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Understanding of the Everglades’ ecological vulnerabilities and restoration needs 
has advanced over the past decade but has not been applied in an integrated 
manner. To address this need, we developed the Everglades Vulnerability Analysis 
(EVA), a decision support tool that uses modular Bayesian networks to predict the 
ecological outcomes of a subset of the ecosystem’s health indicators. This tool 
takes advantage of the extensive modeling work already done in the Everglades 
and synthesizes information across indicators of ecosystem health to forecast 
long-term, landscape-scale changes. In addition, the tool can predict indicator 
vulnerability through comparison to user-defined ideal system states that can 
vary in the level of certainty of outcomes. An integrated understanding of the 
Everglades system is essential for evaluation of trade-offs at local, regional, and 
system-wide scales. Through EVA, Everglades restoration decision makers can 
provide effective guidance during restoration planning and implementation 
processes to mitigate unintended consequences that could result in further 
damage to the Everglades system.
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1. Introduction

The Greater Everglades is a large (~ 47,000 km2; Gleason and Stone, 1994), unique 
sub-tropical wetland ecosystem in the southeastern United States. Before it was severely damaged 
by the construction of a network of canal and levee systems that drained water from the 
landscape, the Everglades was characterized by the slow movement of freshwater from the 
northern reaches of the system in central Florida to its eventual emptying into the Gulf of Mexico 
and Florida Bay (Douglas, 1947; Lodge, 2016). The slow movement of the water and slight 
changes in topography throughout the landscape facilitated the growth of wetland vegetation 
dependent on different hydrologic regimes and supported an abundance of iconic wildlife such 
as wading birds and alligators (Davis and Ogden, 1994). However, during the 1900s, much of the 
Everglades was drained to provide freshwater resources for agricultural development (National 
Academies of Sciences, Engineering, and Medicine (NASEM), 2018). This caused severe 
degradation of the ecosystem in the form of biodiversity loss, population declines of both animal 
and plant communities, declines in water quality, and saltwater intrusion into groundwater 
(Davis and Ogden, 1994, National Academies of Sciences, Engineering, and Medicine (NASEM), 
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2018). In 2000, the United States Congress passed a Water Resources 
Development Act which authorized the Comprehensive Everglades 
Restoration Plan (CERP) to build the infrastructure necessary to 
restore freshwater flow throughout the Everglades, especially to the 
southern portions of the system, to facilitate the recovery of the unique 
habitats historically present. CERP is one of the largest and most 
expensive restoration efforts in the world and its implementation 
requires extensive cooperation among stakeholders to ensure 
restoration efforts are successful (LoSchiavo et al., 2013).

Ecological models facilitate evaluation and assessment of potential 
impacts of restoration on the Greater Everglades system (REstoration 
COordination and VERification (RECOVER), 2020). Currently, 
decision makers must consider the output of models for each species 
or habitat individually when deciding on water management scenarios 
that need to meet a diversity of stakeholder needs. These outputs are 
often generated at different scales and are not easily comparable to one 
another. Additionally, the uncertainty around these model outputs is 
either unavailable or not considered when comparing across 
management scenarios (National Academies of Sciences, Engineering, 
and Medicine (NASEM), 2021; Romañach and Pearlstine, 2021). 
RECOVER (Restoration Coordination & Verification), a team of 
scientists and representatives of key Everglades stakeholders, identified 
the need to address uncertainty and integration of ecological models 
in a recent Five-Year Plan (REstoration COordination and 
VERification (RECOVER), 2016). This Plan recognized that the 
understanding of the Everglades’ ecological vulnerabilities and 
restoration needs has greatly advanced over the past decade but that 
this understanding has yet to be applied in a system-wide, integrated 
manner. Here, we define vulnerability as the degree to which a system 
or part of the system is damaged or harmed resulting from 
environmental stressors or disturbances. Through RECOVER’s Five-
Year Plan, the need emerged for an analytical tool that could connect 
various models into a common framework and spatial scale. In 
addition, the tool would need to provide a system-wide response to 
stressors or restoration actions to facilitate CERP implementation in 
the face of an uncertain future due to climate change or funding 
constraints. Generating outputs that are on a common temporal and 
spatial scale would increase the ability of Everglades stakeholders to 
assess trade-offs between prioritizing different habitats or species 
more effectively when choosing between restoration plans for 
implementation (Romañach et al., 2022).

Bayesian networks (BNs) are used extensively in the development 
of decision support tools and analyses to investigate environmental 
risk, project impacts from restoration projects or development, and 
forecast the potential impacts of disturbances such as recreation, fire, 
and climate change (McCann et al., 2006; Kaikkonen et al., 2020). BNs 
produce model outputs as the probability of outcomes generated by 
influence diagrams and conditional probability tables (CPTs; Scutari 
and Denis, 2014). BNs are an ideal modeling framework to meet 
RECOVER’s needs because of their flexibility, connectivity, and ability 
to be easily updated. BNs are flexible in that it is easy to incorporate 
data from different sources such as monitoring, experimental, or 
expert knowledge into a single network (Landuyt et  al., 2013). 
Individual BNs can be connected to one another through common or 
latent nodes, allowing a modular building of larger networks that can 
facilitate collaboration among groups of researchers (Marcot and 
Penman, 2019). BNs are built using Bayes’ Theorem, where prior 
knowledge of the system is utilized to generate output, and thus 

regular updating using new data is built into the modeling process 
(Koski and Noble, 2009).

We constructed a flexible, modular, and easily updated decision 
support tool known as the Everglades Vulnerability Analysis (EVA) to 
address the system-wide evaluation and assessment needs of 
RECOVER, who will use this information to communicate the 
expected ecological impact of restoration plans to managers and 
decision makers. This tool takes advantage of the extensive modeling 
work already done in the Everglades and synthesizes information 
across indicators of ecosystem health to forecast long-term, landscape-
scale changes. In addition, the tool calculates a vulnerability score for 
these indicators by comparing model outputs to ideal system states 
defined by the user. Uncertainties in both the model outputs and the 
ideal states are incorporated into the calculation of the vulnerability 
score; uncertainty within the ideal states can in turn be adjusted to 
explore how limiting uncertainty tolerance impacts user conclusions 
and decision making. Here, we describe the EVA tool and illustrate its 
utility as a decision support tool through example outputs.

