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With the escalating impacts of global climate change, carbon peaking and carbon 
neutrality have become pressing issues of mutual concern for nations worldwide. 
Accurately measuring carbon emissions at regional and municipal levels in 
order to design differentiated reduction policies and promote carbon neutrality 
has become a challenging problem. To tackle this challenge, we  developed a 
250 m resolution grid map of carbon footprint data and constructed a national-
level database (comprised of 2,800 county-level units) to analyze China’s 
carbon footprint from multiple angles such as overall characteristics, urban 
agglomerations, county-level units, population density, per capita disposable 
income, and more. This research provides fresh insights for studying multi-
scale footprint spatial pattern dynamics. Our findings indicate that (1) The 250 m 
resolution Carbon Footprint Database developed in this study covers the national, 
provincial, county, urban, and rural areas, enabling dynamic research on multi-
scale footprint spatial patterns; (2) The top 5% of areas with the highest carbon 
footprints account for approximately 1/5 of total carbon footprints in China, and 
approximately 1/4 of areas account for more than 50% of total carbon footprints; 
(3) The potential for reducing carbon emissions in China’s rural areas has been 
underestimated by over 10%, while those in the western regions are growing 
rapidly due to poverty alleviation efforts; (4) An inverted U-shaped “environmental 
Kuznets curve” emerges between disposable income and emissions intensity, 
with different regions exhibiting different consumption patterns. This study offers 
a novel approach for formulating reduction policies at different levels throughout 
the country.
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1. Introduction

The increasing frequency of natural disasters and extreme weather events has brought 
greater attention to climate change on a global scale. Although the UNFCCC, Kyoto Protocol, 
and Paris Agreement adhere to the principle of “common but differentiated responsibilities,” 
they overlook the historical emissions, responsibility for consumption-based emissions, and 
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cross-border emissions flows (Mi et al., 2017; Heinonen et al., 2020). 
This has led to a significant overestimation of China’s carbon 
emissions, thereby imposing strict limits on China’s future carbon 
emissions. Nevertheless, China remains steadfast in implementing 
robust emission reduction measures to address climate change, with 
clearly defined targets of peaking carbon emissions by 2030 and 
achieving carbon neutrality by 2060 (Kanemoto et al., 2016; The State 
Council of China, 2022).

Although China is often regarded as a homogenous entity in the 
field of climate change research, it is a vast country with significant 
regional differences in economic development, resource endowments, 
population, and lifestyles. Therefore, it is crucial to target key emission 
reduction areas and achieve precise emissions reduction (Cai et al., 
2018a; Mi et al., 2021). As the final destination of production activities, 
household consumption plays a crucial role in reducing carbon 
emissions and implementing differentiated mitigation policies (Liu 
et al., 2019; Mi et al., 2020). Globally (Hertwich and Peters, 2009), 
approximately 72% of carbon emissions are driven by household final 
consumption. The United States has the highest rate of household 
carbon emissions, accounting for over 80% (Jones et al., 2014; Mi 
et al., 2020), followed by the United Kingdom at 74% (Minx et al., 
2013), South Korea at 52% (Park and Heo, 2007), Japan at 60% (Mi 
et al., 2016), and China at 30–40%, with an annual growth rate of 8.7% 
(Fan et al., 2013; Kanemoto et al., 2016; Zhang and Wang, 2017). With 
the acceleration of Chinese household income growth and the 
expansion of the middle-income group, household consumption 
contributed approximately 76.2% to GDP growth in 2018 (National 
Bureau of Statistics of China, 2022). Carbon footprint can be used to 
quantify and compare the contribution of human activities to global 
warming, and has the potential to prevent carbon leakage and share 
emission responsibilities more equitably. It has become a popular 
method in spatial carbon accounting (Pang et al., 2019; Heinonen 
et al., 2020). Consumption-based methods are suitable for different 
geographical ranges (such as countries, states, cities, and 
communities), linking commodity and service consumption to their 
associated embodied emissions. Therefore, input–output analysis is 
commonly used for evaluation. Carbon footprints are typically divided 
into area carbon footprints (ACF) and personal carbon footprints 
(PCF). ACF covers all consumption-based emissions resulting from 
economic activities within the study region, regardless of who caused 
them, while PCF covers all consumption-based emissions caused by 
residents within the study region, regardless of the source of emissions 
(Chen S. et al., 2020).

Carbon footprint assessments at different scales reveal significant 
potential differences between consumption and emission patterns, 
which have been a focal point of low-carbon emission reduction 
discussions in various countries and regions (Ottelin et al., 2019). 
Firstly, the Intergovernmental Panel on Climate Change (IPCC) 
rejects one-size-fits-all solutions to address carbon emissions and 
emphasizes the importance of regional differences (Ivanova et al., 
2017). Secondly, the gap between urban and rural areas has always 
been a major challenge for implementing national carbon reduction 
plans. Existing research mainly focuses on mega-cities, regional cities, 
and urban areas, with little knowledge about emissions in rural areas 
(Wiedenhofer et  al., 2017; Qian et  al., 2022). Due to economic 
inequality, the per capita CO2 emissions of urban households in China 
are nearly two to three times higher than those of rural households 
(Hubacek et al., 2017; Shao et al., 2018). Finally, there are significant 

differences in emissions between different income levels. Globally, 
36–45% of global emissions can be  attributed to the top  10% of 
emitters (Ivanova et  al., 2020). Therefore, quantifying household 
consumption carbon emissions is crucial for formulating effective and 
precise emission reduction policies. Calculating consumer carbon 
emissions is mainly based on macro and micro data and 
Environmental Extended Multi-Regional Input–Output Analysis 
(EEMRIO). which has been widely used to estimate air pollution 
(Yang et al., 2016), carbon emissions (Ma et al., 2022), land use (Zhao 
et al., 2020), biodiversity (Lenzen et al., 2012), and environmental 
impacts (Tukker et al., 2016) from consumption trade.

