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Climate has played a significant role in shaping the distribution of mammal

species across the world. Mammal community composition can therefore be

used for inferring modern and past climatic conditions. Here, we develop a novel

approach for bioclimatic inference using machine learning (ML) algorithms,

which allows for accurate prediction of a set of climate variables based on the

composition of the faunal community. The automated dataset construction

process aggregates bioclimatic variables with modern species distribution

maps, and includes multiple taxonomic ranks as explanatory variables for the

predictions. This yields a large dataset that can be used to produce highly

accurate predictions. Various ML algorithms that perform regression have been

examined. To account for spatial dependence in our data, we employed a

geographical block validation approach for model validation and selection. The

random forest (RF) outperformed the other evaluated algorithms. Ultimately, we

used unseen modern mammal surveys to assess the high predictive

performances and extrapolation abilities achieved by our trained models. This

contribution introduces a framework and methodology to construct models for

developing models based on neo-ecological data, which could be utilized for

paleoclimate applications in the future. The study aimed to satisfy specific criteria

for interpreting both modern and paleo faunal assemblages, including the ability

to generate reliable climate predictions from faunal lists with varying taxonomic

resolutions, without the need for published wildlife inventory data from the study

area. This method demonstrates the versatility of ML techniques in climate

modeling and highlights their promising potential for applications in the fields

of archaeology and paleontology.

KEYWORDS

machine learning, climate modeling, ecological inference, mammal communities,
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1 Introduction

Paleoclimate studies allow quantitative inferences of the

magnitudes, rates, and mechanisms of climate change and

provide direct evidence on biodiversity responses to past

environmental changes (Bertrand et al., 2011; Cerling et al., 2011;

Lorenzen et al., 2011; Lyons et al., 2016; Clavel and Morlon, 2017;

Nogués-Bravo et al., 2018; Mondanaro et al., 2021; Timmermann

et al., 2022). Currently, a wide variety of climate proxy data can be

gathered to infer past climatic conditions at various temporal and

spatial coverage. Some of the most widely employed proxy data

include tree rings, corals, ice cores, sediments, plankton, and pollen

(see, e.g., Jansen et al., 2007; Jones et al., 2009; Birks et al., 2010;

Bartlein et al., 2011; Krapp et al., 2021; Andrews et al., 2022).

However, many key archeological and paleontological deposits do

not preserve such sources of evidence. Where available, fossil faunas

can alternatively be used to help decipher more spatiotemporally

constrained environmental and climatic conditions, assuming that

many taxa are indicative of ecosystem structure (Grayson, 1981;

Andrews, 1995; Damuth and Janis, 2011; Lyman, 2017). Over the

years, paleontologists and archeozoologists have developed a pool of

new methods of paleoclimatic inference based on faunal fossil

remains, especially those of mammals, with a distinction being

drawn between taxonomic approaches (when fossils are identified

to the highest taxonomic level, ideally the species) and taxon-free

approaches (when analyses are independent of the taxonomy).

Taxonomic approaches typically use distribution, ecological niche

and habitat preference of modern related species, while taxon-free

methods are based on functional morphology, species richness or

community composition, for instance (for examples and syntheses,

see Mendoza et al., 2005; Reed et al., 2013; Andrews and Hixson,

2014; Lyman, 2017). Opting for one method over another may

result from several analytical and practical considerations such as

the number of fossil specimens available for a fossil site, the spatial

and temporal scale of the analysis, or the researcher’s expertise.

However, the performance of a climatic reconstruction ultimately

depends on the quality of the fossil record, which can be assessed

using taphonomic analyses (e.g., identifiability of the remains,

geochronology, taphonomic alterations).