2. Materials and methods

2.1. Study area

The EVA tool focuses on the managed areas of the southern 
Everglades system which includes parts of Big Cypress Seminole Indian 
Reservation, the Miccosukee Federal Indian Reservation, Water 
Conservation Areas (WCA-1, 2A, 2B, 3A, and 3B), Big Cypress National 
Preserve (BCNP), and Everglades National Park (ENP; Figure 1). Water 
is managed on these lands for a variety of uses including flood control, 
municipal water supply, and wildlife use (LoSchiavo et al., 2013). Several 
hydrologic models are commonly used in the southern Everglades to 
predict and evaluate water stage and depths across the landscape. These 
models include the Everglades Depth Estimation Network (EDEN; 
Palaseanu and Pearlstine, 2008; Haider et al., 2020), the Biscayne and 
Southern Everglades Coastal Transport (BISECT; Swain et al., 2019) 
model, and the Regional Simulation Model (RSM; South Florida Water 
Management District (SFWMD), 2005). EDEN is an interpolation of a 
network of water gages across the system that measure water stage and 
water depth (by subtracting elevation) at a 400 meter resolution. The 
footprint of this model extends from the northern Water Conservation 
Areas (WCAs) down into ENP but does not reach to the coast. BISECT 
is a physical simulation model of hydrologic conditions for the southern 
coast of Florida stretching up to the southern edge of WCA-3A and 
WCA-3B and parts of Big Cypress National Preserve. Because BISECT 
provides hydrology along the coast and can generate estimates of 
salinity, it is the hydrologic model used when exploring impacts on the 
coastal Everglades. The RSM is a finite volume surface water/
groundwater model that extends from above Lake Okeechobee down 
to the southern coast of Florida. The RSM is used by Everglades 
managers and decision makers to explore the long-term trends in 
hydrology resulting from planned construction of new water 
management structures or water management strategies. To maintain 
consistency among the three models when using EVA, the BISECT and 
RSM models were each converted to a 400 meter grid that aligns with 
EDEN. The original BISECT model operates on a 500 meter grid and 
was resampled using bilinear interpolation, while the original RSM 
operates on a variable mesh grid and was converted to an orthogonal 
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400 meter grid aligning with EDEN. Converting each of these 
hydrologic models to a common spatial grid can streamline the 
modeling process, but we acknowledge that in some areas, finer-scale 
information may be lost. Because much of the data used to build the 
current network modules came from within ENP, we focus on EVA 
output from within the ENP boundary for this manuscript.

2.2. Everglades vulnerability analysis 
modules and data

Everglades Vulnerability Analysis is a series of connected Bayesian 
networks, where each ‘module’ represents an individual indicator of 

ecosystem health. By building the tool using a modular framework, 
we can easily add new indicators to the tool in the future. Each module 
predicts spatially and temporally explicit outcomes on a 400 meter 
resolution on an annual basis. Because we built EVA to work with any 
of the three main hydrologic models used in the Everglades, EVA can 
predict annual outcomes based on historical or predicted daily 
hydrologic conditions. Currently, EVA models four indicators of 
Everglades ecosystem health: (1) vegetation type; (2) American alligator 
nesting potential; (3) wading bird colony size; and (4) sawgrass peat 
accumulation. Each module was selected because of its significance as 
an indicator of overall Everglades ecosystem functionality, as models 
that predict both vegetation and key wildlife responses are regularly 
used by RECOVER to assess potential restoration impacts (for an 

FIGURE 1

Spatial extent of the managed areas of the Everglades and the hydrologic models that the Everglades Vulnerability Analysis (EVA) can use as inputs. 
WCA = Water Conservation Area; BISECT = Biscayne and Southern Everglades Coastal Transport; EDEN = Everglades Depth Estimation Network; and 
RSM = Regional Simulation Model.
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example, see REstoration COordination and VERification (RECOVER), 
2020). All modules except for the sawgrass peat accumulation module 
were built using long-term monitoring data. Because we did not have 
long-term monitoring data of sawgrass peat accumulation across the 
landscape, we instead used observations of peat accumulation reported 
in the literature from experimental data to build this module. The 
vegetation module predicts the probability of six vegetation types across 
the landscape. It was built using several different sources of vegetation 
observations (n = 4,256) across the freshwater and coastal Everglades 
from 2000 to 2017 collected by the National Park Service (NPS; Sah 
et al., 2018; Ruiz et al., 2021). The American alligator nesting potential 
module predicts the probability of alligator nesting on the landscape. 
The American alligator nesting potential module was built using 
alligator nest locations (n = 1,439) from Systematic Reconnaissance 
Flight (SRF) surveys in Everglades National Park from 1992 to 2018. 
Because absence of nests in the SRF survey is much more frequent than 
presence we randomly sampled from the set of nest absences (collected 
during the SRF surveys) to create a presence-absence dataset totaling 
2,878 observations. The wading bird colony size module predicts the 
probability of different size classes of wading bird colonies across the 
landscape. The wading bird module was built using wading bird colony 
sizes from 2000 to 2017 reported in the South Florida Water 
Management District’s annual wading bird nesting reports1 (n = 376). 
The sawgrass peat accumulation module predicts the probability of 
sawgrass peat accretion or subsidence classes across the landscape. The 
sawgrass peat accumulation module was built using sawgrass peat 
accretion or subsidence observations derived from within the literature 
(Craft and Richardson, 1998; Macek and Rejmankova, 2007; Wilson, 
2018; Charles et al., 2019).