The high spatial resolution characterization of carbon emissions 
and their spatial heterogeneity is a crucial and topical issue in global 
and regional CO2 emission research. In recent years, research on 
carbon emissions has increasingly focused on smaller scales and more 
refined contents (Zhang et al., 2014; Ottelin et al., 2019). From the 
perspective of administrative divisions, due to data limitations, the 
estimated scales are mostly national (Feng et al., 2021), regional (Yang 
and Yang, 2020), provincial (Liu et al., 2022), and key cities (Bai et al., 
2021). From the grid scale, the resolution of global carbon emissions 
has ranged from 5° × 5° (Ghaemi and Smith, 2020) to 1° × 1° (Cai 
et al., 2018b) to 0.1° × 0.1° (Fan et al., 2018), even reaching 250 m 
(Moran et al., 2018). Correspondingly, the spatial resolution of China’s 
carbon emissions has been increased from 25 km × 25 km (Liu et al., 
2013) to 10 km × 10 km (Cai et al., 2018b) and has been increased to 
1 km × 1 km (Gurney et al., 2019; Long et al., 2021) in some regional 
studies. These studies are mostly based on energy statistical data, 
combined with population distribution, land use, commercial and 
industrial point source data, and road networks, and their results play 
a significant role in global, regional, national, and city carbon emission 
research. However, due to the lack of statistical data, it has become 
challenging to estimate carbon emissions at the sub-provincial and 
grid scales that characterize specific geographical information. On the 
other hand, carbon emission statistics are currently at the 
administrative unit level, lacking regional spatial heterogeneity 
information, making it difficult to conduct in-depth research on 
international hot issues such as spatial correlations, spatial clustering 
features, and carbon emission differences in different regions.

Therefore, there is an urgent need for more accurate spatial 
explicit data to estimate carbon emissions at a finer scale. Spatial 
explicit data based on population data can provide strong data support 
for fine-scale analysis of carbon emissions in regions such as the global 
(Moran et al., 2018), the United States (Jones et al., 2014), Germany 
(Gill and Moeller, 2018), and other regions.

Therefore, creating high spatial resolution carbon emission grid 
maps is essential for understanding the spatial differences and details 
of carbon emissions at the county and urban–rural levels. Through 
governance at different scales, more appropriate carbon reduction 
responsibilities can be allocated to the overall reduction of carbon 
emissions, avoiding the situation of “local carbon reduction, overall 
increase” (Li et al., 2019).

To address the research gap in this field, we  have designed an 
integrated model to create a high spatial resolution grid of consumption-
based carbon footprint data for China. By linking detailed data at four 
levels of administration (national, provincial, county, and urban/rural) 
with an environmentally extended multi-regional input–output model, 
we  have generated a new spatially explicit map of carbon footprint 
hotspots and produced maps of per capita carbon footprints at the 
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county and urban/rural levels. We have also investigated the relationship 
between population density, disposable income, and carbon footprints, 
and expect to find a positive slope. This hypothesis is based on the fact 
that in China, areas with higher population density tend to have higher 
income and carbon footprints. This research will enrich and improve the 
fundamental understanding of the spatial patterns of fine-scale carbon 
footprint in China.

2. Data and method

2.1. Research data

Multi-regional input–output model (MRIO). The input–output 
tables for 30 provinces in China for the years 2015 and 2017 were 
obtained from the China Emission Accounts and Dataset (CEADs). 
representing the latest available multi-regional input–output tables. 
Due to data unavailability, the Tibet, Hong Kong, Macao, and Taiwan 
regions were excluded from the analysis. In order to correspond to 
household consumption categories, the 42 production sectors in the 
input–output tables were aggregated into 8 categories, as shown in 
Table  1. This analysis focuses solely on household emissions and 
excludes consumption by non-profit organizations, government 
consumption, and capital formation.

CO2 emissions data. The county-level energy-related carbon 
emissions data in China in 2015 and 2017 were obtained from CEADs 
(Chen J. et  al., 2020), which is currently the county-level carbon 
dioxide emission data with the longest time span and the 
widest coverage.

The data on disposable income for urban and rural residents is 
sourced from various outlets, including the statistical yearbooks of 30 
provinces, district and county government websites, and statistical 
bulletins. In 2015, there were 2,783 county-level regions, which 
increased to 2,794 in 2017. Income is a crucial factor in determining 
consumer spending and is frequently used to gauge the standard of 
living in a given region (Liu et al., 2018).

The high spatial resolution population grid data comes from 
WorldPop Population Counts UN adjusted (100 m resolution).1

1 https://www.worldpop.org/

The urban built-up area data was obtained from the Global 
Artificial Impervious Area (GAIA) data product developed by 
Tsinghua University, which covers the period from 1985 to 2018 with 
a resolution of 30 m (Gong et al., 2020), This dataset represents the 
longest time-series of artificial impervious surface data in the world 
to date and can be accessed at http://data.ess.tsinghua.edu.cn/.

According to the “Classification of Individual Consumption by 
Purpose (2013)” released by the National Bureau of Statistics of China, 
household consumption can be categorized into eight groups, namely, 
food, clothing, housing, household facilities and equipment, 
transportation and communication, education, culture and 
entertainment, healthcare and medical services, and miscellaneous 
goods and services. Correspondingly, the household carbon footprint 
estimated by the MRIO model is classified into eight primary 
consumption categories: food, clothing, housing, household facilities, 
transportation, education, healthcare, and other. This excludes the 
direct energy use emissions from rural and urban households, as the 
input–output model only estimates the carbon emissions indirectly 
emitted by economic production sectors. In this study, the targeted 
energy-related emissions from direct coal, natural gas, and electricity 
consumption by households are classified under the “housing” 
category, while petroleum-related emissions are allocated to the 
“transportation” category and included in the household 
carbon footprint.