More recently, advancements in multivariate statistical analysis

have led to improved accuracy and spatio-temporal resolution in

climatic inference methods based on faunal evidence, leveraging

techniques such as linear discriminant analysis and transfer

functions (in palaeoenvironmental research, a transfer function is

a statistical function that models the relationship between

paleobiotic data and climate or environmental parameters; see

Sachs et al., 1977). Two common recent approaches are the

Bioclimatic Analysis (Hernández Fernández, 2001; Hernández

Fernández, 2006; Royer et al . , 2020) and the Mutual

Ecogeographic Range (Blain et al., 2009; Fagoaga et al., 2019),

which can be used to predict categorical and/or numerical

variables. Both methods are based on the geographical range of

identified species and provide high accuracy for environmental

interpretation. However, their application on fossil sites is not

always straightforward: they were initially developed for fossil

localities from across the Palearctic realm, which involved
Frontiers in Ecology and Evolution 02
extensive collection of fauna data from modern localities within

the same realm, and their applicability to other parts of the world

thus require significant effort in additional data collection; they are

not well suited to no-analog communities (i.e., those whose

composition is unlike any found today); they require a high and

homogeneous taxonomic resolution (ideally, all specimens should

be identified to the species level). There are many fossil localities

where such taxonomic determination is seldom achieved, such as

pleistocene hominin-bearing deposits from southern and Eastern

Africa (Avery, 2007). In these localities, faunal lists cannot achieve

species resolution. In such a context, the application of the

aforementioned paleoclimatic methods becomes challenging and

does not guarantee high, consistent accuracy.

Over the past two decades, focus has been placed on advancing

machine learning (ML) algorithms to effectively tackle predictions

on increasingly larger datasets characterized by complex patterns

and nonlinear interactions. ML techniques are now routinely used

in environmental and ecological sciences for a wide range of

complex tasks such as global weather forecasting (Dueben and

Bauer, 2018; Gibson et al., 2021), air pollution estimation (Bellinger

et al., 2017; Chen et al., 2019), wildfire management (Jain et al.,

2020), or biodiversity assessment and monitoring (Knudby et al.,

2010; Kwok, 2019; Tuia et al., 2021). However, there are two main

challenges that often hamper the accuracy and applicability of ML

methods to biological data: (1) the low number of observations

available for constructing the dataset and (2) the difficulty of

integrating various levels of taxonomic identifications. These two

challenges are particularly prevalent with paleontological remains,

due to the fragmentary nature of fossils and the chronological gaps

between assemblages (Lyman, 2017).

In this study, we introduce a new ML approach for the

automated prediction of various environmental and climatic

variables based on the composition of the faunal community.

This approach enables the generation of precise predictions using

faunal lists with various taxonomic resolutions, irrespective of the

geographic region, and without the requirement of a large dataset of

modern faunal localities to ensure robust model performance. The

objectives of this paper are to describe the methodology and

evaluate its precision using modern fauna. We applied this

approach to African rodent communities, as they have already

been extensively used as proxy indicators for reconstructing

Quaternary past environments (Andrews, 1990; Fernández-Jalvo

et al., 1998; Avery, 2001; Avery, 2007; Matthews et al., 2011; Stoetzel

et al., 2018; Matthews et al., 2020). We developed an integrative

approach for constructing neo-ecological large-scale datasets and

utilized a combination of seven linear and non-linear machine

learning (ML) algorithms to achieve highly accurate predictions of

climatic variables across various locations throughout Africa. We

devised a specific geographical cross-validation in order to mitigate

effects of spatial autocorrelation on the dependence of the data. We

evaluated the performance of the algorithms to determine the most

accurate ones for each variable, considering also their ease of

implementation in our selection process, and validated the

predictions using modern comparative reference data. This

methodology can be easily adapted to other systems to meet

specific requirements, for example, by including other biotic
frontiersin.org
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proxies (such as vegetation or other fauna) or by adjusting the

geographical resolution (focusing on a specific area or covering the

entire world). As this paper aims to present the new methodology,

its application to fossil faunal lists is reserved for future research,

which will provide an opportunity to further discuss issues

specifically related to the fossil context. Our study showcases the

versatility of ML techniques in reconstructing past and present

environments, underscoring their promising potential for

utilization in the fields of archaeology and paleontology.
2 Materials and methods

2.1 Data collection

We trained the algorithms to infer climatic variables based on

the presence of taxa at a given locality. To achieve this, we

constructed a large dataset comprising numerous localities (10x10

km grid covering the entire African continent) with associated

bioclimatic conditions (using the Worldclim set of 19 bioclimatic

variables), as well as the list of rodents present in each locality

(Figure 1). In the sections below, we detail the procedure by which

this dataset can be automatically built.