2.3. Building the Bayesian network modules

Bayesian networks are built first by defining an influence diagram 
which represents how the researchers believe the system operates. The 
influence diagram can be defined using nodes and arcs in a directed 
acyclic graph (DAG) by the researcher, algorithms that use data to 
learn the network structure, or a combination of both (Scutari and 
Denis, 2014). The relationships between variables that are connected 
in the DAG are defined by conditional probability distributions. These 
distributions are most efficient when variables are discretized into 
bins, and the conditional probabilities are defined in conditional 
probability tables (Koski and Noble, 2009). To build each EVA module, 
we first identified the variables that likely influenced the outcome 
(vegetation type, alligator nesting potential, wading bird colony size, 
or sawgrass peat accumulation). The Everglades community has 
developed several conceptual diagrams which explain how the greater 
ecosystem processes propagate through the system, and we used these 
conceptual diagrams (e.g., the Trophic Hypothesis, Trexler and Goss, 
2009) along with the breadth of Everglades modeling literature (e.g., 
Shinde et al., 2014; Sah et al., 2018; Flower et al., 2019; Gibble et al., 
2020; D’Acunto et al., 2021) to identify input variables for each module 
within EVA. Using the published literature and data exploration, 
we discretized each variable into no more than six classes to avoid 

1 http://sfwmd.gov

creating unnecessarily complicated CPTs (Marcot et al., 2006; Chen 
and Pollino, 2012). Each module’s CPT was fit in the R package 
bnlearn (Scutari, 2010). After defining the module’s CPTs, we explored 
each module’s structure by assessing the prior probability distributions 
of each node. These distributions describe the range of, and most 
common conditions present within, the network module (Koski and 
Noble, 2009). The conceptual framework used to build each model 
(Figure 2) details the general process we went through to develop each 
module, assess it, and then predict it onto the whole landscape. 
Specific details for each module follow in the next sections and the R 
code used to build the modules and predict across the landscape are 
available at D’Acunto et al. (2023).

2.4. Vegetation type module

We chose eight variables to influence vegetation type on the 
Everglades landscape (Figure 3). Hydrologic metrics were generated 
as inputs to the vegetation model from EDEN interpolations (Haider 
et al., 2020) or the BISECT hydrodynamic model (Swain et al., 2019), 
dependent of where the observations fell within the spatial domain. 
We calculated hydrometrics for climatic years, May 1 of the current 
year – April 30 of the next calendar year. Four-year average 
hydrometrics were generated from the annual hydrometrics because 
Ross et  al. (2004) reported improved correlation of vegetation 
response to a 4-year hydroperiod rather than just the current year’s 
hydroperiod. Mangrove species along the coastal Everglades and 
sawgrass are vegetation types in the system that additionally respond 
to salinity and disturbances. We  used salinity modeled by the 
hydrologic model BISECT to characterize the salinity stress within 
each 400 meter grid cell. Distance to coastline was used to provide a 
proxy measure to both nutrients (e.g., phosphorous loads; Childers 
et al., 2006; Dessu et al., 2018) and disturbance from sea level rise 
which can impact vegetation succession and establishment across the 
landscape (Romañach et al., 2018). We extracted the environmental 
variables described in Supplementary Table S1 at each observation for 
the year it was sampled. Each variable was discretized into 4 to 6 
classes (Supplementary Table S1). We  aggregated vegetation 
communities into six freshwater marsh and coastal communities: 
Freshwater prairie, Mangrove, Mangrove scrub, Open water, Sawgrass, 
and Upland. Vegetation categories were aggregated according to the 
crosswalk table located in the Supplementary material. Once the data 
were discretized according to our defined categories, we determined 
both the network structure and values within the CPT using the R 
package bnlearn (Scutari, 2010). We used a hill-climbing (HC) score-
based structure learning algorithm (Russell and Norvig, 2009) to fully 
construct the network using the available data. All eight nodes were 
forced to connect to vegetation type, while the algorithm produced 
additional connections in the network between correlated nodes. The 
CPT values were determined using Bayesian parameter learning 
(method ‘bayes’ within the bnlearn package).

2.5. American alligator nesting potential 
module

The alligator module was developed based on a previous 
modeling effort known as the Alligator Production Suitability Index 
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model (APSI; Shinde et al., 2014) which uses expert knowledge to 
determine how hydrology within the Everglades impacts the species 
at different times during their seasonal cycles. To produce young, 
alligators require slightly different conditions on the landscape 
depending on the time of the year (or timing during the breeding 
cycle). Conditions during the mating period and conditions during 
nest building can influence where and if alligators build nests. 
Therefore, the module contained three hydrologic variables that 
describe each of these conditions on the landscape (Figure 3). Depth 
during the breeding period influences female alligator body 
condition; excessively deep waters (> 122 cm) can reduce food 
availability and cause stress (Dalrymple, 1996a; Dalrymple, 1996b; 
Barr, 1997), while excessively shallow waters (< 15 cm) can severely 
limit an alligator’s ability to move through the marsh (Rice et al., 
2004). Depth during the courtship and mating period was included 
because alligators typically need relatively deep, open water for 
mating (Newsom et  al., 1987; Rice et  al., 2004). During the nest 
building season, alligators require shallower depths typically within 
proximity to deeper ponds known as alligator holes (Newsom et al., 
1987; Fleming, 1990). Thus, we also included the distance to known 
alligator hole as a variable to predict alligator nest presence. 
Hydrologic variables (depth during the breeding period, depth 
during nest building, and depth during courtship and mating) were 
extracted for each observation from EDEN. We calculated distance 
to alligator holes from a point dataset generated from several sources 
of survey data spanning WCA-1 (Mazzotti et  al., 2004), WCA-2 
(Mazzotti et al., 1999), WCA-3 (Campbell and Mazzotti, 2004), and 
ENP (Rice and Mazzotti, 2006, 2007). Each variable was discretized 
into 3–4 classes, and we determined both the network structure and 
values within the CPT using the R package bnlearn (Scutari, 2010; 
Supplementary Table S1). We  used a HC score-based structure 
learning algorithm (Russell and Norvig, 2009) to fully construct the 

network using the available data. All variables were forced to connect 
to nest presence, while the algorithm produced additional 
connections in the network between correlated nodes. We constructed 
the CPT values using Bayesian parameter learning (method ‘bayes’ 
within the bnlearn package).

