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Most previous studies on water yield service (WYs) analyzed the driving factors 
of WYs from a holistic perspective, but ignored the spatial heterogeneity and 
development of the driving factors. Using Invest model, Random Forest (RF) model 
and Geographically and Temporally Weighted (GTWR) model, we first examined 
the spatial distribution characteristics of WYs in agro-pastoral ecotone of Gansu 
China (AEGC) from 2000 to 2020. Secondly, the driving mechanism behind the 
spatiotemporal variation of WYs was discussed. The results show that: (1) In recent 
20 years, the average annual WYs of AEGC was 110.52 mm, and the interannual 
variation showed an upward trend, with an increasing rate of 2.28 mm/a (p < 0.05). 
WYs are high in the south, low in the north, and high in the northwest. Except 
for the southeast, WYs remained stable or increased in other regions. (2) The 
relative importance of the main influencing factors of WYs in AEGC successively 
were precipitation (1.57), evapotranspiration (1.29), temperature (1.12), population 
density (1.10), net primary productivity (NPP 1.06), and land use intensity (1.02). 
(3) Large-scale regional nature conditions are the primary force driving change in 
WYs, while in small-scale regions, human activities and land use are the primary 
drivers of WYs. Our research emphasizes that the effects of various influencing 
factors on WYs are significantly spatiotemporal heterogeneity, and WYs in different 
regions respond differently to the changes of influencing factors.
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1. Introduction

Water connects various ecosystem processes and human activities, and water shortages are a 
common problem for people all around the world (Greve et al., 2018; Chung et al., 2021). Therefore, 
WYs are one of the most important ecosystem services (ES) and are a key indicator of ecosystem 
health (Costanza et al., 1997; Xia et al., 2021). Furthermore, WYs directly affect regional water 
supplies, impact many ecological functions such as food and raw material production, soil 
conservation, climate regulation, and biodiversity, and help maintain ecosystem stability and 
human social development (Graham et al., 2021; Jung et al., 2021; Queiroz et al., 2021).

WYs can be considered “ecosystem water production.” The principle of dynamic water balance 
refers to the difference between water inflows and water expenditures over a certain period. Inflow 
is determined by precipitation, and expenditures are determined by actual evapotranspiration (Xia 
et al., 2017; Zhang and Zhang, 2018; Yang et al., 2019; Hu et al., 2021). Many studies have calculated 
the contribution of various factors to water balance. First, climate data and land use data from a 
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certain time period are modeled in different scenarios to represent, 
fluctuations in WYs caused by land use change. Additionally, they use 
fixed land use data and inputs different climatic conditions to simulate 
changes in WYs caused by climate change (Hu et al., 2020; He et al., 2021; 
Son et  al., 2022). These methods consider precipitation to be  an 
unpredictable factor and that human activities will change land use and 
alter evapotranspiration; however, this approach ignores the effects of 
climate change and the complexity of human activities (Rohatyn et al., 
2018; Yin et al., 2020; Chen et al., 2022; Jia et al., 2022). Therefore, these 
simulations could overestimate the relative role of land-use change on 
WYs and underestimate the role of nature factors, resulting in inaccurate 
the conclusions.

Researchers have commonly explored the mechanism of WYs and 
related factors by assessing their relationship to the water cycle (Wang 
J. et al., 2021; Wang X. et al., 2021). Other studies have demonstrated that 
precipitation is significantly positively correlated with WYs and that 
actual evapotranspiration is significantly negatively correlated with WYs 
(Su and Fu, 2013; Zhang et al., 2020; Wu J. et al., 2021). Temperature, 
NPP, and normalized digital vegetation index (NDVI) have an 
insignificant impact on WYs, showing positive and negative 
bidirectionality. Some scholars (Yin et al., 2019) further believe that NPP 
positively affects WYs in regions with thriving ecosystems, and negatively 
affects regions with impaired ecosystems. However, our research analyzed 
these factors holistically and did not consider the spatial heterogeneity of 
WYs drivers; it also separated the continuity of development and change 
of WYs drivers over time. However, these results must be verified in other 
regions. Therefore, it is necessary to analyze the driving mechanism of 
WYs, using different methods at various regional scales.