The efficacy of a ML method is dependent on the quality of the

computation architecture and the availability of a large and
Frontiers in Ecology and Evolution 03
appropriate amount of training data (Cui and Gong, 2018). The

acquisition of data is therefore a crucial issue, yet ecologists rarely

have access to an extended, quality annotated data set. This

limitation can be a significant constraint in environmental

studies, where the need for extrapolation is high (for instance,

predicting changes in aridity) but the training and test data within

the sought range of prediction are limited. Recent studies seeking to

reconstruct past environmental conditions from fauna using

statistical computing and ML methods (e.g. Žliobaitė, 2019;

Spradley et al., 2019; Royer et al., 2020) have used limited

datasets with a quantity of input data restricted by several factors,

such as sampling effort or the availability of open and accessible

published faunal lists. Occurrence data of fauna species typically

come from sources such as the Global Biodiversity Information

Facility (GBIF), published field surveys and park or game reserve

lists (see, for instance, the Information Center for the Environment

(ICE) Biological Inventories of the World’s Protected Areas), and

primary literature. There are many factors that preclude the

collection of species occurrence observations and thus affect the

comprehensiveness and representativeness of these data (Rondinini

et al., 2006), and the minimum sample size required for producing

meaningful predictions is usually difficult to estimate. One way to

address this problem while meeting data requirements is to

combine gridded weather and climate data with range maps of

modern African rodent species.
FIGURE 1

Data aggregation and machine learning (ML) workflow depicting the different analytical steps. The data used in this study were obtained by
combining species distribution maps with bioclimatic layers into a single dataset. Explanatory variables, which include species and supra-specific
occurrence information, are utilized to predict a single bioclimatic variable (response variable) through the application of various machine learning
algorithms with a geographically-based cross validation procedure. Random forest algorithm achieved the highest predictive performance.
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2.1.1 Bioclimatic data
Bioclimatic data was retrieved from Worldclim 2.1 (Fick and

Hijmans, 2017) at a resolution of 5 minutes (10x10km). The

Worldclim dataset consists of 19 spatial raster images

representing average, minimum and maximum temperatures and

precipitation (Table 1). Data were collected from various weather

stations worldwide and represent averages for the years 1970–2000.

An additional spatial map for evapotranspiration (ET, in mm/day)

was obtained from the Consortium for Spatial Information

(CGIAR-CSI) GeoPortal (https://cgiarcsi.community). In total, we

used approximately 350,000 10x10 km cells with associated climatic

measurements to ensure complete coverage throughout the African

continent. This resolution offers a dataset that is large enough to

obtain high accuracy and of sufficient resolution to capture the

influence of habitat heterogeneity on the structure of African

rodent communites.

In this study, we focused on modelling the 20 climatic variables

independently, based on the presence or absence of rodent taxa. We

chose to consider not only annual trends (e.g., mean annual

temperature or precipitation) but also extreme or limiting

environmental factors (e.g., temperature of the warmest month or

precipitation of the wettest quarter) as relevant for reconstructing

climate conditions. Integrating these “secondary” variables allows

us to represent not only global climate conditions, but also

seasonality components, which are essential to understand

ecological systems and species distribution and abundance

patterns (White and Hastings, 2020).
2.1.2 Species distribution data
For each grid cell with associate X, Y coordinates, we then

recorded presence or absence of each African rodent species based

on species distribution data. Current distributions of rodents across

Africa were gathered from expert range maps published by Wilson

et al. (2016, 2017), and from the IUCN (International Union for

Conservation of Nature) red list database. Range maps of all non-

domesticated mammal species from various expert sources were

also recently made available for bulk download on the Map of Life’s
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website at https://mol.org/datasets/?dt=range&sg=Mammals