2.2. Fusion model based on consumption 
carbon emission estimation

To effectively estimate China’s consumption CF, it is necessary to 
construct a set of quantitative methods for rapid and accurate 
estimation of national, provincial, county, and grid-level scales. 
However, because the primary input–output data only provide 
information at the national level, the current research scale is single, 
and it is impossible to carry out refined spatial analysis in multiple 
dimensions. This study uses data models at four levels of national, 
provincial, district and county levels, and urban and rural levels, and 
takes population density as a link to realize the coupling and 
integration of various data and construct a macro-to-micro, multi-
scale China A refined consumption carbon footprint grid model to 
estimate China’s carbon footprint. The model diagram is as follows 
(Figure 1).

TABLE 1 The 42 sectors of the reclassified input–output table.

No. Household consumption sector Input–output table department

1 Food alcohol and tobacco Food and alcohol and tobacco, agriculture, forestry and fishing

2 Dress Textile, garment, shoes, hats, leather, eiderdown and their products

3 Housing Non-metallic ores and other mineral products, manufacture of non-metallic mineral products

4 Daily necessities and services Wood products and furniture, electrical machinery, and equipment

5 Transportation and Communications
Transportation, warehousing and postal services, information transmission, software, and information 

technology services

6 Health care Health and social work

7 Education, culture, and entertainment
Paper printing and cultural and educational sporting goods, education, culture, sports, and 

entertainment

8 Other Residential services, repairs, and other services
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The grid model of China’s fine consumption carbon emission is 
mainly constructed in four steps. The steps are as follows:

(1) Combining the carbon emission data of China’s energy 
consumption in 2015 and 2017 with the multi-regional input–output 
model of environmental expansion, it is divided into the consumption 
emissions of each province through the linkage between departments 
and regions.

Using EE-MRIO to calculate China’s total carbon emissions, the 
country’s carbon emissions are divided into provinces. The eight 
consumption categories included in the study are shown in Table 1. 
The basic linear equation can be expressed as:

 X I A= −( )−1Y  (1)

Using matrix representation, the technical coefficient matrix is:
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I is a unit matrix, I A−( )−1 is the inverse of the Leontief matrix; 
the final requirement is:
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indicates that sector i produces in region n and eventually consumes 
in region m

To account for the environmental impact, we have introduced an 
emission factor. The emission factor E is defined as the amount of CO2 
emitted per unit of output. CO2 emissions based on consumption can 
be calculated as follows:

 C E I A= −( )−1F (4)

where C is a vector of total CO2 emissions from goods and services 
used for final demand; E = 


ei
n  is the matrix of emission 

intensity; e CE
x

i
n i

n

i
n=  represents the emission coefficient of sector i in 

region n; CEin is the CO2 emission inventory of sector i in region n; as 
mentioned above, I A−( )−1  and F  represent the Leontief inverse 
matrix and the final demand, respectively. Notably, carbon emissions 
embodied in imports were not included in the study due to the high 
uncertainty associated with nesting the Chinese MRIO model into the 
global MRIO model.

(2) Break down provincial consumption emissions into counties.
In this study, we  decomposed the carbon emissions of 

consumption based on population distribution, urban–rural 
differences, and residents’ income levels. To ensure data accuracy and 
comparability, we resampled the World Pop population data (100 m) 
to 250 m. Due to data limitations, we used MRIO to calculate the 
proportion of household consumption input–output data in the 
province’s total input–output data, and thereby calculated the 
province’s consumption-based carbon emission proportion. We then 
calculated the proportion for each county based on its GDP as a 
percentage of the province’s GDP. By multiplying this proportion with 
the county’s total carbon emissions, we obtained the consumption-
based carbon footprint for each county.

 Cd m dCP CT= ×  (5)

where, Cd for districts and countries consumption carbon 
emissions, CPm for districts and counties the consumption ratio of the 
province m where it is located, CTd  for districts and counties d total 
carbon emissions.

(3) According to the difference between urban and rural areas, 
disposable income and population.

The urban and rural population grid cells are divided into urban 
and rural areas of each county through the urban built-up area data 
(30 m) and the national county-level regional vector map. The 
consumption carbon emissions of urban and rural areas are obtained 
according to the proportion of the urban and rural disposable income 
of each county in the country.

(4) Decompose the population grid data and urban and rural 
consumption carbon emissions to calculate the per capita 
consumption CF.

The consumption carbon emissions of urban and rural areas are 
allocated to each grid through population grid data, and the per capita 
CF of urban and rural areas in each district and county is calculated.
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FIGURE 1

Grid model of China’s fine consumption carbon emission.
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(7)

where CFP and CFPdu dr  are the per capita CFs of urban and 
rural areas in county i, respectively, xu and xr  represent the urban and 
rural disposable income, respectively, Pdu and Pdr is the population of 
urban and rural areas in county i

In the study, it was found that since the accuracy of the city 
boundaries extracted from the global urban built-up area data is 90%, 
the area of some county-level cities has been reduced or ignored, such 
as western Sichuan and northern Gansu. However, other city 
boundary data cannot be replaced due to time and scope reasons. In 
this regard, this study is based on the 2015 and 2017 China Land 
Cover Dataset (CLCD) (30 m) and Google earth high-precision map 
to proofread the urban built-up area data, and adjusts the urban 
boundaries of 87 county-level areas.