After considering the importance of ecological functions and the 
variance related to geographical locations, the AEGC was selected as 
our study area. The AEGC is an important ecological barrier and the 
largest climatic and ecological transition zone in China. It is 
extremely sensitive to nature conditions change and human 
interference. Therefore, it is a suitable region for studying 
environmental problems (Pei et al., 2021; Fang et al., 2022). As an 
ecologically fragile, this area is the site of national ecological 
restoration projects such as the Three-North Shelterbelt and returning 
farmland to a forest (Liu et al., 2021), making it a suitable location for 
exploring the driving mechanism of WYs and how it is affected by 
nature conditions change (Yang et al., 2021) and human activities.

In this study, the main objectives are to (1) explore the long-term 
change trend and spatial distribution characteristics of WYs in AEGC 
from 2000 to 2020. (2) establish a comprehensive database of natural 
conditions and human activities to quantify the relative importance of 
various factors affecting WYs. (3) identify the spatiotemporal 
differences of the main impact factors on WYs, and study the driving 
mechanism behind the spatiotemporal changes of WYs. This work can 
not only aid in comprehending the effects of natural conditions change 
and human activities on WYs, but also provides valuable information 
for the protection, utilization and management of water resources.

2. Materials and methods

2.1. Study area

The AEGC (33°40′ ~ 37°54′N, 101°55′ ~ 108°34′E) includes 35 
districts and counties (Figure 1), covering an area of 99,300 km2. It is 

located on the eastern edge of the Tibetan Plateau and is a transition 
zone for major geographical units. It is known as the “Asian water tower” 
and is connected to the Tibetan Plateau in the west, Qinba Mountain in 
the south, the Loess Plateau in the east, and the Hexi Corridor in the 
north (Zhang et al., 2016; Immerzeel et al., 2020). The study area spans 
the two major river basins of the Yellow River and the Yangtze River and 
is an important source of water for the Yellow River. Its main rivers are 
the Tao River, Wei River, Huangshui River, and Bailong River (Qiu et al., 
2022). The ecological environment in the study area is complex and 
diverse, and its primary landforms are plateaus, mountains, hills, and 
river valleys (Nie et  al., 2015). Its altitude is 1,102 ~ 5,339 m, and is 
generally higher in the west and lower in the east. Precipitation is higher 
in the south (about 800 mm per year) and lower in the north (about 
200 mm per year), with an average annual temperature of 1 ~ 11°C. In 
the summer, temperatures are higher, and there is more precipitation, 
while in the winter, temperatures are lower with less precipitation. As a 
result, there are differences in topography, climate, hydrology, and land 
use among the regions of the AEGC (Ma et al., 2020).

2.2. Data sources and processing

Select population density, economic density and land use intensity 
as human activity factors (Sang et al., 2019; Liu et al., 2020; Jiang et al., 
2023), precipitation, temperature, evapotranspiration, NDVI, NPP, 
(Digital Elevation Model) DEM and slope as natural condition factors 
(Yang et al., 2011; Ahmed et al., 2021; Hu et al., 2021; Wang J. et al., 
2021; Wang X. et al., 2021), and establish a comprehensive factors 
database that may affect water production services, providing a basis 
for subsequent determination of impact factors (Figure 2). All data 
sources and preprocessing can be visible in Table 1.