2.6. Wading bird colony size module

Wading bird colony size is influenced by three hydrologic 
variables and one landscape variable (Figure 3). Water depth during 
the breeding season reflects the current year’s general foraging 
conditions. Wading birds require water depth ranges based on species-
specific leg lengths and foraging strategies of the species (Gawlik, 
2002; Beerens et al., 2015). Water depth during the previous year’s 
spring (March 1–May 31) reflect past hydrologic conditions that can 
impact the populations of fish and crayfish available in the breeding 
season to support nestlings (Botson et al., 2016; van der Heiden and 
Dorn, 2017). The number of days that water depth is less than 0 cm 
over the last three years is indicative of the level of long-term 
drought  across the landscape, which can impact prey availability 
and habitat type (Todd et al., 2010). Finally, vegetation type present on 
the landscape serves as an indicator of the availability of nesting 
substrate. Wading birds typically use woody vegetation such as 
mangroves, hardwood hammock, or shrub scrub types for nesting. 
Each variable was discretized into 2–6 classes, and we determined 
both the network structure and values within the CPT using the R 
package bnlearn (Scutari, 2010; Supplementary Table S1). We used a 
HC score-based structure learning algorithm (Russell and Norvig, 
2009) to fully construct the network using the available data. All 
variables were forced to connect to wading bird colony size, while the 
algorithm produced additional connections in the network between 

FIGURE 2

Conceptual framework detailing how each Bayesian network module was built and then predicted across the landscape. The left-hand box describes 
the process used to develop the module, including assessing module accuracy and sensitivity. The right-hand box describes the process used to 
predict the module outcomes across the landscape.
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correlated nodes. We  constructed the CPT values using Bayesian 
parameter learning (method ‘bayes’ within the bnlearn package).

2.7. Sawgrass peat accumulation module

The sawgrass peat accumulation module is influenced by two 
hydrologic variables (dry-down days and salinity), whether sawgrass peat 
is present at the site, and the current depth of the peat layer (Figure 3; 
Supplementary Table S1). Salinity intrusion and the amount of drought 
the site experiences are known drivers of peat subsidence in the system 
(Wilson et al., 2018; Chambers et al., 2019; Charles et al., 2019). Because 
we  focused on sawgrass peat accumulation, we  added a node that 
indicated whether sawgrass peat was currently present on the landscape. 
We used the predicted probability of the Sawgrass vegetation type from 
the vegetation module to generate three states. A site with a predicted 
Sawgrass probability of > 50% was classified as “Sawgrass.” Sites with 
< 50% probability of Sawgrass but were predicted to be Sawgrass in the 
first year of the simulation were classified as “Has Sawgrass Peat.” 
Otherwise, sites were classified as “Not Sawgrass.” Finally, we binned the 
peat depth variable so that the classes would reflect where on the 
landscape peat was deep enough to subside. The threshold for the two 
classes is established at 5 cm to reflect the limited precision of the input, 

a spatially interpolated soil depth data layer. We created the starting soil 
depth for the model using universal kriging to estimate soil depth at a 
400 meter resolution for management areas across the EDEN and 
BISECT footprints with data from the Environmental Protection 
Agency’s Everglades Regional Environmental Monitoring and 
Assessment Program (REMAP; U.S. Environmental Protection Agency 
(USEPA), 2020) and 264 additional soil depth field estimates provided 
by L. Lamb-Wotton (personal communication). We used soil depth from 
687 coordinate point locations across all sampling years which 
ranged  from 1964 to 2018 and occurred in all three WCAs and 
ENP. We  calculated mean soil depth when multiple depths were 
documented at the same location. We examined soil depth within each 
management area for normality and used a cube root transformation on 
the data to normalize the distribution. We also observed spatial trends in 
soil depth, and therefore we examined easting and northing as covariates 
when kriging. We used the ‘autoKrige’ function from the R package 
automap (Hiemstra et  al., 2008) to fit variograms with easting and 
northing and to perform kriging. We selected the best fitting model, 
back-transformed, and bias corrected interpolated depths (Gregoire 
et al., 2008) and used the kriged depths to create the starting soil depth 
layer. The values for the 6 expected sawgrass peat accretion bins were 
estimated from 6 field sites with observations found in the literature 
(Craft and Richardson, 1998). We determined the mean accretion or 

FIGURE 3

Structure of the Bayesian network modules currently used in the Everglades Vulnerability Analysis (EVA). Green shaded nodes are output nodes, while 
white non-shaded nodes are variable input nodes. For descriptions of each node and the discretization levels used, see Supplementary Table S1 in 
Supplementary material.
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subsidence rate and associated standard deviation expected for each 
category within the CPT from the literature (Table 1). When conditions 
favored peat accretion (low salinities, peat depth > 5 cm, and little 
drought), we used a value of 0.15 ± 0.09 cm/year, which was a yearly 
accretion observed in the literature with these conditions (Craft and 
Richardson, 1998). During conditions of drought and high salinities, 
we used subsidence values of −2 or − 4 cm/year with a standard deviation 
of ± 0.75. We  manually populated the peat accretion CPT node by 
generating a normal probability distribution from the values in Table 1 
and calculating the probability that each value fell within our defined 
bins. All other nodes in the CPT were set as equally likely (probabilities 
split evenly across each bin) as we did not have adequate information to 
design more precise CPTs. The CPTs were defined manually within 
bnlearn to match the framework of the other nodes in EVA.

2.8. Module accuracy and sensitivity

Module accuracy was not explicitly assessed for the sawgrass peat 
accumulation module, as we did not have access to a long-term dataset 
for assessment. For the modules built using long-term monitoring 
data (vegetation type, American alligator nesting potential, and 
wading bird colony size), we  assessed the network’s accuracy by 
calculating the posterior classification error rate using a 10-fold cross-
validation process (Marcot, 2012; Marcot and Hanea, 2021), where 
we  randomly assigned each observation to one of 10 folds. The 
network was then re-fit 10 times, each time holding one of the folds 
out of the data set. The fold held out of the fitting process was used as 
a testing dataset, where we predicted the probability of each outcome 
bin using the fitted network. Network predictions were generated with 
the R package bnlearn using Bayesian likelihood weighting and 500 

iterations. Bayesian likelihood weighting performs Monte Carlo 
simulations of the network to produce a stochastic sample of 
probability predictions of the node chosen for prediction. The class 
with the highest probability is therefore the chosen predicted class. 
We calculated the posterior classification error rate through the ‘bn_
cv’ function in the R package bnlearn; rates closer to zero indicate a 
more accurate model. We also calculated the multi-class Brier score 
(Brier, 1950) to assess the network’s overall ability to predict the 
correct class. The Brier score measures how close a predicted 
probability is to the observed class but averages across all possible 
outcomes. Therefore, it considers the certainty of an outcome along 
with whether the class was predicted accurately. Multi-class Brier 
scores range from 0 to 2, with scores closest to zero indicating a model 
with less error and uncertainty. We assessed the ability of the module 
to accurately predict each outcome by constructing Receiver 
Operating Characteristic (ROC) curves and area under the curve 
(AUC) values (Fielding and Bell, 1997). To explore network sensitivity, 
we  performed a one-way sensitivity analysis on each module by 
comparing the range of predicted probabilities of the outcome bins 
across the range of possible input node values. This was done 
iteratively, where only one input node’s values were changed at a time 
and the network was adjusted via proportional covariation so that 
we could assess each node’s impact on the outcome independently 
(Leonelli and Riccomagno, 2022). Nodes that produced the largest 
range in probabilities of an outcome bin were considered the most 
important nodes for predicting that outcome.

