNs) 
approach (Xiao et al., 2014). The GRNNs were trained with the fused 
time-series LAI from MODIS and CYCLOPES products and the MODIS 
reflectance of the BELMANIP sites. The GLASS LAI product has a 
temporal resolution of 8 days and spans from 1981 to 2014. For the 
period of 1981–1999, the data product was generated from AVHRR 
reflectance data, providing a geographic projection at the spatial 
resolution of 0.05°. From 2000 to 2014, the LAI product was generated 
from MODIS surface reflectance data with a spatial resolution of 1 km 
(Xiao et al., 2014, 2016).
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2.1.3. GLOBMAP LAI product
The consistent long-term GLOBMAP LAI product (version 01) 

was generated by a combination of AVHRR LAI (1981–2000) and 
MODIS LAI (2000–2011) (Liu et al., 2012). The MODIS LAI time 
series was generated from MODIS land surface reflectance data based 
on the GLOBCARBON LAI algorithm (Deng et  al., 2006). By 
establishing a pixel by pixel relationships between AVHRR 
observations and MODIS LAI data series during the overlapped 
period (2000–2006), the AVHRR LAI could be retrieved back to 1981. 
The temporal resolution of this dataset is half a month and 8 days in 
1981–2000 and 2001–2011, respectively. The spatial resolution of the 
AVHRR LAI dataset is 8 km.

2.2. Matrix representation of the carbon, 
nitrogen, and phosphorus cycle

We developed a theoretical framework for decomposing the 
terrestrial carbon, nitrogen, and phosphorus stock into some 
traceable components based on the biogeochemical principles of the 
terrestrial carbon cycle. For example, the terrestrial carbon cycle can 
be generally described as the following processes, which includes 
carbon enters the ecosystem via plant photosynthesis; photosynthetic 
carbon is then allocated among plant pools; part of this carbon is 
consumed by respiration, and the remainder is further transferred to 

litter and soil carbon pools; lastly, the carbon in the litter and soil 
pools is decomposed and back into the atmosphere (Luo and Weng, 
2011; Luo et al., 2022). Plants assimilate the nitrogen and phosphorus 
from mineral soils and then transfer following the same flow with 
organic matter in terrestrial ecosystems. Therefore, following the 
approach developed by Xia et al. (2013), the biogeochemical cycle 
processes can be  mathematically represented by three 
matrix equations:
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(1)

where X(t) = (X1(t), X2(t), …, X9(t))T, N(t) = (N1(t), N2(t), …, N9(t))T, 
and P(t) = (P1(t), P2(t), …, P9(t))T are 9 × 1 vector, which describes the 
C, N and P pool size of leaf, root, wood, metabolic litter, structural 
litter, coarse wood debris (CWD), fast soil, slow soil and passive soil 
pool at time t in CABLE model. B b b b i C N Pi

T� �� � �� �1 2 3 0 0, , , , , , ,  
is a vector of allocation coefficients of C, N, and P among different 
plant pools. For the C allocation, the partitioning coefficients from 
NPP to root and wood carbon pools are equations of availably of light, 

FIGURE 1

Schematic diagram of major carbon (C), nitrogen (N) and phosphorus (P) pools and fluxes in a terrestrial ecosystem. Black, blue and pink arrows indicate 
the C-cycle processes, N-cycle processes, and P-cycle processes, respectively. Green, yellow, and gray rectangles represent the vegetation, litter and soil 
pools of organic carbon, nitrogen, and phosphorus. LAI, leaf area index; PLAI, LAI-leval photosynthesis, GPP, gross primary productivity, CUE, carbon use 
efficiency; NPP, net primady productivity; Meta, metabolic litter; Str, structural litter; CWD, coarse woody debris.
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nitrogen, and water, respectively. Then the rest of NPP goes to the leaf 
pool. For the N and P, the allocations of N and P uptake among 
different plant pools are calculated based on the proportion to each 
pool’s demand of N and P. The inputs of C, N, and P are represented 
by U t i C N Pi � � �� �, , . UC  is the fixed carbon by canopy 
photosynthesis, i.e., net primary production (NPP). UN  and UP  are 
the assimilated N and P via plant uptake from soil minerals. � t� �  is 
a diagonal matrix, the diagonal components representing the 
environmental scalars (such as temperature and soil moisture) effects 
on carbon decomposition rate at time t. C is a 9 × 9 diagonal matrix 
with diagonal entries by 9 × 1 vectors c c c c T� �� �1 2 3, , , . The diagonal 
elements indicate the C decay rate for each pool. A is a transfer 
coefficients matrix, which can quantify how much carbon can 
be transferred among different pools. Therefore, the first term on the 
right side of Equation (1), BUi i  i C N P�� �, , , describes the C, N, and 
P inputs and allocation among different plant pools, and the second 
term on the right represents the transfer and exit rates (Xia et al., 
2013; Luo et al., 2017).