2.3. Research method

2.3.1. Water yield
Many studies have confirmed that InVEST can effectively perform 

ES simulations in different regions.1 The evaluation results of the 
model can be visualized at the landscape scale (Hamel and Guswa, 
2015; Redhead et al., 2016). Therefore, this study uses the InVEST to 
evaluate WYs according to the following calculation equations:
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In Eqs (1)–(6), WYxj  is WYs of land-use type j  in grid x  (mm); 
AETxj  is the actual evapotranspiration of land-use type j  in grid x  

(mm); PETxj  is the annual precipitation in grid x  (mm); Kc j,  is the 
evapotranspiration coefficient of land-use j ; ET x0,  is the reference 
crop evapotranspiration in grid x  (mm); wx  is the empirical 
parameters in grid x ; Z  is seasonal content with a range of 1 to 30, 
which was assigned a value of 30 according to the estimates of actual 
evapotranspiration; AWCx  is the soil available water capacity in grid x  
(mm); Soil depth_  is the root burial depth (mm) from HWSD; 
Root depth_  is the plant root depth (mm); PAWC  is the plant 

available water content 01,[ ] . where the SAND, SILT, CLA Y, and SOC 
are the proportion of sand, silt, clay, and organic matters in the soil, 
respectively.

2.3.2. Trend analysis and coefficient of variation
A linear regression analysis was used to analyze the variation 

trend of WYs by grid unit, which is widely used and easy to 
interpret (Belay et  al., 2021; Kilama Luwa et  al., 2021). 

The coefficient of variation is the ratio of the standard deviation to 
the mean value, which can reflect the spatial fluctuation 
characteristics of the WYs of the grid unit. The following calculation 
equations were used:
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In Eqs (7)–(8), WYi  is the WYs in years of i  (mm); where i  is the 
year; n  is the number of years; k  is the slope of the trend of water 
production; the significance test indicates 95% confidence, C  is the 
coefficient of variation; S  is the standard deviation; and x  is the 
average value.

2.3.3. Random forest
Using RF to evaluate the importance of independent variables is 

to quantify the contribution degree of each independent variable to 
the classification performance of the constructed K decision trees 
(Arabameri et al., 2019; Peng et al., 2020). Contribution degree is 
usually evaluated by out of bag (OOB) error rate. Contribution degree 
is represented by feature importance measures (FIM).

FIGURE 1

Spatial range of the study area.
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FIGURE 2

The impact factors database is briefly displayed. Due to the large amount of data, except DEM and slope data, which are basically fixed, other data are 
displayed spatially based on the average value from 2000 to 2020. The population density (A) and economic density (B) to some extent indicate the 
intensity of human activities in the region, and the intensity of land use directly (C) reflects the transformation of the natural environment by human beings. 
(D–F) belongs to climate data, which are average precipitation, average temperature and average evaporation respectively. (G, H) are geographic data, 
where are DEM and topographic slope respectively. (I, J) are ecological data, which are average NDVI and average NPP respectively.
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TABLE 1 Data descriptions and sources used in this study.

Data type Data name Data source Description Resolution

Human activity data

Population density Open Spatial Demographic 

Data and Research (https://

www.worldpop.org)

Population density raster data. 

2000, 2005, 2010, and 2020 are 

public data. Data of other years 

are calculated by Arcgis10.5 

according to the population 

growth rate.

100 m × 100 m

Economic density Resource and Environment 

Science

and Data Center

(http://www.resdc.cn)

Economic density raster data. 

2000, 2005, 2010, and 2020 are 

public data. Data of other years 

are calculated by Arcgis10.5 

according to the population 

growth rate.

500 m × 500 m

Land use intensity LUCC raster data was interpreted 

by Landsat TM remote sensing 

satellite images. The land use 

intensity of unused land was 1, 

that of grassland, woodland, 

wetland and water area was 2, that 

of cultivated land was 3, and that 

of construction land was 4

100 m × 100 m

Climatic data

Precipitation Chinese Meteorological 

Sharing

Service System

(http://data.Data.cma.cn/data)

Interpolate the precipitation and 

temperature grid data of 37 

meteorological stations in and 

around the study area (use the 

meteorological interpolation 

software ANUSPLIN to carry the 

BVTPS and TVPTPS models to 

interpolate the precipitation and 

temperature related data, and use 

Arcgis10.5 to synthesize the 

annual precipitation and average 

temperature data).