2.9. Module output and uncertainty

We visualized the output of all modules by using the BISECT 
hydrodynamic model to predict each module for a dry, average, and 
wet water depth year between 2000 and 2017 (2014 was the dry year, 
2007 was the average year, and 2003 was the wet year). We predicted 
the probability of all outcomes using the bnlearn R package on the 
landscape and mapped the outcome with the highest predicted 
probability. We  assessed spatial uncertainty for all modules by 
calculating the Posterior Probability Certainty Index (PPCI; Marcot, 
2012). This index is a measure of the evenness of the posterior 
probabilities of each binned outcome; a more even distribution of 
probabilities would indicate a high level of uncertainty because there 
would be no clear category that is most probable.

2.10. Mapping vulnerability

We translated the American alligator nesting potential, wading 
bird colony size, and sawgrass peat accumulation module predictions 
for the dry, average, and wet years into surfaces of vulnerability. The 
vegetation type module was not translated into a surface of 
vulnerability, but its output feeds into both the wading bird colony size 
and sawgrass peat accumulation modules. We chose not to develop 
vulnerability surfaces for the vegetation module because there is not 
a clear landscape-wide favored vegetation type for restoration. 
We built vulnerability surfaces by first defining a set of target site 
outcomes and comparing those target sites to the predicted network 
outcomes from BISECT. Each network module’s output is a set of bins 
that are each assigned a probability based on inputs to the network. 

TABLE 1 Mean sawgrass peat accumulation values (cm) used in 
computation of joint conditional probabilities.

Dry Days < 90

Salinity (ppt)

Peat depth (cm) < 5 5–10 10–18 > 18

Sawgrass
< 5 0.15 0 0 0

> 5 0.15 -2 −4 -4

Has Sawgrass 

Peat

< 5 0 0 0 0

> 5 0 −2 −3 −3

Not Sawgrass
< 5 0 0 0 0

> 5 0 0 0 0

Dry Days > 90

Salinity (ppt)

Peat depth (cm) < 5 5–10 10–18 > 18

Sawgrass
< 5 0.15 0 0 0

> 5 0.15 −2 −4 −4

Has Sawgrass 

Peat

< 5 0 0 0 0

> 5 0 −2 −4 −4

Not Sawgrass
< 5 0 0 0 0

> 5 0 0 0 0

Standard deviations were set at ± 0.09 cm for positive (accreting) mean values and ± 0.75 cm 
for negative (subsiding) mean values.
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For example, the wading bird colony size module has three outcomes: 
‘0–10 birds’, ‘10–100 birds’, and ‘> 100 birds’. We may define a target 
site as one where the most likely outcome is the ‘> 100 birds’ bin. If 
we want to define absolute certainty in the target outcomes, we could 
set our target site to have a 0 probability in all bins other than ‘> 100 
birds’ and set a probability of 1 to the ‘> 100 birds’ bin. However, 
we know there is considerable uncertainty in this system and that 
other bins such as the ‘10–100 birds’ bin could be  considered 
acceptable in some areas of the landscape by managers or decision 
makers. To capture this variation, we  generated 1,000 theoretical 
target sites by simulating outcome bin probabilities from a Dirichlet 
distribution, where we defined each shape parameter α according to 
the desired probability of that outcome for a target state (Table 2). In 
practice, these probabilities will be set by the user of the tool and the 
probabilities used here are for illustration purposes only. The distance 
between the target sites and the actual outcomes of the model were 
compared by first conducting a Principal Components Analysis (PCA; 
Jolliffe and Cadima, 2016) on a combined dataset of both the ideal 
sites and network outcomes. A PCA is an ordination process which 
takes a multivariate set of data and collapses the variables into new, 
orthogonal variables known as principal components. We then used 
the first two principal components as coordinates within the variable 
space and calculated an average distance between the network 
outcomes and the target sites. We standardized this distance to scale 
from 0 to 1 so that values closer to 1 indicate higher vulnerability. In 
this sense, higher vulnerability areas (closer to 1) are areas that are 
furthest from the user-defined target and at most risk of not meeting 
that target.

3. Results

We examined the structure, accuracy, certainty, and sensitivity in 
addition to how the calculated vulnerability changes over time for 
each EVA module.

3.1. Module prior probabilities

The prior probability distribution for the vegetation type module 
exhibits a diverse range of conditions across both the input and output 
nodes (Supplementary Figure S1). The most likely vegetation type 
outcome given all conditions in the data set is mangrove scrub 
(p = 28.6%), followed by open water and sawgrass types (p = 20.9% and 
p = 20.2%, respectively). For the American alligator nesting potential 
module, the outcomes of whether a nest is present or not are almost 
tied at p = 50.1% for nests being absent in a cell versus p = 49.9% for 
nests being present in a cell (Supplementary Figure S2). The prior 
probabilities for the rest of the input variables in the alligator nesting 
potential module tend to skew heavily towards one or two bins. For 
the wading bird colony size module, greater than 10 but less than 100 
birds was the most likely outcome (p = 40.3%). The prior probabilities 
for the rest of the wading bird colony size module input variables were 
spread across the bins, but the vegetation type node had low prior 
probabilities of both mangrove and freshwater prairie types 
(Supplementary Figure S3). Because we built the peat accumulation 
module from information gleaned from a small number of 
observations and not long-term monitoring data, we  assigned 
uninformative prior probabilities to the network module for the input 
nodes (Supplementary Figure S4). The most probable accumulation 
value is therefore subsidence between 4.5 and 3.5 cm (p = 70.1%).