As an illustration, let us consider three counties: Gao Tai County 
in Gansu Province, Yu Cheng District in Sichuan Province, and Ying 
Jing County in Sichuan Province (Figure 2).

3. Results and analysis

In order to fully explore the spatial heterogeneity of China’s 
carbon footprint of consumption, this study has mapped the spatial 
distribution of China’s carbon footprint and the per capita 
consumption carbon footprint at the county level. Analysis was 
conducted on the total carbon footprint, per capita carbon footprint 
distribution, and data comparison verification at the levels of large 
regions, urban agglomerations, provinces, cities, and counties. 
Through a progressive and in-depth analysis at different scales, this 
study investigates the spatial correlation and aggregation 
characteristics of carbon emissions within regions, as well as the 
differences in carbon emissions between different regions.

3.1. Overall spatial pattern of consumption 
carbon emission

The 250 m high spatial resolution consumption carbon footprint 
grid data established in this study is a spatially explicit CF estimate 
data to analyze the spatial pattern. It can be used to analyze the spatial 
pattern and difference in the consumption CF of Chinese residents. 
The calculation results of China’s consumption CF are shown in 
Figure 3. The results show that the CF of China’s consumption has 
increased from 3681.19 MtC in 2015 to 3757.10 MtC in 2017, 
accounting for 39.6 and 41% of the nation’s total energy consumption 
carbon emissions, respectively. The 5% regions with the highest total 
CF accounted for 19.28 and 19.6% of the total national carbon, while 
only 22.86 and 23.8% of the regions accounted for 50% of the total 
national carbon. The fact that the CF is highly concentrated in some 
wealthy cities means that strong measures in a relatively small number 
of regions can have a significant impact on achieving carbon neutrality 
in China.

However, it is worth noting that although the consumer carbon 
footprint in most western regions is relatively low, these regions are 
more likely to have a faster growth rate. This conclusion has been 

confirmed by Yang and Yang (2020). From the growth rate perspective, 
between 2015 and 2017, the western, central and eastern regions 
increased by 7.7, 6.8, and 4.5%, respectively. In addition, the growth 
rate of consumer carbon footprint in both urban and rural areas of the 
western region is higher than that of other regions, while the rural 
consumer carbon footprint in the eastern region has experienced a 
negative growth rate (−0.7%). The main reason for this trend is that 
the income level in the western region is growing faster than other 
regions, leading to a rapid increase in the consumer carbon footprint. 
For instance, the per capita disposable income growth rate in urban 
and rural areas of Inner Mongolia was 16.7 and 26%, respectively. In 
the future, the difference in consumer carbon footprint between 
western and eastern regions of China will further narrow, and the 
western region will become a potential area for China’s 
carbon footprint.

For urban and rural consumption CF, the proportion of total 
carbon of urban and rural areas in 2015 was 56.55 and 43.45%, 
respectively. The proportion of urban and rural areas in 2017 was 
58.27 and 41.73%. In prior research, the proportion of total carbon 
consumption in rural areas was only 25 and 32% (Gill and Moeller, 
2018; Chen et  al., 2019; Liu and Zhang, 2022). They all 
underestimated the potential of rural areas to reduce emissions. As 
one of the fastest-growing regions in the urbanization and rural 
revitalization process, with a population of approximately 600 
million (2015), household consumption is undergoing tremendous 
changes, especially in the transition from “poverty alleviation” to 
“rural revitalization,” leading to significant changes in CF 
and inequality.

3.2. Spatial analysis of per capita 
consumption carbon footprint at the 
county level

To address the urban–rural divide, the county-level total 
consumption carbon emissions can be  disaggregated based on 
population data to obtain a per capita carbon footprint indicator that 
eliminates the impact of population scale. This indicator is then used 
to depict the per capita carbon footprint of urban and rural residents, 
which further reveals the urban–rural divide in per capita carbon 
footprint, as shown in Figure 4. Our experimental findings indicate 
that the per capita carbon footprint of urban residents is much higher 
than that of rural residents. In 2015, the per capita carbon footprint of 
urban residents was 3.25 tC, while that of rural residents was 
1.72 tC. By 2017, the per capita carbon footprint of urban residents had 
risen to 3.48 tC, while that of rural residents had increased to 1.78 tC.

The most obvious feature is the huge disparity in per capita carbon 
footprints between different regions. In China, per capita carbon 
footprints vary greatly among urban and rural areas, as well as among 
counties, as shown in Figure 4. In 2015, the highest per capita carbon 
footprint in urban areas was 41.23 tC in Quenger Banner, which was 
40 times higher than the lowest in Yanjin County at 1.02 tC. In rural 
areas, the highest per capita carbon footprint was 20.31 tC in Ejina 
Banner, which was 98 times higher than the lowest in Weixin County 
at 0.204 tC. By 2017, the per capita carbon footprint in urban areas 
ranged from 1.03 tC in Zhenxiong to 43.23 tC in Beitun City, while in 
rural areas it varied from 0.23 tC in Weixin County to 21.06 tC in 
Shenmu County.
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3.3. Multidimensional analysis of key areas

The Greater Bay Area, Beijing-Tianjin-Hebei region, and Yangtze 
River Delta are presently the largest sources of carbon emissions, as 
major metropolitan areas and urban agglomerations. Meanwhile, 
suburbs of major cities such as Wuhan, Hangzhou, and Chengdu are 
regarded as city-level scales, and areas in the west that are rapidly 
developing, such as Inner Mongolia and Xinjiang, are counties with 
high per capita carbon emissions, deserving attention. These three 
types of research areas are prominent sources of carbon emissions in 
China, and simultaneously provide a favorable analytical angle and 
demonstration role for high-spatial-resolution consumption carbon 
footprint grid data from the three scales of provinces, cities, and 
counties. Therefore, detailed analyses and discussions of these three 
types of regions are conducted, exploring the spatial correlations, 
spatial aggregation characteristics, and differences in carbon emissions 
among regions at different scales.