500 m × 500 m

Temperature 500 m × 500 m

Evapotranspiration Earth Data Open Access for 

Open Science

(https://www.earthdata.nasa.

gov)

MOD16A2 raster data, with a 

time resolution of 8 days, were 

synthesized into annual 

evapotranspiration data by 

Arcgis10.5

500 m × 500 m

Geographic data

DEM Resource and Environment 

Science and Data Center 

(http://www.resdc.cn)

DEM raster data 30 m × 30 m

Slope Slope raster data are obtained by 

slope calculation of DEM raster 

data by Arcgis10.5 software

30 m × 30 m

Soil Harmonized World Soil 

Database

(https://www.fao.org/soils-

portal/data-hub)

Soil raster data 1,000 m × 1,000 m

Ecological data

NDVI Earth Data Open Access for 

Open Science

(https://www.earthdata.nasa.

gov)

MOD13A1 raster data, with a 

time resolution of 16 days, were 

synthesized into annual NDVI 

data by Arcgis10.5

500 m × 500 m

NPP MOD17A2 raster data, with a 

time resolution of 16 days, were 

synthesized into annual NPP data 

by Arcgis10.5

500 m × 500 m
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In Eqs (9)–(10), nok  is the number of observed samples of the kth  
tree.YP  is the Pth  sample pair true classification labels should 
be applied. YP

k is the prediction classification result of the p observation 
of OOB data by the kth  tree before random replacement Fm . YP

k
m,≠  

is the classification result of the pth  sample by the kth decision tree 
after random replacement Fm . When the feature Fm  does not appear 
in the kth  tree, FIMkm

OOB( ) = 0.  K  shows the number of decision 
trees in the RF. σ  is the standard deviation of FIMkm

OOB( ) . The 
importance score FIMm

OOB( )  of feature Fm  represents the 
contribution of feature Fm  to the classification accuracy. FIM was 
determined by mean and standard deviation of OOB error rate.

2.3.4. Geographically and temporally weighted
Based on the classical geographically-weighted regression model, 

the GTWR model adds time to the two-dimensional spatial coordinates 
from the geographically-weighted regression model, producing three-
dimensional coordinates (He and Huang, 2018; Liu et al., 2018; Li and 
Managi, 2021; Wu S. et al., 2021). The spatiotemporal non-stationarity 
relationship was modeled by constructing a local model of spatial and 
temporal dependence, which can better reveal the local effects of 
various driving factors on WYs. It was calculated as follows:
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In Eq. (11), yi  is the fitting value of the WYs change of sample i
;( u v ti i i, , ) is the space–time coordinate of sample i ; β0 u v ti i i, ,( )  is 
the intercept term; p is the number of explanatory variables; 
βk i i iu v t, ,( )  is the estimated coefficient of the kth explanatory 
variable; and εi  is the model residual.

2.3.5. Dynamic analysis of the driving area
The dynamic degree is a measure of changes in the area of WYs 

driven by dominant driving factors (Li et al., 2022; Yao et al., 2022) 
and is calculated as follows:
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In Eq. (12), D  is the dynamic degree of the dominant driving 
WYs area of a factor; Ua , Ub  are the areas dominated by the element 
at the beginning and end of the study; T  is the length of the 
study period.

3. Results

3.1. Spatiotemporal changes in WYs

3.1.1. Interannual variation of WYs
From 2000 to 2020, the average annual WYs in AEGC was 

110.52 mm, and the total average annual WYs was 
1.1 × 10^10 m3(Figure 3). The WYs in AEGC generally showed an 
upward trend, with an average increase rate of 2.28 mm/a. The annual 
WYs were the smallest in 2015 (35.48 mm), and the largest in 2019 
(172.63 mm). Subsection statistics better reflect the changing trend of 
WYs. From 2000 to 2010, the annual WYs steadily increased, with an 
average WYs of 99.59 mm and an increased rate of 0.58 mm/a. From 

FIGURE 3

Inter-annual changes of WYs in AEGC from 2000 to 2020. The black solid line is the WYs, and the dotted line is the change trend of WYs.
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2011 to 2020, the fluctuation range of annual WYs became larger; the 
average WYs was 122.56 mm, and the rate of increase was 5.21 mm/a 
(p < 0.05).