(Marsh et al., 2022). We used 464 rodent species with partial or

exclusive African distribution (except for Madagascar and small

islands) out of the total of 468 species listed in Wilson et al. (2016,

2017). The four remaining species Apodemus sylvaticus, Mus

musculus, Rattus norvegicus and Rattus rattus were excluded from

the dataset due to their recent introduction to the African territory.

Our overall rodent dataset includes representatives from 92 genera

belonging to at least 15 families. Rodent distribution maps were

superimposed on the climatic raster layers, and the presence or

absence of a species in a cell was recorded as a binary variable with

values labeled 0 (absence) or 1 (presence). In addition to the 464

species variables, we added supplementary variables corresponding

to supraspecific taxonomic ranks (genus, tribe, subfamily, and

family) of all species included in the dataset, following Wilson

et al. (2016, 2017) for taxonomic classification. These variables take

the value of 0 or 1 when at least one species within the designated

taxonomic rank is present on a cell. For example, if two species of

Arvicanthis are found in the same place, the variables “Muridae”,

“Murinae”, “Arvicanthini” and “Arvicanthis” will also get a value of

1 in the data set. This addition raised to 600 the number of

predictive variables. The main advantage of this method is that

equal weight is given to different taxonomic ranks involved in the

prediction, and not only species. In this way, faunal lists or surveys

with different taxonomic levels can be used to predict climatic

conditions, including fossil data with few identifications at the

species level for instance.

There is a frequent debate among ecologists concerning the use

of range map instead of occurrence point locations to carry out

broad-scale ecological analyses (Hurlbert andWhite, 2005; Hurlbert

and Jetz, 2007), and both forms have their own shortcomings.

Range maps often overestimate species occurrences with false

presence rate, whereas occurrence points tend to underestimate it.

Nevertheless, the use of range maps in this study brought

considerable benefits: the most notable are that (1) it substantially

expanded the number of observations, (2) it prevented sampling

bias resulting from geographically variable expert knowledge and

(3) facilitated automatic implementation of species data without the
TABLE 1 The 20 bioclimatic variables used for the study.

Code Bioclimatic variable min (mean) max min (mean) max

ET evapotranspiration 0 (3629) 29721 bio10 mean temp. of warmest quarter 5.8 (28.1) 38.5

bio1 annual mean temperature 3.5 (23.9) 31 bio11 mean temp. of coldest quarter −5.1 (19.2) 29.2

bio2 mean diurnal range 5.4 (13.4) 19.2 bio12 annual precipitation 0 (628.5) 4307

bio3 isothermality 5.4 (58.6) 93.7 bio13 precip. of wettest month 0 (126) 1115

bio4 temperature seasonality 9.7 (363.1) 929.1 bio14 precip. of driest month 0 (5.7) 138

bio5 max temp. of warmest month 11.4 (35.6) 48.3 bio15 precip. seasonality 0 (87.6) 222.3

bio6 min temp. of coldest month −9 (11.3) 23.4 bio16 precip. of wettest quarter 0 (323) 2721

bio7 temp. annual range 8.5 (24.3) 41.3 bio17 precip. of driest quarter 0 (25.3) 472

bio8 mean temp. of wettest quarter −1.5 (24.3) 37.9 bio18 precip. of warmest quarter 0 (149.1) 980

bio9 mean temp. of driest quarter 0.4 (22.8) 36.1 bio19 precip. of coldest quarter 0 (112.2) 2721
Temp., temperature; precip., precipitation.
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need for control of quality and accuracy of georeferenced

specimens. The level of precision and uncertainty of model-based

animal distributions are difficult to quantify, and there will be

inevitably some inaccuracies in the demarcation of the species’

range. In general, endemic species with restricted ecological

tolerance and thus potentially good ecosystem asset proxy

indicators will have a higher level of spatial detail, whereas species

with wide distribution will result in range maps being less accurate.