3.3.1. Coordinated development of urban 
agglomerations to promote emission reduction

The three highly developed regions in China—the Yangtze River 
Delta, Pearl River Delta, and Beijing-Tianjin-Hebei urban 
agglomerations—are not only important engines driving the country’s 
economic development, but also areas that attract significant attention 
for their carbon reduction efforts. These regions account for only 
5.18% of China’s total land area, but contribute to 28% of the country’s 
carbon footprint (9.9% for Beijing-Tianjin-Hebei, 12.0% for the 
Yangtze River Delta, and 6% for the Pearl River Delta), as shown in 
Figure 5. However, there are also significant regional disparities within 
these urban agglomerations. The carbon footprint of the 

Guangdong-Hong Kong-Macao Greater Bay Area is highly 
centralized, with Guangzhou and Shenzhen as the core cities, while 
Foshan, Dongguan, and Huizhou also have a high carbon footprint. 
In the Yangtze River Delta, Shanghai stands out, while most parts of 
Jiangsu Province have a high carbon footprint, and only Hangzhou 
and Ningbo are hotspots in Zhejiang Province. In the Beijing-Tianjin-
Hebei region, there is a stark north–south difference, with the carbon 
footprint mainly concentrated in the North China Plain. As a key area 
for carbon footprint reduction, there is tremendous potential for 
carbon reduction within urban agglomerations. How can we effectively 
achieve carbon reduction within these regions? Research has shown 
that there is a significant spatial interaction effect in the carbon 
reduction capacity of urban agglomerations (Wang et al., 2019; Yu 
et al., 2020). Specifically, for every 1% increase in population, the 
carbon footprint is reduced by 0.22%. Urban agglomerations can 
significantly promote carbon reduction through the sharing and 
spillover of knowledge, skills, and technology. Therefore, carbon 
reduction planning for urban agglomerations should not only 
consider individual cities, but also neighboring cities. Cross-city joint 
prevention and control measures should be implemented to improve 
the sharing and utilization of population resources, and a carbon 
reduction coordination mechanism should be established between 
cities to form a united front for carbon reduction.

3.3.2. Metropolitan suburbs have higher per 
capita carbon footprints

It is worth noting that the per capita CF of the suburbs of major 
cities is higher than that of their central urban areas, and the per capita 
CF of the suburbs is 2.3–6.8 times that of the central urban areas, as 
shown in Figure 6.

FIGURE 2

Adjusted urban boundaries of certain county-level areas. ① Corresponds to Gaotai County, Gansu Province. ② Corresponds to Yucheng District, 
Sichuan Province. ③ Corresponds to Yingjing County, Sichuan Province. (A) City. (B) CLCD + GCP. (C) Google Earth. (D) Adjusted urban boundary.
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There are three main factors driving the suburbanization trend in 
large cities. The first is to alleviate the housing affordability crisis, air 
pollution, and traffic congestion in the central city, by shifting 
population and industries to the outskirts (Shan et al., 2018). The 
second factor is the density effect (Schubert et al., 2013), which refers 
to the benefits of high-rise buildings, shorter commuting distances, 
and developed public transportation systems in densely populated 
areas. Several studies have shown that, due to higher income, larger 

housing spaces, and longer private transportation distances, the 
carbon footprint per capita in suburbs is relatively high (Jones et al., 
2014; Ghaemi and Smith, 2020). The third factor is that the overall 
higher income levels and higher disposable income per capita in the 
suburbs of major cities lead to higher carbon footprints, despite the 
lower population density. As China’s urbanization process continues, 
more people are flocking to megacities and provincial capitals, leading 
to an increasing concentration of carbon footprints within the cities. 

FIGURE 3

Grid data of consumption carbon footprint in 2015 and 2017. (A) Spatial distribution of carbon footprint in 2015. (B) Spatial distribution of carbon 
footprint in 2017.
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The agglomeration of population and industries is causing the carbon 
footprint in urban suburbs to rise continuously. With the ongoing 
urbanization of Beijing, Tianjin, Shanghai, Wuhan, and other cities, 

the social and structural morphology of urban areas has entered a new 
stage, breaking through the turning point of the Kuznets curve and 
entering the downward stage.

FIGURE 4

Distribution of per capita carbon emission in urban and rural areas in districts and counties in 2015 and 2017. The standard map is made based on the 
standard map service website GS (2016) 2923 of the Ministry of Natural Resources of China. The boundary of the base map is not modified.

FIGURE 5

Carbon emission of three urban agglomerations in China (2015). Positions of A, B and C are shown in column “A” of Figure 3.

https://doi.org/10.3389/fevo.2023.1163308
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Xu et al. 10.3389/fevo.2023.1163308

Frontiers in Ecology and Evolution 09 frontiersin.org

3.3.3. The per capita carbon footprint at the 
county level shows the characteristics of carbon 
emissions in the western region

Such as Ningxia, Xinjiang, and Inner Mongolia. By estimating at 
the county level, we have identified several disproportionately high per 
capita carbon footprints in certain counties. These counties are mainly 
located in the western region (Figure 7) of China and are characterized 
by extremely low total carbon emissions, but extremely high per capita 
carbon footprints. They possess abundant energy resources, such as 
coal and natural gas, but their industries are mostly high energy-
consuming and high-emission sectors, resulting in high per capita 
carbon footprints. For example, Inner Mongolia is one of the major 
suppliers of energy products in China and has the largest net emissions 
of any province. However, due to its vast territory and sparse 
population, it has become the region with the highest per capita 
carbon footprint.