3.1.2. Spatial characteristics and changing trends 
of WYs

Based on the spatial distribution characteristics of the multi-
year average WYs in AEGC from 2000 to 2020 (Figure 4A), the WYs 
have obvious spatial differentiation. The overall WYs are high in the 
south, low in the north, and high in the northwest. High-value areas 
with WYs exceeding 300 mm are primarily concentrated in the 
south and northwest of the AEGC, and the low-value areas with 
WYs below 100 mm are mainly distributed in the north and 
northeast of the AEGC. In terms of subregions, there were significant 
differences in WYs among districts and counties (Figure 4B). The 
average annual WYs of Jingtai was the lowest (1.54 mm), and Hezuo 
was the highest (295.41 mm). The average WYs of all units were 
divided into 5 categories using the ArcGIS10.5 natural breaking 
point method. The spatial distribution of the units with low WYs 
formed a regional cluster, with Jingyuan at the center. The spatial 
distribution of high WYs units in the south is centered 
around Zhuoni.

According to the results of the change trend analysis, the change 
trends of WYs in AEGC are divided into 4 categories (Figure 4C). 

Areas with insignificant increases in WYs account for the largest 
proportion (57.18%) and are widely distributed in the middle and 
north of the AEGC. The significantly increased area was concentrated 
in the southwest and northeast of the AEGC (24.29%). Only in the 
southeast, WYs showed a downward trend (5.22%). Using the 
ArcGIS10.5 natural breaking point method, the WYs fluctuations in 
AEGC were divided into five categories (Figure 4D). WYs fluctuations 
are higher in the north, lower in the south, and higher along the Yellow 
River. Areas with high WYs fluctuations are concentrated in the 
Lanzhou New District and the Yellow River Valley and account for 
3.82% of the AEGC. The relatively low fluctuation and low fluctuation 
areas are widely distributed in the southern, central-eastern, and 
northwestern parts of the AEGC, accounting for 49.17 and 18.53% of 
the AEGC, respectively.

3.2. Driving mechanism of WYs

3.2.1. WYs independent variable importance 
measure

The driving factors of WYs have always been the focus of relevant 
research. In this study, based on the establishment of a comprehensive 
database including human activity factors and natural condition 
factors, the RF was applied to evaluate the relative importance of these 

A B

C D

FIGURE 4

Spatial distribution characteristics and change rules of WYs. It shows the spatial distribution of the average WYs from 2000 to 2020 (A), and the 
statistics of WYs based on the county-level administrative units (B). Due to the large interannual variation of WYs, in order to intuitively display the 
spatial regularity of WYs over a long period of time, we have carried out trend analysis (C) and coefficient of variation calculation (D).
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factors. According to the results (Figure 5), Ranking of importance of 
independent variables: precipitation (1.57) > evapotranspiration 
(1.29) > temperature (1.12) > population density (1.10) > NPP 
(1.06) > land use intensity (1.02) > NDVI (0.83) > DEM 
(0.71) > economic density (0.68) > slope (0.51). Indicators with relative 
importance greater than 1 were selected for GTWR analysis.