3.2. Module accuracy and sensitivity

The modules we  could assess error rates for (vegetation type, 
alligator nesting potential, and wading bird colony size) exhibited low 
to moderate mean posterior classification error rates (0.291–0.441) 
and low mean Brier scores (0.368–0.584; Table 3). Individual outcome 
mean AUC scores for the vegetation type module revealed that the 
module was fairly successful at discriminating between classes (all 
AUC scores > 0.70). The module was able to discriminate open water 
most successfully with a mean AUC score of 0.922 and was least 
successful at discriminating upland habitat with a mean AUC score of 
0.719. The alligator nesting potential module was successful at 
discriminating between nest presence and absence with a mean AUC 
of 0.759. The wading bird colony size module showed a low ability to 
discriminate low and moderate numbers of birds (mean AUC 
score < 0.70) but was more successful at discriminating areas with 
large numbers of wading birds (Table  3). The one-way sensitivity 
analyses revealed which input nodes were the strongest influence on 
the outcome node probabilities (Table 4). The vegetation type module 
was most sensitive to the number of days the depth was greater than 
0 mm and the annual 25th quartile depth. The alligator nesting 
potential module was most sensitive to depths during the breeding 
season and during courtship and mating. The wading bird colony size 
module was most sensitive to the depth during the breeding season 
and vegetation type. The sawgrass peat accumulation module was 
most sensitive to the sawgrass presence and current peat depth.

3.3. Module output and uncertainty

The vegetation module responded to hydrologic changes on the 
landscape, notably much of the landscape predicted as mangrove in 

TABLE 2 Dirichlet shape parameters (α) assigned to each outcome for the 
alligator nesting potential, sawgrass peat accumulation, and wading bird 
colony size modules in EVA.

Module Outcome class Dirichlet α

Alligator nesting 

potential

Nest present 0.1

Nest absent 1

Sawgrass peat 

accumulation

−6.5 to −4.5 cm 0.1

−4.5 to −3.5 cm 0.1

−3.5 to −2.5 cm 0.2

−2.5 to −1.5 cm 0.2

−1.5 to 0 cm 0.3

0 to 1.5 cm 1

Wading bird colony size

< 10 birds 0.1

10 to 100 birds 0.2

> 100 birds 1

Larger shape parameters tend to generate higher probabilities in that outcome within 
simulated ideal sites. These parameters were used to generate probabilities that sum to 1 and 
compared to EVA outcomes to generate vulnerability surfaces.

https://doi.org/10.3389/fevo.2023.1111551
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


D’Acunto et al. 10.3389/fevo.2023.1111551

Frontiers in Ecology and Evolution 09 frontiersin.org

the dry year is replaced by mangrove scrub in the average and wet 
year. The vegetation module PPCI maps showed highest certainty in 
areas consistently predicted as sawgrass, whereas the northern center 
of the landscape was consistently uncertain (Figure 4). The alligator 
nesting potential module showed lower nesting potential in the dry 
year compared to the average and wet years and was most certain 
along the coastal areas (Figure 5). The wading bird colony size module 
showed greatest numbers of nesting wading birds along the coastal 
areas, with an expanded footprint during the wet year. The PPCI maps 
showed generally lower certainty across the landscape (Figure 6). The 
sawgrass peat accumulation module showed peat subsidence along the 
coast, with a greater footprint of subsidence during the dry year than 
the average or wet year. The PPCI map revealed generally high 
certainty, with the highest certainty occurring along coastal areas 
(Figure 7).

3.4. Visualizing vulnerability

Areas that were most vulnerable on the landscape varied across 
the network modules (Figure 8). The alligator module showed most 
vulnerability along the northwest coast and the southeast interior 
of the landscape, while the wading bird module showed the most 
vulnerability in the northern portions of the landscape. The 
sawgrass peat accretion module revealed the most vulnerability in 
small sections of the southern and northwestern coast. When 

viewed across time, we  saw that in general, alligator nesting 
vulnerability remained relatively stable over time, but the sawgrass 
peat accretion and wading bird modules both increased in 
vulnerability over time (Figure 9).

4. Discussion

The Everglades is a spatiotemporally dynamic ecosystem that is 
managed for wildlife and human needs that may sometimes conflict 
(Romañach et al., 2018). In these conflicting scenarios, it is important 
for decision-makers to be able to view indicators of the ecosystem’s 
health and vulnerability in a system-wide manner (REstoration 
COordination and VERification (RECOVER), 2016). EVA 
accomplishes this task by providing a framework for the prediction of 
ecological outcomes and translating these outcomes to surfaces of 
vulnerability for consideration by decision-makers.

Everglades vulnerability analysis is built using Bayesian network 
modules which have several advantages over other modeling efforts 
currently used for decision-making. Additional modules (created as 
separate or connected Bayesian networks) can be added to EVA that 
represent additional indicators of ecosystem health. Here we present 
four indicators of ecosystem health (vegetation type, alligator nesting 
potential, wading bird colony size, and sawgrass peat accumulation), 
but additional indicators may be  needed to consider EVA a truly 
system-wide tool. Bayesian networks can be  easily updated and 
refined as new information (such as monitoring data) becomes 
available, and this process is specifically built into the theoretical 
underpinnings of the model (Koski and Noble, 2009). Updating EVA’s 
network module prior probabilities using new or newly available data 
can improve outcome accuracy and certainty (Marcot and Hanea, 
2021). EVA’s framework makes it possible to integrate different forms 
of knowledge within the Everglades system. For example, we have 
incorporated experimental data alongside monitoring data in this 
current iteration of EVA. The modeling framework necessitates the 
inclusion of uncertainty in module outcomes even when built from 
non-empirical data, allowing assessment of uncertainty to be standard 
across all modules. Finally, EVA generates surfaces of vulnerability as 
compared to ideal states of the ecosystem which can be defined as 
historical conditions or acceptable conditions, dependent on the 
user’s priorities.

Everglades vulnerability analysis’s modeling framework 
characteristics (simple updating, integrating different forms of 
knowledge, modeling of uncertainty) make it an attractive tool for 
application in other regions and ecosystems. Although most of our 
modules are built using years of empirical knowledge, our inclusion 
of sawgrass peat accumulation is an example of the ability to weigh 
less well-understood criteria in the vulnerability evaluation by 
explicit incorporation of uncertainties, along with a framework for 
updating the module as our knowledge improves. This approach is 
especially useful for projects that involve large-scale, long-term 
restoration efforts where there are multiple conflicting needs. 
Using flexible, modular Bayesian networks, we  demonstrate a 
pathway to connect decades of monitoring and modeling work into 
a new decision support tool that can be updated regularly with 
new science.