By letting Equation (1) equal zero, we obtained the C, N, and P pool 
size at steady-state as the product of ecosystem residence time 
and influx:
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(2)

where Xss , Nss , and Pss  are vectors that includes all the organic pools 
at steady state. UC , UN , and UP  are the ecosystem C, N, and P influx 
at steady state. UC  represents NPP in this study, which can be further 
decomposed to gross primary production (GPP) and carbon use 
efficiency (CUE) based on some previous studies (Bradford and 
Crowther, 2013; Xia et al., 2017). The term A C B i C N Pi�� � �� ��1

, ,  in 
Equation (2) are vectors of the residence time of individual pools as:
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(3)

The ecosystem-level residence time of C, N, or P was summed from 
all the individual pools. The ecosystem residence time can be determined 
by multiple ecological processes, such as allocation (i.e., the B vector), 
carbon transfer among different pools (i.e., the A matrix), decomposition 
rates (i.e., the C matrix), and the environmental scalars (i.e., ξ ). The 
scalar ξ  usually consists of the temperature (ξT ) and water 
scalars (ξW ) as:

 � � �� T W  (4)

Generally, the parameters of B, A, and C matrices are preset in a 
specific model according to model structure, soil properties, and 
vegetation characteristics (Zhou et al., 2018). By rearranging Equation 
(3), we can further decompose the residence time to the environment 
scalar and the corresponding preset parameters:
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(5)

The residence time can be  further decomposed to environment 
scalars and baseline residence time vectors. The equation of baseline 
residence time can be expressed as:
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(6)

2.3. The Community 
Atmosphere-Biosphere-Land Exchange 
(CABLE) model: overview and experiments

The Australian Community Atmosphere Biosphere Land 
Exchange (CABLE) model version 2 is a global land surface model 
that can simulate biophysical and biogeochemical processes (Wang 
et al., 2010, 2011). It includes five submodels: (1) radiation, (2) canopy 
micrometeorology, (3) surface flux, (4) soil and snow, and (5) 
ecosystem respiration, and it also incorporates carbon (C), nitrogen 
(N), and phosphorus (P) cycles. CABLE has been widely evaluated by 
other global observations (Piao et al., 2015), eddy-flux measurements 
(Best et al., 2015), and manipulated field experiments (De Kauwe 
et al., 2014). This model can be applied to attribution analysis (Zhang 
et al., 2016) or plant feedback effects (Lei et al., 2019) by doing a series 
of simulation experiments. The default settings of LAI are prognostic 
in the CABLE model, but a switch can control them. When the switch 
is turned on, the prognostic LAI can be calculated as the product 
between specific leaf area (SLA) and leaf biomass. SLA and the 
phenology phases (used to determine the leaf growth) are prescribed 
for each plant functional type.

In this study, we turned the switch off and replaced the modeled 
LAI with data from three satellite-observed products (GIMMS 
LAI3g, GLASS, and GLOBMAP). Based on the traceability analysis 
approach, we performed three simulations to diagnose the source of 
uncertainty in the biogeochemical cycle caused by LAI. The CABLE 
model was first spun up with the C-N-P coupled schemes to the 
steady state in 1,900 using a semi-analytical solution (Xia et  al., 
2012). The forcing data (Zhang et  al., 2016) used to spin up the 
model concludes seven 6-hourly meteorological forcing variables 
(i.e., temperature, precipitation, downward shortwave radiation, 
downward longwave radiation, specific humidity, pressure, and wind 
speed) from the CRUNCEP version 5 (New et al., 1999, 2000, 2002). 
Using spin-up results as an initial value, we run the model from 1901 
to 1981. After that, we performed three simulations by replacing the 
modeled LAI with three satellite-based LAI products (GIMMS 
LAI3g, GLASS, GLOBMAP), respectively. Lastly, we spun up CABLE 
to a steady state forced by the satellite-derived LAI datasets and 
time-variant CO2 concentration from 1982 to 2011 (Supplementary  
Table S1).
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3. Results