3.2.2. Spatiotemporal heterogeneity of the main 
influencing factors on WYs

The GTWR model reflects the intensity and difference of these 
effects through the different regression coefficients of the driving 
factors in each region. Table 2 shows the fitting results of the GTWR 
model on the driving intensity of WYs by various factors from 2000 
to 2020. Precipitation has a significant positive driving effect on WYs 
in AEGC (Figure  5), and the driving strength increases from the 
northeast to the south and northwest. The actual evapotranspiration 
negatively affects WYs (Figure 5). The driving intensity increases from 
the northeast to the south, and the actual evapotranspiration in the 
southeast most clearly inhibits the southeast WYs. The impact of 
temperature on WYs in the central and eastern regions showed a 
negative effect, and in the western region, it showed a positive effect, 
especially in the northwest region (Figure  5). The inhibition of 
population density on WYs is strong in the middle AEGC (Figure 5). 
NPP inhibits WYs in the south and northwest and promotes WYs in 
the northeast (Figure 5). Land-use intensity has a significant negative 
driving effect on WYs (Figure 5), especially in the south and northwest.

The time axis of the GTWR model was adjusted to fit the driving 
intensity of various factors on WYs in stages from 2000 to 2010 and 
2011 to 2020. The dominant driving factors in different regions in each 
stage were then identified (Figure  6). The area of WYs driven by 

precipitation is the largest (54.7%). Evapotranspiration inhibits WYs 
in the southeast. The low WYs in the northern part of AEGC are 
negatively driven by temperature. WYs in Lanzhou was negatively 
driven by population density. WYs in the northeast region are 
positively driven by NPP. WYs was inhibited by land use intensity in 
northwest AEGC. Table  3 shows that the WYs area driven by 
population density and temperature increases significantly, while the 
WYs area driven by precipitation and actual evapotranspiration 
decreases significantly. From the dynamic point of view, the 
population density driven WYs area growth rate is the highest, and 
the land use intensity and temperature driven WYs area growth rate 
is more than 10%. These results indicate that human activities have an 
increasingly significant influence on WYs in local areas (see Figure 7).

4. Discussion

4.1. Natural factors affecting WYs

Based on the interannual variation of WYs in AEGC, WYs was 
lowest in 2015 and highest in 2019 Since 2010, the overall WYs of 
AEGC has been on the rise. Meteorological research shows (Lai, 
2012; Wang et al., 2016; Lu et al., 2021; Yang et al., 2021) that 2015 
was a strong El Niño year with little precipitation in eastern Gansu. 
In 2019, precipitation significantly increased in the AEGC, and 
precipitation in the eastern part of Northwest China showed an 
upward trend. Consistent changes of precipitation and WYs (Dai 
et al., 2020). This study demonstrates that the area where precipitation 
dominated WYs was the largest, accounting for 52.59% of the 
AEGC. Overall, after analyzing regions with different WYs levels, 
precipitation was the most important factor affecting WYs.

Evapotranspiration, an important parameter to quantify WYs, 
combines water and energy balances and links the climate system to 
terrestrial ecosystems (Li et al., 2016; McEvoy et al., 2016; Zhang et al., 
2020). In the southeastern AEGC with higher WYs, evapotranspiration 
is the dominant driver. This is because in areas with high WYs, WYs 
and evapotranspiration levels are in the same order of magnitude, 
meaning that WYs are sensitive to changes in evapotranspiration (Dai 
et al., 2020; Dai and Wang, 2020; Zhang Y. et al., 2021; Zhang J. et al., 
2021; Jiang et  al., 2022). However, in areas with low WYs, 
evapotranspiration is several times higher than WYs, and interannual 
changes in evapotranspiration could be  greater than the average 
annual WYs (Zeng et al., 2022). Therefore, WYs is not sensitive to 
evapotranspiration response.

The effect of temperature on WYs shows positive and negative 
bidirectionality. In the northern AEGC of low WYs, temperature 
inhibits the rapid growth of WYs area. This because warming and 
drying of the drylands in recent decades, most notably in the current 
decade (Daramola and Xu, 2022; Yang et al., 2022). The increase of 
surface temperature leads to increase of precipitation intensity in the 
Tibetan plateau, especially for convective precipitation (Zhao et al., 
2022). Therefore, temperatures are positive effecting WYs positively 
in the western AEGC.

TABLE 2 Result of GTWR model.