The modules exhibited varying degrees of overall accuracy. The 
vegetation and wading bird colony size modules exhibited moderate 

TABLE 3 Accuracy measures (AUC, posterior classification error, and Brier 
skill score) for three of the four Everglades vulnerability analysis (EVA) 
modules.

Module Outcome 
class

AUC Posterior 
classification 

error

Brier 
skill 

score

Vegetation 

type

Freshwater 

prairie

0.885 (± 

0.047)

0.441 (±0.035)
0.584 

(± 0.031)

Mangrove
0.751 (± 

0.026)

Mangrove 

scrub

0.775 (± 

0.018)

Open water
0.922 (± 

0.016)

Sawgrass
0.889 (± 

0.019)

Upland
0.719 (± 

0.047)

Alligator 

nesting
Nest present

0.759 (± 

0.018)
0.291 (± 0.026)

0.368 

(± 0.027)

Wading bird 

colony size

< 10 birds
0.632 (± 

0.138)

0.424 (± 0.113)
0.502 

(± 0.045)
10 to 100 birds

0.665 (± 

0.098)

> 100 birds
0.855 (± 

0.062)

AUC scores closer to 1 are better, while posterior classification error and Brier skill scores 
closer to 0 are better. The sawgrass peat module was built using a small number of 
observations from the literature and could not be evaluated using these metrics.
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rates of error. Vegetation patterns in the Everglades are likely driven 
by both environmental factors and competition between plant 
species with overlapping niches (O’Reilly-Nugent et al., 2018). This 
complexity makes predicting the location of vegetation types with 
precision difficult, especially at a 400 meter resolution. The overall 
pattern of vegetation types across the landscape predicted by the 
network does reflect the general patterns observed through mapping 
exercises using aerial imagery (Ruiz et al., 2021), and this similarity 
is reflected in the mean AUC scores for each individual outcome 
class in the module. Currently, EVA does not incorporate time-lags 
in vegetation type switching and vegetation types switching within 
1 year could be unrealistic. It is important to note that the vegetation 
module predicts vegetation type based on the previous 4 years of 
hydrologic conditions, which helps keep vegetation patterns realistic 
even if the module allows vegetation types to switch within 1 year. 
The wading bird colony size module showed difficulty discriminating 
between low and moderate numbers of birds but was better able to 
identify areas with large numbers of birds. Even in years with low 

wading bird colony sizes, there are few birds present in colonies 
across the landscape which may make it difficult for the network to 
differentiate between poor and moderate conditions for wading 
birds (Frederick et  al., 2009; Essian et  al., 2022). However, the 
network was more successful at identifying areas with > 100 birds in 
a colony with accuracy and therefore can identify conditions that 
are ideal for wading birds. The alligator nesting potential module 
exhibited a low rate of error. The higher accuracy for this module is 
likely because the module output is split into only two classes. The 
sawgrass peat accretion module was built using experimental results 
and we were unable to assess the module for accuracy, but we were 
able to assess the module’s uncertainty.

Modules generated with monitoring data were much more 
uncertain, especially the alligator nesting potential and wading bird 
colony size modules. The vegetation module exhibited moderate 
uncertainty, while the sawgrass peat accumulation module 
exhibited the lowest uncertainty. These results show the trade-offs 
between using different sources of data for building Bayesian 
networks. The alligator nesting potential and wading bird colony 
size modules were built using datasets collected via aerial surveys 
prone to issues of detection probability (Conroy et al., 2008; Ugarte 
et al., 2013; D’Acunto et al., 2021). In addition, the counts of wading 
birds from these monitoring data may be  inconsistently biased 
across years due to differing observer counting biases (Crozier and 
Gawlik, 2003). In contrast, the vegetation module showed higher 
levels of certainty in its predictions. The vegetation data used to 
build the network came from on-the-ground surveys of vegetation 
and therefore are less prone to detection issues than the alligator 
and wading bird modules. Uncertainty in the vegetation module 
may also be related to the mismatch in spatial scale of the output 
and the monitoring data. More than one vegetation type is likely 
present in each 400 meter grid cell, but the network is forced to 
choose just one type. Generating annual predictions at a smaller 
spatial scale currently would present computational issues with 
generating output, so some amount of uncertainty is likely to 
remain in the network even when additional observations are 
added. While the sawgrass peat accumulation module was most 
certain, we were unable to assess its accuracy on the landscape, and 
therefore it is important to exercise caution about the module’s 
output despite its high certainty. Uncertainty was also likely 
introduced into each module through the hydrologic models used 
to provide water depth data inputs. The Everglades can exhibit 
vastly different water depths dependent on relatively small changes 
in elevation, but a 400 meter resolution may obfuscate these areas 
during an interpolation process. Because the goal of building this 
modeling framework is to synthesize system-wide trends across the 
landscape, we settled on a spatial resolution that allowed us to do 
so without needing prohibitively long simulation times. Ultimately, 
we  chose to accept some amounts of uncertainty within EVA’s 
output to be able to visualize multiple ecosystem health indicators 
in a common framework on a common spatio-temporal scale. 
Regardless of the source of the uncertainty, the dynamic nature of 
the Everglades ecosystem introduces uncertainty that can be missed 
when using only deterministic output or ignoring statistical 
uncertainty. Without addressing uncertainty explicitly during the 
modeling process, restoration planners are missing important 
information that could impact the decision they ultimate  
make.

TABLE 4 One-way sensitivity analysis results for each Everglades 
vulnerability analysis (EVA) module’s input nodes.