3.1. Spatial variations of terrestrial carbon, 
nitrogen, and phosphorus storage

The estimated global mean LAI was 1.24 ± 0.18 m2 m−2 (mean ± SD) 
across the three data products. The simulated global stocks of C, N, and 
P were 11.0 ± 1.4 C kg C m−2, 504.3 ± 68.1 g N m−2, and 97.7 ± 13.6 g P 
m−2, respectively. All three simulations showed the highest mean LAI in 
tropical regions among the eight biomes (Figure 2A). Furthermore, the 
variability of LAI across three simulations was also higher in the tropics 

than in any other area (Figure 2B). However, the simulated element 
storage (i.e., C, N, and P) showed a divergent spatial pattern in 
magnitude and variability compared with LAI (Figures  2C–H). 
Specifically, northern high-latitude regions showed the highest annual 
mean element storage (12.0 kg C m−2 for the C storage, 531.3 g N m−2 for 
the N storage, and 93.1 g P m−2 for the P storage) compared with other 
climate regions. In contrast, tropical regions showed a relatively high C 
storage (10.0 kg C m−2) but low storage of N (400. 2 g N m−2) and P 
(78.5 g P m−2) (Figures 2C,E,G). A similar distribution was also found 
in the spatial variability of elements (Figures 2D,F,H). In addition, it is 
noted that the high disagreement in P storage across three simulations 

A B

C D

E F

G H

FIGURE 2

Spatial distributions of annual leaf area index (LAI, A), carbon (C), nitrogen (E) and phosphorus (G) storage and the corresponding standard deviation of LAI 
(B), C (D), N (F), and P (H) storage among three satellite-derived simulations. Note that we only consider the organic pools for nitrogen and phosphorus in 
this study.
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is mainly located in the regions covered by herbaceous vegetation, such 
as eastern Australia, southeastern South America, and southern Africa 
(Figure 2H).

3.2. Decomposing carbon, nitrogen, and 
phosphorus storage into ecosystem 
residence time and the corresponding influx

The ecosystem element storage can be  decomposed into the 
corresponding element residence time (τ τ τC N P, , ) and the influx rate 
[UC (NPP), UN, and UP] based on the traceability framework according 
to Equations (2, 3). Deciduous needle leaf forest (DNF) had the largest 
ensemble annual mean results of ecosystem C (86.0 kg C m−2), N 
(424.3 g N m−2), and P (24.4 g P m−2) storage among the eight biomes, 
resulting from its longest residence time (τC , 154.3 years; τN , 
78.4 years; τP , 65.5 years) and mediated element input (NPP, 557.4 g C 
m−2 yr.−1; UN, 5.4 g N m−2 yr.−1; UP, 0.37 g P m−2 yr.−1). However, the order 
of the size in C, N, and P storage was inconsistent in the remaining seven 
biomes (Supplementary Table S2). Shrubland had the lowest C storage 
(10.7 kg C m−2) as a result of the smallest NPP (257.6 g C m−2 yr.−1) and 
a moderate τC  (41.4 years). Evergreen needle leaf forest (ENF) had a 
relatively long τN  (50.4 years) and low UN (3.1 g N m−2 yr.−1). While 
evergreen broadleaf forest (EBF), deciduous broadleaf forest (DBF), and 
C3 grassland (C3G) had a short τN  (~25.0 years) and relatively high UN 
(~9.0 g N m−2 yr.−1), leading to a moderate N storage. For P storage, EBF, 
DBF, and C3G had a relatively short τP  (~23.9 years) and relatively high 
UP (~0.50 g P m−2 yr.−1), resulting in a moderate P storage. Although 
Tundra had a relatively long τN  (53.0 years) and τP  (50.9 years), it still 
has the lowest N (16.5 g N m−2) and P (1.4 g P m−2) storage as the result 
of the smallest UN (0.31 g N m−2  yr.−1) and UP (0.03 g P m−2  yr.−1). 
Additionally, the carbon influx via canopy photosynthesis (NPP) can 
be further decomposed into GPP and CUE (Xia et al., 2017). The results 
showed that EBF had the highest annual mean GPP (3312.2 g C 
m−2 yr.−1), followed by DBF (2103.1), C4 grassland (C4G, 1873.4), C3G 
(951.3), ENF (912.6), DNF (871.2), Shrubland (511.6) and Tundra 
(370.8) regions (Supplementary Figure S2 and Supplementary Table S2). 
The ranges of carbon use efficiency of all eight biomes from 0.37 to 0.71.