Bandwidth AICc Sigma Spatiotemporal distance ratio R2 R2 Adjusted

0.1150 7,144 0.4719 0.4588 0.8397 0.8392

FIGURE 5

The relative importance of the impact factors of WYs. The 
importance value has no substantive meaning and can be used for 
comparison.
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This study found that NPP could positively drive WYs in fragile 
ecological areas with an average NPP of less than 200 gc/m2, which is 
in addition to the previous conclusions (Yin et al., 2020). This might 
be directly related to the nature reserve construction projects and the 
Conversion of Cropland to Forest Project, projects had the climate and 
water conservation effects (Liu et al., 2020; Qu et al., 2020). However, 
in areas experiencing water shortages, such as the Loess Plateau, it is 
necessary to simulate and evaluate the water consumption of vegetation 
restoration projects to ensure that the ecological water demand 
matches local water resources, thereby avoiding construction that 
further stresses local water resources (Xin and Jérôme, 2019).

4.2. Human factors driving force on WYs

In the densely populated Lanzhou-Baiyin urban 
agglomeration, human density significantly inhibited WYs, and 
the area with strong inhibitory effect increased by 142.6%. China 
has witnessed unprecedented urbanization during the last three 
decades, with 901.99 million people (i.e., 63.89% of its 
population) living in urban areas in 2020 (NBSC, 2020). 
Undoubtedly, human activity and urban expansion has emerged 
as a highly significant driver of regional climate change (Griggs 
et al., 2013; Nagendra et al., 2018). The urban, characterized by 

TABLE 3 Summary of control area of the main impact factors of WYs.

Driving factors 2000–2010 2011–2020 Variation /km2 Dynamic / %

Area /km2 Proportion /% Area /km2 Proportion /%

Precipitation 57,253 57.64 51,408 51.76 −5,845 −1.02

Evapotranspiration 22,338 22.49 14,292 14.39 −8,046 −3.60

Temperature 3,654 3.68 8,523 8.58 4,869 13.33

Population density 2,957 2.98 7,173 7.22 4,216 14.26

NPP 11,304 11.38 13,563 13.66 2,259 2.00

Land use intensity 1818 1.83 4,365 4.39 2,547 14.01

The AEGC is located in the monsoon region, and the interannual precipitation and evapotranspiration have a large fluctuation. In order to reduce the impact of volatility and better explore the 
role of impact factors on WYs, we take 10 years as a stage, and use the average value of each index for GTWR calculation to find the long-term change trend of the impact of driving factors on 
WYs.

A B C

D E F

FIGURE 6

The spatial characteristics of the main influencing factors on WYs. The factors are listed in order of relative importance (A–F).
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high heat-storage capacity, impediments to atmospheric motion, 
and increased solar radiation absorption, greatly alter the surface 
energy budget and hydrological cycle, resulting in profound 
changes of WYs (Grimm et  al., 2008; Georgescu, 2015; Jiang 
et al., 2022).

Land use is one of the most important and lasting ways that 
humans affect the natural environment and affects the 
hydrological processes of an ecosystem (Zhu and Woodcock, 
2014; Pan et  al., 2021; Fang et  al., 2022). Land-use intensity 
significantly negatively affects areas with high WYs because there 
are significant differences in soil water content, 
evapotranspiration capacity, litter water holding capacity, and 
canopy interception among different land-use types (Rutter et al., 
1971; Gash, 1979). The higher the land-use intensity, the lower 
the WYs. The south and northwest of the AEGC have high WYs 
and are important water conservation areas in the upper reaches 
of the Yellow River. At the same time, there is low land-use 
intensity in these areas, which are primarily grassland and forest 
land and are sensitive to land-use changes (Yang et al., 2018; Xia 
et al., 2022). Therefore, economic development must be balanced 
with ecosystem conservation, particularly in water conservation 
areas with high WYs. Land use should be strictly controlled, full 
use should be made of existing construction land, and land-use 
efficiency should be  improved, to avoid the decrease in WYs 
caused by the transformation of ecological land and agricultural 
land to construction land.