Due to differences in population size, the per capita CF in the 
area of class (iii) is much higher than that of the area of class (i) and 
(ii). Compared to previous studies, the historical period of lower 
per capita carbon footprints in the central and western regions, 
which were achieved through policies such as the Western 
Development strategy aimed at eliminating poverty, has already 
passed. Therefore, how to maintain the reduction of carbon 
footprints in the process of development is an issue that requires 
close attention in this region.

3.4. Research on the correlation between 
population density, disposable income, and 
carbon footprint

Figure 8 illustrates the relationship between population density, 
household income, urban–rural carbon emissions (carbon footprint), 
and the differences in urban–rural carbon footprints across different 
regions in China. Each bubble represents a city, with its size 

corresponding to its population density, and distinguishing between 
urban and rural areas. Overall, carbon emissions and footprints show 
a positive correlation with disposable income and population density, 
but the strength of this correlation varies. In urban areas, the positive 
correlation between disposable income, population density, and total 
carbon emissions is more pronounced than that with per capita 
carbon footprint. As population increases and incomes rise, carbon 
emissions in the region are expected to increase accordingly. The 
highest carbon emissions are observed in Dongguan (Guangdong), 
Pudong New Area (Shanghai), and Chaoyang (Beijing). In contrast, 
the relationship between population density, disposable income, and 
total carbon emissions in rural areas is less closely related and shows 
a scattered distribution. The correlation with per capita carbon 
footprint is slightly higher than that in urban areas.

It is noteworthy that the areas with generally higher carbon 
emissions and footprints are those with medium incomes and 
population densities. Specifically, when disposable income in urban 
areas is between 30,000 and 50,000 RMB and in rural areas is between 
10,000 and 20,000 RMB, both carbon emissions and footprints are 
higher than those in other income ranges. As pointed out by Ottelin 
et al. (2019), the relationship between population density, disposable 
income, and carbon footprint varies across regions. In this study, 
we found a moderate positive correlation between these variables, 
with the strength of this relationship further related to the level of 
poverty in the region. When per capita disposable income is below 
30,000 RMB in urban areas and below 15,000 RMB in rural areas, per 
capita carbon footprint appears to be more strongly correlated with 
population density and disposable income. However, as disposable 
income increases further, the growth of carbon footprint reaches a 
turning point and enters a decreasing phase, forming an inverted 
U-shaped “Environmental Kuznets Curve.” This suggests that when 
the economy reaches a certain stage of development, carbon footprint 
is no longer solely determined by disposable income and population 
density, but is influenced by more complex factors and different 
regions have different consumption patterns.

FIGURE 6

Distribution of per capita carbon footprints in the central and suburban areas of some large cities.
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3.5. Data validation and uncertainty 
analysis

3.5.1. Comparison with existing research
To validate the accuracy of our results, we compared them 

with those of other researchers. Currently, there is limited 
research on consumer carbon footprints. A search of keywords 
such as “carbon emissions,” “consumption,” and “carbon 
footprint” on Web of Science revealed that the vast majority of 
studies on consumer carbon footprints used research data from 
2007 to 2012 due to limitations in MRIO data. A small number 
of studies used data from 2015, 2017, and 2018. Regarding the 
research methodology, studies using the MRIO approach for 
calculating consumer carbon footprints were conducted in 2007, 
2012, 2015, and 2017, also due to MRIO data limitations. The 

method used to calculate carbon emissions in 2018 was the IPCC 
sectoral approach, which resulted in significant differences in 
results due to inconsistent methods. Therefore, some results were 
compared based on the ratio of consumer carbon emissions to 
total emissions in their respective studies. We  selected some 
authoritative papers from different scales such as per capita 
consumer carbon emissions in urban and rural areas of China in 
2015 and 2016, the total carbon emissions of consumption in 
China, as well as the carbon emissions of several municipal and 
county-level cities, to demonstrate the accuracy of our study. The 
comparison results are shown in Table 2.

Overall, the difference in results is not significant, except for 
an error of 33% in Wu’an City, Hebei Province in 2015. The errors 
in other results are less than 17%, and some are as low as 0.16%. 
The per capita carbon emissions error is generally lower than the 

FIGURE 7

Per capita carbon footprint of developing western cities.

FIGURE 8

Bubble chart of the relationship between population density, disposable income, and total carbon (carbon emission per capita) in 2015 and 2017.
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total carbon emissions error. The comparison results indicate that 
the results of our study are consistent with those of other studies, 
demonstrating good reliability.

3.5.2. Comparison with ODIAC data for validation
In the current study, most CF estimation studies do not have 

any clear consistency. However, to ensure the validity of the data, 
we verified the experimental results using ODIAC data provided 
by the Center for Global Environmental Research (CGER), Japan 
(Oda et  al., 2018), in collaboration with Oak Ridge National 
Laboratory, USA, with a spatial resolution of 1 km*1 km, covering 
global emissions from 1980 to 2020. As shown in Figure 9, this 
research is in excellent agreement with the overall spatial trend 
of the ODIAC data, R2 is 0.7058, and the RMSE is higher, which 
is 216.57, mainly due to the difference in resolution between the 
two. Compared to other research, our overall trends are more 
consistent with studies of similar scopes, such as Zhou 
et al. (2022).