Furthermore, the extant distribution of species may not coincide

with their past range and it may also not reflect habitat suitability

alone. These issues do not have completely satisfactory answers, and

we used a resolution of 100km² grid cells to recognize the spatial

grain limitations of the range maps. Furthermore, it is expected that

the multiple interaction paths connecting the 463 species in the

global community will balance the influence of one with dubious

distribution data on the predictions. If finer species ranges become

available in the future, one can easily replace a species distribution

variable to reflect habitat restriction with greater precision.
2.2 Machine learning for regression

Machine learning (ML) techniques now support the capture of

complex interactions and behaviours such as the influence of the

environment on species’ patterns of distribution (Botella et al., 2018;

Beery et al., 2021). In this work, we test and compare a variety of ML

algorithms for regression to predict climatic features based on

rodent faunas (Table 2). The algorithms were selected for their

suitability to binary high-dimensional taxon data and because they

were expected to provide good results for climate modeling.

Linear regression is a straightforward algorithm based on

supervised learning, where the predicted output is continuous and

has a constant slope. It is one of the fundamental ML models due to

its relative simplicity and clear properties. A multiple linear

regression (MLR) model extends linear regression to several

explanatory variables (Jobson, 1991). However, MLR loses

efficiency when the number of explanatory variables is large or

when the variables are highly correlated (collinear). Regularization
Frontiers in Ecology and Evolution 05
techniques offer a solution to this problem by incorporating

additional information or constraints into the model training

process. The goal is to control the complexity of the model and to

reduce the potential for overfitting. During training, a penalty term

is added to the loss function, encouraging smaller coefficient values

and mitigating the impact of correlated variables. There are two

main types of regularization techniques: ridge regression and lasso

regression. Ridge regression is effective for handling

multicollinearity as it adds an L2 penalty term, penalizing the

sum of squared coefficients. This encourages the model to

distribute the influence of the explanatory variables across all

features, reducing the dominance of any single variable. On the

other hand, lasso regression applies an L1 penalty, driving some

coefficients exactly to zero by penalizing the sum of their absolute

values. This sparsity-inducing property makes lasso regression

useful for feature selection and identifying the most important

variables in the model. By pushing the coefficient of correlated

variable towards zero, lasso regression results in fewer features

being included in the final model while still preserving relevant

regression information. Elastic net regression (ELASTIC) is a

regularized regression method that combines both the L1 and L2

penalties of the lasso and ridge methods. In addition to

regularization, dimensionality reduction techniques such as

partial least squares regression (PLS) can seek a lower-

dimensional representation of the features that retains essential

relationships in the data. PLS achieves this by projecting the

predicted and observable variables into a new space, extracting

factors that capture most of the variation in the response (Vinzi

et al., 2010).

We also investigated several non-linear ML methods that could

probably better address climatic predictions. Regression trees (RT)

are the regression version of decision trees (Breiman et al., 1984),

which are ML algorithms that partition the data into subsets. RT are

constructed by splitting training dataset into smaller subsets based

on an attribute value test, which are then fitted along the tree

branches. The partitioning process starts with binary split and

proceeds until no further splits can be made, resulting to various

tree paths of variable length. RT can handle high dimensional data,
TABLE 2 Machine learning models used in the study and associate tuned hyperparameters.