By studying the spatiotemporal heterogeneity and evolution 
of the factors driving WYs, we  found that large-scale regional 
nature conditions are the primary force driving changes in WYs 
(Su and Fu, 2013; Wang J. et al., 2021; Wang X. et al., 2021; Jia 
et al., 2022), while in small-scale regions, human activities and 
land use are primary forces altering WYs (Rohatyn et al., 2018; Hu 
et al., 2020; He et al., 2021).

4.3. Limitations and future work

There are certain uncertainties when evaluating WYs. The spatial 
distribution of meteorological data is affected by factors such as the 
meteorological stations and interpolation methods; in mountainous 
areas with vertical effects, the interpolation method will increase 
uncertainty (Guo et al., 2020; MacDonald et al., 2020). Future research 
can produce more accurate results by increasing the amount of data 
and comparing various interpolation methods. While climate and 
anthropogenic factors are included, the internal relationship between 
these factors has not been systematically explored (Wang et al., 2016, 
2022; Dai et al., 2020, 2022; Cui et al., 2021), which is an area worthy 
of further research. Research on multi-scale spatial differentiation is 
the focus of current geographic research, while the spatial 
differentiation attributes of WYs should be studied at different scales 
to better reveal the factors influencing WYs spatial differentiation. 
Climate changing (Jiao K. et al., 2021; Jiao W. et al., 2021) will increase 
precipitation in Northwest China, also will increase the probability of 
sudden drought events (Yang et al., 2021; Gong et al., 2022). Therefore, 
fluctuations in precipitation and temperature increase will likely 
continue to negatively impact WYs and ecosystems, which is of 
significant concern.

5. Conclusion

This study explored the spatiotemporal distribution and driving 
mechanism of WYs in AEGC from 2000 to 2020. To achieve the goal, 
a comprehensive database of natural conditions and human activities 
affecting WYs has been built, and algorithms such as Invest model, RF 
model and GTWR model have been used. The main conclusions are 
as follows: (1) In recent 20 years, the average annual WYs of AEGC 
was 110.52 mm, and the interannual variation showed an upward 

A B

FIGURE 7

Spatially identify the first influencing factor of WYs in each region. Taking 10 years as a stage, the rule changes of each type of influencing factors on 
WYs were discussed. (A, B) are the spatial distribution of the dominant active factors for WYs in 2000–20010 and 2011–2020, respectively.
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trend, with an increasing rate of 2.28 mm/a (p < 0.05). WYs are high in 
the south, low in the north, and high in the northwest. Except for the 
southeast, WYs remained stable or increased in other regions. (2) The 
relative importance of the main influencing factors of WYs in AEGC 
successively were precipitation (1.57), evapotranspiration (1.29), 
temperature (1.12), population density (1.10), NPP (1.05) and land use 
intensity (1.02). (3) The variation trend of precipitation is consistent 
with that of WYs, which is the most important factor affecting the 
overall WYs in AEGC. In areas with low WYs, evapotranspiration is 
several times higher than WYs, so WYs is not sensitive to changes in 
evapotranspiration. Increased precipitation over the Tibet Plateau 
caused by rising temperatures promoted WYs in the west. Human 
activities in densely populated areas greatly changed the surface 
energy budget and hydrological cycle (Georgescu, 2015; Jiang et al., 
2021), and the increase of land use intensity significantly inhibited 
WYs in water conservation areas. At the same time, ecological 
restoration projects can promote WYs. The results show that: (1) 
Large-scale regional nature conditions are the primary force driving 
change in WYs, while in small-scale regions (Feng et al., 2021), human 
activities and land use are the primary drivers of WYs. (2) The effects 
of the influencing factors on WYs showed significant spatiotemporal 
heterogeneity, and the responses of WYs to the changes of the 
influencing factors were different in different regions.
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