The ecosystem element storage derived from three satellite-based 
LAI differed among the eight biomes. For example, ENF, EBF, and DBF 
had similar C, N, and P storage for the three simulations (Figure 3). 
Although Shrubland and C3G had comparable values of element 
residence time (τC , τN , and τP ), their different element uptake rates 
(NPP, UN, and UP) led to variations in element storage across the three 
simulations. In addition, compared with the simulations derived from 
GIMMS LAI3g and GLASS, the simulation derived by GLOBMAP LAI 
had the smallest NPP, UN, and UP (Figure 3). Tundra and DNF had 
comparable C storage across three simulations. However, the N and P 
storage magnitude varied widely in these regions. The differences in N 
and P storage across the three simulations are mainly due to τN  and 
τP  (Supplementary Table S2).

3.3. Traceability analysis of ecosystem 
residence time

Ecosystem residence time can be  decomposed into baseline 
residence time and environmental scalars. The baseline residence time 
is determined by the carbon transfer coefficients matrix (A matrix), 

decomposition rates (C matrix), and the allocation coefficients 
(B vector) among different plant element pools based on Equation 6. 
Considering that the element cycles (C, N, and P) share the same A and 
C matrix, the difference in baseline element residence time is mainly 
caused by the element allocation coefficients ( B B BC N P, , ). The baseline 
C residence time (�C

� ) is the longest compared with baseline N 
residence time (�N

� ) and baseline P residence time (�P
� ) 

(Supplementary Figure S3) in all the eight biomes. Deciduous needle 
leaf forest has a relatively long �C

�  (21.8 years), which is almost three 
times that of �N

�  (8.2 years) and �P
�  (6.8 years). Baseline element 

residence times were similar in C3 grassland (�C
� , 4.6 years; �N

� , 

A

B

C

FIGURE 3

Decomposition of ecosystem carbon (A), nitrogen (B), and phosphorus 
(C) storage into its influx and ecosystem residence time in various 
biomes for each simulation. ENF, evergreen needleleaf forest; EBF, 
evergreen broadleaf forest; DNF, deciduous needleleaf forest; DBF, 
deciduous broadleaf forest; Shrub, shrub land; C3G, C3 grassland; C4G, 
C4 grassland.
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3.7 years; �P
� , 3.6 years), C4 grassland (�C

� , 5.6 years; �N
� , 

4.3 years; �P
� , 4.3 years), and shrubland (�C

� , 8.7 years; �N
� , 7.1 years; 

�P
� , 7.1 years) regions. Additionally, �C

�  were similar to each other in 
three LAI-derived simulations. While �N

�  and �P
�  differed substantially 

across three simulations, especially in ENF, DNF, and tundra regions 
(Figure 4).

Environmental scalar (ξ ) can regulate ecosystem residence time by 
limiting the decomposition rates of litter and soil organic pools. By 
decomposing environmental scalar into temperature (ξT ) and water 
scalar (ξW ), we can found that the multi-year mean of ξT  ranges from 
0.09 for deciduous needle leaf forest to 0.70 for C4 grassland, while ξW  
ranges from 0.60 for tundra and 0.92 for C4 grassland (Figure 5). The 
global average of ξT  (0.38) is considerably lower than that of ξW  
(0.82). In general, ξT  dominates the difference in ξ  among eight 
biomes compared with ξW .