Code Model Environment Parameters

MLR multiple linear
regression

R none

ELASTIC elastic net regression R (glmnet) alpha, lambda

PLS partial least squares
regression

R (pls) ncomp

RF random forest Python
(randomForest)

n_estimators, min_samples_leaf, min_samples_split

EXTRA extremely randomized
trees

Python (sklearn) n_estimators, min_samples_leaf, min_samples_split, max_depth,

XGBOOST extreme gradient
boosting

Python (XGBoost) n_estimators, max_depth, learning_rate, subsample, colsample_bytree, colsample_bylevel,
min_child_weight, gamma, reg_lambda,

NNET artificial neural network Python (PyTorch) n_hidden_layers, n_nodes_on_each_hidden_layer
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but they are prone to overfitting and can be unstable, as a slight

change in the input dataset can greatly affect the predictions. Tree-

based ensemble methods have emerged to improve the predictive

power of decision trees. Ensemble methods involve using multiple

trees and combining their results to produce a single optimal

prediction. Random forest (RF) models aggregate an ensemble of

successive fully-grown individual regression trees, which are

decision trees expanded until each leaf node contains only one

data point or all data points in the node share the same target value

(Breiman, 2001). This allows the trees to capture intricate

relationships and potential overfitting to the training data. The

random forest model is trained through bootstrap aggregating, also

known as bagging, which involves creating multiple subsets of the

original training data by randomly sampling with replacement.

Each subset, called a bootstrap sample, is of the same size as the

original dataset but may include duplicate instances and exclude

some instances. Extremely randomized trees (EXTRA) are similar

to RF, but they do not resample observations when building a tree

and use a small number of randomly chosen splits-points for each

of the selected predictors (Geurts et al., 2006). Extreme gradient

boosting (XGBOOST) is a gradient boosting algorithm, i.e., an

ensemble model that fits consecutive weak trees, also known as

shallow decision trees, on the residuals from the previous iterations.

These weak trees have limited depth or complexity and are

combined using a gradient descent algorithm to minimize the

fitting errors in each iteration of the boosting process.(T. Chen

and Guestrin, 2016). An Artificial Neural Network (NNET) is based

on interconnected units called artificial neurons that are typically

arranged in a series of layers (Haykin, 1999). Each neuron receives

input from the neurons on the previous layer, undergoes a weighted

transformation of this input, and sends an output signal to the

neurons of the next layer. The weights assigned to the connections

between neurons represent the strengths or importance of the

respective inputs. During the training process, these weights are

adjusted iteratively using optimization algorithms that minimize

the difference between the network’s predicted outputs and the

actual targets. This adjustment of weights enables the network to

learn complex patterns and relationships in the training data,

allowing it to make predictions on new, unseen inputs based on

the learned patterns. A Deep Learning Network refers to a NNET

architecture that uses multiple layers of neurons to extract higher-

level features from the raw input.

All analyses were performed using R 4.0.2 (R Core Team, 2020)

and Python 3.8.8 (van Rossum and Drake, 2009), using various

packages and libraries for model fitting and parameterisation

(Table 2). The R and Python scripts for our analyses are provided

in the supplementary material.

2.2.1 Model configuration
Each ML model has specific internal parameters, called

hyperparameters, which help to control the learning process for a

given problem. Different ML algorithms require different

hyperparameters, e.g., number of trees in random forests or the
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number of hidden layers and units in artificial neural networks,

which must be set before training. In this study, we used grid search

and randomized search with cross-validation for hyperparameter

optimization according to the trained model. The selected

hyperparameters that were tuned for each model are provided

in Table 2.

2.2.2 Model validation
This study utilized geographically-based partitioning to create

training/validation and test sets with a 0.75 partitioning ratio. The

aim was to address spatial autocorrelation and to prevent excessive

similarity between observations used during training and test phases,

ensuring their statistical independence (Dormann et al., 2007).