Despite the similarity of ODIAC spatial trends to our study, its 
spatial effect is significantly lower than the results of our study. 
We  compared and validated our results with ODIAC data at 
multiple scales, including different scales within the same province 
of southern China, such as Guangdong Province, Foshan City, and 
Shunde District, as well as different provinces across China, such 
as Liaoning Province in northeast China, Lanzhou City in Shaanxi 
Province in western China, and Nanzhang County in Hubei 
Province in central China. This comparison reflects the 
effectiveness of different research scales in different regions of 
China and the regional differences. The validation results show that 
the overall trends are basically consistent, and the hotspot regions 
can be effectively identified. In terms of details, it can be seen that 
the hotspot regions in our study have better detail, clear 
directionality, and higher data refinement compared to ODIAC 
data. It is evident that in areas outside urban areas, especially at the 
county level (Figures 9C,F), ODIAC only displays partial urban 
areas, while our study can display the distribution of carbon 

TABLE 2 Studies on CO2 emissions from household consumption in China.

Region CO2 emission Year Our study Error rate Methodology and 
data source

References

Total Average

Hubei
6.29 tC (Urban)  

2.1 tC t (Rural)
2015

5.86 tC (Urban) 

2.0 tC (Rural) 

2015

−6.84 -4.76%
MRIOA, China Family 

Panel Survey (CFPS)

Liu and Zhang 

(2022)

China 1.80 tC (Rural) 2012
1.72 tC (Rural) 

2015

−4.44% IOA, National IOT National 

Bureau of Statistics of China

Wang et al. 

(2019)

China
3.12 tC (Urban) 

1.56 tC t (Rural)
2012

3.25 tC (Urban) 

1.72 tC (Rural) 

2015

4.17 10.26% MRIOA, 30 regions 

(province) study regions 

corresponding to GMAs 

China Energy Statistical 

Yearbook

Wu et al. (2019)

China

3700.21 Mt 2015 3681.19 Mt −0.51% EEMRIO, population 

distribution, consumption 

expenditure

Ma et al. (2022)
3763.29 Mt 2017 3757.10 Mt −0.16%

China 2.0 tC (Rural) 2018
1.74 tC (Rural) 

2017

−13%
MRIO Sun et al. (2021)

Guangzhou 37.71 Mt

2012

32.16 Mt 14.72%

City-level MRIO
Qian et al. 

(2022)

Shenzhen 50.52 Mt 47.64 Mt 5.71%

Dongguan 16.67 Mt 19.13 Mt −14.79%

Foshan 14.12 Mt 19.39 Mt −37.28%

Nanning 12.84 Mt 10.86 Mt 15.40%

Liuzhou 11.91 Mt 10.2 Mt 14.38%

Guiyang 15.27 Mt 14.96 Mt 2.09%

Changxing, 

Zhejiang

1.82 Mt 2015 2.0 Mt −9.89%

Energy, IPPU, AFOLU, and 

waste-related carbon 

emissions

Long et al. 

(2021)

1.96 Mt 2017 2.16 Mt −10.20%

Jintang, Sichuan
1.3 Mt 2015 1.52 Mt −16.92%

1.06 Mt 2017 1.24 Mt −16.98%

Wuan, Hebei
3.74 Mt 2015 4.99 Mt −33.62%

4.73 Mt 2017 5.05 Mt −6.88%

Qingcheng, Gansu
1.32 Mt 2015 1.17 Mt 11.36%

1.2 Mt 2017 1.08 Mt 10.00%

Bold values represent the results of this study corresponding to the region.
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footprints in rural areas, highlighting its advantages as a 
supplement to current emission inventories.

3.5.3. Uncertainty analysis
The uncertainty of the research lies in the following aspects. First, 

the MRIO model used to calculate regional trade consumption data is 
not entirely reliable. They assume that the industry is homogeneous and 
that all industries supply the same price. Other studies investigated the 
reliability of MRIO results at the worldwide level found that independent 
models were within the margin of error of ±5% in developed countries 
(Heinonen et  al., 2020). Second, the uncertainty of the data. The 
proportion of consumption CF of county-level cities is determined based 
on the provincial MRIO table. Currently, there is a lack of city-level or 
even county-level MRIO tables, so the level of detail of the data will bring 
some uncertainty. In addition, due to the limitations of the global 
built-up area data, the 2017 CF is estimated using the 2018 built-up area, 
which has an uncertainty range of 1.06–3.6% depending on the annual 
built-up area growth rate and urbanization rate.

Monte Carlo simulations were used to calculate the uncertainty of 
the consumption CF of 2,800 county-level cities in China, and 20,000 
simulations were carried out to analyze the uncertainty of estimated 
emissions in each region. We  assume that both activity data and 
emission factors have a normal distribution. The results show that the 
uncertainty of all cities is less than 10%, which is within the normal 
range of uncertainty. Among them, the lowest uncertainty is 1.2% in 
Jing’an District, Shanghai, and the highest uncertainty is 9.38% in 
Ejina Banner, Inner Mongolia.

4. Discussion

With China’s pledge to become carbon neutral by 2060, 
policymakers urgently need to consider how to reduce carbon 
emissions. Residential consumption, as one of the main drivers of 
carbon emissions, must be  prioritized in plans to achieve carbon 
neutrality. We estimate China’s total consumption-based CF as well as 
its per capita CF, revealing significant disparities in CFs across regions. 
This result has an excellent fitting result with the current international 
authoritative carbon emission data ODIAC.