3.4. Variation decomposition of the 
simulated carbon, nitrogen, and phosphorus 
storage

We decomposed the variations of element storage into several 
traceable components on each vegetated grid by a traceability analysis 
approach. Figure 6 shows the dominant traceable component for each 
grid which explains the greatest contrition to the element storage 
variation. The results showed that the element influx rates (i.e., NPP, UN, 
and UP) are the primary uncertainty source in 67.6, 93.2, and 93.0% of 
the vegetated grid cell for the C, N, and P storage, respectively. By 
further tracing the modeled variation of NPP into GPP and CUE, 
we found that GPP and CUE explained 91.6 and 8.4% of the variation 
across simulations, respectively. The baseline residence time has a larger 
uncertainty contribution than the environmental scalars (Figure 6). 
Specifically, the contributions of baseline element residence time (i.e., 
�C
� , �N

� , and �P
� ) to the variation of ecosystem element residence time 

(i.e., τC , τN , and τP ) is 75.3, 91.2, and 91.8%, respectively. While the 
contribution of ξ  is 24.7% for the variation of τC , 8.8% for τN , and 
8.2% for τP . In addition, the contributions of ξT  and ξW  to the 
variation of element storage are relatively small compared with other 

contributors, i.e., ξT  and ξW  only contribute 3.8 and 4.2% for C 
storage, 0.32 and 0.28% for N storage, and 0.28 and 0.29% for P storage 
variation, respectively.

4. Discussion

Several recent studies have compared the differences among the 
existing satellite-derived LAI products on regional and global scales 
(Jiang et al., 2017; Liu et al., 2018). However, few studies have explored 
the influences of data uncertainty on simulated element storage in 
biogeochemical models. Our study shows that the largest discrepancies 
in the magnitude and spatial variance among different LAI products are 
mainly located in the evergreen broadleaf forest (Figure 2B), which is 
consistent with some previous studies (Camacho et al., 2013; Fang et al., 
2013; Xiao et al., 2017; Piao et al., 2020). The significant divergence in 
different satellite-based LAI observations is due to the saturation effects 
of LAI in dense vegetation (Goswami et al., 2015; Li et al., 2018), sensor 
degradation, changes in platforms and sensors, and contamination by 
clouds and aerosols (Jiang et al., 2017; Liu et al., 2018; Piao et al., 2020). 
However, the high northern latitudes rather than the tropical regions 
have the most considerable discrepancies in simulated element storage 
due to the uncertainty of permafrost processes and the difficulty of 
spinning the model to equilibrium (Thornton and Rosenbloom, 2005; 
Xia et al., 2012). The results of the uncertainty pattern in element storage 
are consistent with that emerged in the current generation of Earth 
System Models (Arora et al., 2013; Friedlingstein et al., 2014; Zhou et al., 
2021; Wei et al., 2022b). The contrast spatial distribution of uncertainty 
between satellite-derived LAI data and the modeled C-N-P storages 
indicates a nonlinear propagation of leaf area uncertainty in the 
biogeochemical models.

Decomposing the modeled element storage to its traceable 
components can facilitate understanding of inter-biome distributions of 
terrestrial C, N, and P storage on the globe (Figure 2). For instance, due 
to the long residence times and the corresponding moderate uptake rate, 
the deciduous needle leaf forest has the highest C, N, and P storage 
among all the eight biomes (Figure 3). Although evergreen broadleaf 
forests have relatively large influxes of C and N, the corresponding short 
residence time results in intermediate C and N storages. The P storage 
in the evergreen broadleaf forest regions can be decomposed into the 
medium P uptake and residence time (Figure 3). The ecosystem element 
residence time can be  further decomposed into the corresponding 
baseline residence time and environmental scalars. As shown in 
Figure 4, the evergreen broadleaf forest has almost the longest mean 
baseline residence times of C (21.9 years), N (15.5 years), and P 
(11.5 years). However, although deciduous needle leaf forest has a 
relatively long baseline C residence time (21.8 years), it has only 
moderate baseline N (8.2 years) and P (6.8 years) residence time 
(Figure 4). This is because more assimilated N and P than C are allocated 
to leaves (C: 0.08, N: 0.26, P: 0.38) with faster turnover 
(Supplementary Figure S4). Previous studies also reported a longer P 
residence time on soils with low P availability (Tsujii et al., 2020), which 
can contribute to more efficient P conservation to support plant 
productivity under nutrient-limited regions (Wang et  al., 2018). In 
addition, environmental scalars can also influence ecosystem residence 
time by regulating the baseline residence time in the CABLE model. For 
example, the low temperature decreases the decomposition rates in 
north-high latitude regions, though the absolute magnitude of 

FIGURE 4

Comparison of baseline carbon, nitrogen and phosphorus residence 
time among different biomes with a three-dimensional scatter plot for 
each simulation. Abbreviations of biomes are given in Figure 3.
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discrepancy is large (Figure 5; Koven et al., 2015). Our results indicate 
that compared with the water scalar, the temperature scaler is the main 
limiting factor in all eight biomes (Figure 5), which is also supported by 

the observational datasets in temperate forests on the site levels (Chen 
et al., 2022).