Module Input node Sensitivity

Vegetation type

Annual 25th quartile 

depth

0.309

Days depth > 0 mm 0.308

Days depth < −200 mm 0.069

Days depth between 

0–150 mm

0.112

Distance to coastline 0.121

Dry season 25th quartile 

depth

0.127

Dry season 75th quartile 

depth

0.127

Median salinity 0.136

American alligator 

nesting potential

Distance to alligator hole 0.171

Depth during the breeding 

period

0.468

Depth during courtship 

and mating

0.240

Depth during nest 

building

0.111

Wading bird colony 

size

Depth during the breeding 

season

0.403

Depth during the previous 

year’s spring

0.169

Days below 0 mm 0.214

Vegetation type 0.352

Sawgrass peat 

accumulation

Sawgrass presence 0.477

Groundwater salinity 0.219

Peat depth 0.412

Dry-down days 0.041

Bolded sensitivity values are the nodes with the highest influence on the given module’s 
output.
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The sensitivity analysis and the visualizations of the module 
outcomes for a representative dry, average, and wet year showed that 
each module responds to changes within the landscape. The input 
nodes producing the largest range of outcomes in the vegetation type, 
alligator nesting potential, and wading bird colony size modules all 
were associated with water depth on ecologically relevant temporal 
scales. This is not surprising for the Everglades system as most of the 
restoration goals for the system hinge on the correct timing and 

amount of water across the landscape (Davis and Ogden, 1994). In 
contrast, the sawgrass peat accumulation node was most sensitive to 
the presence of sawgrass or the existing peat depth on the landscape. 
The values of these two nodes determine whether sawgrass peat can 
accumulate (sawgrass presence) and how much is available to subside 
if subsidence is the outcome (peat depth). Currently, sawgrass 
presence is determined by the most probable outcome of the 
vegetation module. We know that there is sometimes considerable 

FIGURE 4

Predicted vegetation type module outcome (top panel) and posterior probability certainty index (PPCI, bottom panel) for a dry (2014), average (2007), 
and wet year (2003) chosen from 2000–2017.

FIGURE 5

Predicted alligator nesting potential module outcome (top panel) and posterior probability certainty index (PPCI, bottom panel) for a dry (2014), 
average (2007), and wet (2003) year chosen from 2000 to 2017.
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uncertainty associated with this module’s outcomes. Given that the 
sawgrass peat accumulation module is most sensitive to the sawgrass 
presence input, it is important to use caution when interpreting the 
results of the sawgrass peat accumulation module for decision-making 
exercises such as evaluating whether a restoration plan will meet user-
defined targets.

We used an ordination process to calculate the distance from 
model outcomes to user-defined target states to generate 

vulnerability surfaces. This approach is unique in that it 
acknowledges that a decision maker could accept a range of targets 
in addition to the uncertainty present within the network outcomes 
alone. Adjusting the uncertainties within the target states can help 
decision makers or managers explore how changing their 
uncertainty tolerance can impact the resulting vulnerability surface 
and thus ultimately impact their decisions. Changes in vulnerability 
because of restoration can be compared to a baseline scenario to 

FIGURE 6

Predicted wading bird colony size module outcome (top panel) and posterior probability certainty index (PPCI, bottom panel) for a dry (2014), average 
(2007), and wet (2003) year chosen from 2000–2017.

FIGURE 7

Predicted sawgrass peat accumulation module outcome (top panel) and posterior probability certainty index (PPCI, bottom panel) for a dry (2014), 
average (2007), and wet (2003) year chosen from 2000–2017.
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FIGURE 8

Predicted vulnerability (distance from a user-defined target state, standardized from 0 to 1) of the alligator nesting potential, wading bird colony size, 
and sawgrass peat accumulation modules for a dry (2014), average (2007), and wet (2003) year chosen from 2000 to 2017.

FIGURE 9

Number of grid cells that fell into each vulnerability category in each year across the landscape.
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determine whether the restoration plan results overall in a less 
vulnerable landscape for that module, which is an approach already 
commonly implemented in Everglades decision making 
(REstoration COordination and VERification (RECOVER), 2020). 
EVA would improve on this effort by providing output on a 
common spatial and temporal scale for every indicator. Modules 
can be built to reflect what are currently known as performance 
measures, which are targets used to assess the success of CERP 
projects (LoSchiavo et al., 2013). EVA can then assess how well 
each module meets its target or performance measure within the 
uncertainty bounds set by the user. Allowing the user to define 
acceptable levels of uncertainty in target states for different 
modules not only provides a way for decision makers to assess risk 
to an indicator (Parrish et al., 2003), but also illustrates areas of the 
system that may need to be prioritized for future monitoring or 
research. The Bayesian framework also facilitates an iterative 
process where modules can be updated when new information is 
made available, thus reducing uncertainty and generating more 
confident predictions with each iteration (Brudvig and Catano, 
2021). EVA’s framework allows for a continuous feedback loop 
between modeling and monitoring research that can accommodate 
the diversity of science occurring on the landscape.

We emphasize that EVA is not a replacement for all Everglades 
modeling. EVA uses relationships identified through decades of 
research and modeling efforts to generate a common framework to 
explore annual, system-wide trends on a landscape scale. EVA is 
not meant to necessarily identify new mechanisms or relationships 
between module outcomes and environmental conditions but is 
meant to synthesize this knowledge into a framework and set of 
outputs that assess whether indicators of Everglades ecosystem 
health are meeting user-defined targets. For example, new 
understandings of the drivers of wading bird colony size could 
emerge from further scientific research that could then 
be  incorporated into an updated module in EVA. While EVA 
provides important visualizations and synthesis of the system-wide 
trends, it is still dependent on robust monitoring and scientific 
investigation across the landscape and indeed is improved by 
continued work in these areas.

Everglades vulnerability analysis currently models four 
indicators of ecosystem health, but likely needs additional modules 
to be  considered a fully system-wide decision support tool. 
We built EVA using a modular framework to facilitate the addition 
of modules representing the suite of Everglades ecosystem 
indicators (Doren et al., 2009). Module updates and additions such 
as increasing the number of vegetation types predicted by the 
vegetation module, including other peat soil sources beyond 
sawgrass, and predicting small prey fish density across the 
landscape are potential immediate avenues for improvement. 
Another consideration for future improvement is the incorporation 
of feedback loops in the Bayesian network. One such example 
would be that the sawgrass peat accumulation or subsidence over 
time will change the hydrologic metrics driving much of the other 
modules within the spatial extent through changes in the soil 
depth. Without these improvements, EVA is still a useful tool that 
provides potential landscape-scale outcomes for key indicators of 
Everglades ecosystem health and provides the certainty associated 
with those outcomes in a common framework. This tool is a 
necessary step toward considering uncertainty and system-wide 
perspectives in Everglades restoration.
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