Although our data improve the previous understanding of the 
scale, precision, and regional disparities of carbon emissions 
accounting in China, it still has a number of limitations that we hope 
to solve these problems in our future work. First, due to the limitations 
of data, 2015 and 2017 in CADEs are the latest detailed MRIO tables 
and cannot discuss the latest information on carbon emissions from 
household consumption in recent years. Owing to data limitations, 
only provincial-level MRIO data and county-level carbon emissions 
data are available. Consumption-based carbon emissions proportions 
at the county level remain unknown. Therefore, this study utilizes 
MRIO and GDP data to decompose provincial consumption 
proportions into county-level proportions. However, the imperfect 
correspondence between GDP and consumption data may potentially 
impact the disparities in consumption-based carbon emissions among 
different cities within the same province. The methodology developed 
in this research is based on the most comprehensive data we could 
find to facilitate the accuracy of data on carbon emissions from 

FIGURE 9

Comparison of this study with ODIAC data. (A) Guangdong Province. (B) Foshan City, Guangdong Province. (C) Shunde District, Guangdong Province. 
(D) Liaoning Province. (E) Lanzhou City, Shaanxi Province. (F) Nanzhang County, Hubei Province.
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residential consumption. Secondly, we mainly study the CF analysis 
of county-level cities and residents and the interaction of influencing 
factors such as population and income, but if more specific 
information such as income level, consumption structure, population 
structure, education level, occupational information, etc. The spatial 
characteristics and drivers driving the continued increase in the CF of 
consumption will be fully understood.

Despite these limitations, this study provides a detailed analysis 
of the spatial pattern and differences in consumption CF in county-
level regions and per capita in China, providing new spatial details 
and empirical results of the CF, and more generally demonstrates 
the contribution of high-resolution variables to the quality 
of analysis.

Through further checking and comparing Moran’s research 
(Moran et al., 2018), it is found that Moran combined national 
statistics on urban and rural spending patterns, regional purchasing 
power data, and demographic maps for different countries to 
estimate carbon emissions for 13,000 cities in the world. Seoul, 
Guangzhou, New York, Shanghai, Los Angeles, and Hong Kong are 
the top six, respectively. Moran claims that Guangzhou is the city 
with the largest CF in China, but based on the current research, 
there is no data to support that Guangzhou is the city with the 
largest CF in China. In this research, Shanghai ranks first with a CF 
of 96.18 Mt., and Guangzhou (32.34 Mt) ranks eighth. Therefore, 
we  believe that when Moran defines Guangzhou, Foshan, 
Dongguan, Zhongshan, Jiangmen, Huizhou, Qingyuan, Shenzhen, 
and other Pearl River Delta urban agglomerations (a total of 127.62 
Mt) as Guangzhou, it is possible to exceed Shanghai’s CF. Currently, 
due to the inconsistent research methods of consumption CF the 
lack of time-limited and accurate actual carbon emission data, and 
the lack of solid theoretical background, the estimation of carbon 
emissions is not accurate. However, this does not support the basis 
for Guangzhou to become the second-largest emission city in the 
world, which leads to the misunderstanding of the spatial pattern 
of carbon emissions in China by various governments and 
social groups.

5. Conclusion

As household consumption plays an increasingly important role 
in China, constructing detailed spatial grid data on consumer carbon 
emissions and revealing their spatial hotspots and heterogeneity is an 
important step in understanding the complexity of China’s carbon 
emission spatial patterns. This is also an important supplementary 
indicator for implementing China’s carbon reduction regional 
coordination policies. In this study, we estimated China’s 250 m high 
spatial resolution consumer carbon emissions grid data using a fine-
grained consumer carbon emission grid model. We created a spatially 
clear, hotspot-rich, and closely related carbon footprint map of China 
and a county-level per capita carbon footprint map. Our study found 
that carbon footprint spatial distribution is imbalanced, with 
significant differences in per capita carbon emissions within regions 
and between urban and rural areas. Finally, we  verified our 
experimental results using ODIAC data.

It is worth noting that several new discoveries were made during 
the course of this study:  

 (1)  The 250 m high-resolution grid map of carbon emissions at 
the consumer level created in this study covers various spatial 
scales, including national, provincial, county, and urban–rural 
areas. This fills the gaps in existing databases and enables 
dynamic investigations of the spatial patterns of carbon 
emissions across multiple scales. This provides a new approach 
for regions that have difficulty in estimating carbon emissions. 

 (2)  The study indicates that the top 5% of regions with the highest 
carbon emissions account for approximately 1/5 of the country’s 
total carbon emissions, while about 1/4 of the regions account 
for over 50% of the total carbon emissions. The carbon 
reduction potential in rural areas of China has been severely 
underestimated by approximately 10% or more, whereas the 
carbon emissions in western regions have shown the fastest 
growth due to poverty alleviation efforts. 

 (3)  The per capita carbon emissions in suburban areas of large 
cities are higher than those in the central urban areas. This 
is likely due to the density effect of large cities, the trend 
of suburbanization, and the overall higher level of development. 
A “Environmental Kuznets Curve” has been formed between 
disposable income and carbon emissions, which shows an 
inverted U-shaped relationship.

 (4)  In our study, Shanghai had the highest residential consumption-
based carbon emissions among cities in China. This contradicts 
the widely accepted conclusion in existing research that 
Guangzhou has the highest consumption-based carbon 
emissions. This result has prompted a reconsideration of the 
spatial pattern of China’s consumption-based carbon emissions.

China is facing a dilemma: on one hand, it needs to encourage 
consumption to ensure domestic economic growth, while on the 
other hand, it must slow down the rapid growth of carbon emissions 
to respond to international pressure and fulfill its clear commitments 
to reduce emissions. For the Chinese government, the priority is to 
guide consumer behavior and encourage individuals to change their 
lifestyles based on changes in their consumption habits. Additionally, 
the government should establish regional coordination mechanisms 
to develop corresponding emission reduction plans and promote 
cross-regional cooperation to coordinate carbon consumption and 
emissions. These actions can help decision-makers to reconsider 
current emission reduction goals and modify related policies, while 
considering resource endowments, historical contributions, income 
levels, population density, and cross-regional coordination to build a 
more balanced, flexible, and comprehensive policy mechanism.
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