We diagnosed the uncertainty source of different simulations 
derived from three satellite-based LAI products based on the 
traceability framework. We  further quantified the dominant 
traceable component for each grid on a global scale. The results 
indicate that the uncertainty of element storage across three 
LAI-derived simulations shows a large spatial variation. Specifically, 
our study demonstrates that GPP contributes most to the spatial 
uncertainty of C storage in 61.9% of vegetated grids, mainly located 
in subtropical and some tropical regions. By contrast, the baseline 
C residence time was the major contributing factor for northern 
high-latitude areas (Figure 6). The spatial pattern of the dominant 
uncertainty components of N and P storage was similar to C 
storage, with N and P uptake rates dominating >90% of the global 
vegetated grids.

Although our biogeochemical traceability framework helps trace 
the uncertainty propagation path, we also acknowledge that it still 
has some limitations. First, the steady-state assumptions developing 
the traceability framework in this study are widely used in 
decomposing the land surface models (Xia et al., 2013; Rafique et al., 
2016; Wei et al., 2022b) and developing models (Wang et al., 2018). 
However, terrestrial ecosystems are not steady (Luo and Weng, 2011) 
due to increasing atmospheric CO2, climate warming, nitrogen 
deposition, and other anthropogenic disturbances (Friedlingstein 
et al., 2006; Sitch et al., 2015). Second, the plant functional types in 
each land grid cell are prescribed in the CABLE model. Thus, the 
uncertainty of LAI data may propagate to different processes in 
dynamic vegetation models, such as the CLM-FATES (Fisher et al., 
2015) and BiomeE (Weng et al., 2015, 2019). Third, we acknowledge 
that this approach mainly focuses on ecosystems’ emergent 
properties but ignores some understanding of internal ecological 
mechanisms such as competitive strategies and evolutionary systems. 
Furthermore, the traceability framework we applied in this study 
only considered organic pools and ignored soil inorganic N and P 
pools. The size of soil inorganic N and P pools may enhance or 
weaken the feedback between vegetation dynamics and climate 
change (Wei et al., 2019; Wang et al., 2022), calling for a further 
understanding of the interaction between vegetation and inorganic 
nutrient pools in biogeochemical models.

5. Conclusion

In summary, this study explored data uncertainty propagation to 
model uncertainty by decomposing the terrestrial organic element 
(i.e., C, N, and P) storage into its traceable components. Those 
components include the element uptake rates, ecosystem baseline 
residence time, temperature, and water scalars. Such a traceable 
analytical framework effectively reveals the mechanisms behind the 
simulation uncertainty and its propagation through ecosystem 
processes. By applying this framework, we can distinguish the reasons 
for the difference in simulated element storage caused by LAI among 
biomes and further diagnose the uncertainty source. It can be applied 
to other biogeochemical models to help characterize and quantify the 
uncertainty propagated in element cycles. The nonlinear uncertainty 
propagation of data to the model explored in this study can help 
improve biogeochemical models’ future prediction ability. The 
findings in this study also call for more research efforts on the causal 

FIGURE 5

Determining of the environmental scalars ( ξ ) by temperature scalars 
( Tξ ) and water scalars ( Wξ ) among biomes. The dashed line show 
the constant value of environment scalars. Abbreviations of biomes are 
given in Figure 3.

A

B

C

FIGURE 6

The global pattern of the dominant variable for the variation in 
simulated land carbon (A), nitrogen (B), and phosphorus (C) storage 
among three simulations. The insert panels indicate the proportion of 
each traceable components in global vegetated grids. GPP, gross 
primary productivity, CUE, carbon use efficiency; Tξ , temperature 
scalars; Wξ , water scalars; Cτ ′ , baseline C residence time; Nτ ′ , 
baseline N residence time; Pτ ′ , baseline P residence time.
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links between leaf area and biogeochemical cycles in 
terrestrial ecosystems.
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