Certain geographical areas exhibit low internal climatic variability

as well as homogeneity in their faunal community composition. This

effect is likely to be more pronounced in regions characterized by low

species richness. In a random split, selecting neighboring locality

observations for training and validation will thus result in

dependencies. To tackle this issue, the entire data was partitioned

into geographically distributed blocks across Africa (Figure 2), with

continuous latitudinal and longitudinal bands serving as dividers (see

other strategies to account for spatial autocorrelation in Dormann

et al., 2007; Wenger and Olden, 2012; Le Rest et al., 2014; Roberts

et al., 2017; Mendoza and Araujo, 2022). The size of the blocks (2.1 x

2.1 degrees) was determined to achieve a balance between

accommodating species with limited geographic ranges and

providing sufficient coverage for evaluating the models’ adaptability

to climatic conditions without direct analogues. Approximately 75%

of the dataset was encompassed within the blocks, constituting the

training set, while the remaining 25% of observations within the

latitudinal and longitudinal bands formed the test set. These bands

introduce disruptions in the geographical continuity observed in the

blocks that will be employed for cross-validation. To assess model

performance and optimize the hyperparameters of models over grid

searches, the geographical blocks were then randomly assigned to five

folds for cross-validation, using one fold for testing and the remaining

four folds for model fitting. After the process is iterated until the five

folds have been used for testing once, we calculated the average

performance metrics (details below) across the five iterations in order

to estimate the model’s generalization performance (summarized in

Table S1). Finally, we selected the best-performing model based on

the average performance and used it to make predictions on unseen

test data.

Although this strategy limits sources of error and bias in the

predictions, it is worth mentioning that autocorrelation cannot be

fully addressed satisfactorily in our presence–absence design

problem, for occurrences are highly imbalanced between species:

for instance, the distribution of the Natal multimammate mouse

Mastomys natalensis covers almost all Africa south of the Sahelian

zone, while Issel’s groove-toothed swamp rat Pelomys isseli is

restricted to a few islands in Lake Victoria. This situation leads to

blocks lacking either presences or absences, which will affect the

model’s ability to generalize patterns effectively. To assess the
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predictive performance of the fitted models, we used root mean

square error (RMSE), mean absolute error (MAE), coefficient of

determination (R²) and adjusted coefficient of determination (aR²)

metrics. RMSE, MAE, R², and aR² are calculated as follows:

RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
  i=1(yi − ŷ   ) 2

r

MAE =  
1
N o

N

  i=1
yi − ŷj j

R2 = 1 −o
(yi − ŷ   ) 2

o(yi − �y   ) 2

aR2 = 1 − (1 − R2)
(N − 1)
N − p − 1

where N is the number of samples for validation, yi, ŷ and �y are

observed, predicted and mean values of y respectively, and p is the

number of input variables (predictors). RMSE is the square root of

MSE, which represents the average of the squared difference

between the original and predicted values; it measures the

standard deviation of the residuals. MAE represents the average

magnitude of the differences between the original and predicted

values, regardless of the direction of the errors. R² represents the

proportion of variance for a dependent variable that is explained by

an independent variable; it is a scale-free score, represented as a

value between 0 and 1. The adjusted R² is a modification of the R²

that penalizes the inclusion of unnecessary predictors in a

regression model, providing a more conservative estimate of the

model’s performance while accounting for its complexity. It is a

measure that balances the goodness of fit with the number of
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predictors. RMSE, MAE,R², and aR² are four common of many

quantifiable ways to check how predicted values are closely related

to actual observed values (Chai and Draxler, 2014).

2.2.3 Model interpretation
Variable importance, also called feature importance, allows

ranking the relative contributions of input variables for predicting

the output variable (Friedman, 2001). It also provides an interesting

global insight into the model’s behavior. There are many methods

to compute variable importance scores in a fitted model, some

model-specific, others model-independent (e.g., Archer and Kimes,

2008; Williamson et al., 2021). In this contribution, Random Forests

(RF) demonstrated superior predictive performance compared to

other models, leading us to focus on this algorithm. To assess the

importance of variables, we used a built-in feature importance

evaluation from the RF algorithms, which is based on the mean

decrease in residual sum of squares (Breiman, 2001).
2.3 Testing the models on new
faunal datasets

As the dataset on which the models have been trained is derived

from range maps rather than point-occurrence records, predictions

are based on a scenario of full occurrence of the maximum possible

species on each cell. For example, the highest species richness is

found in the Central African rainforest with a total of 62 sympatric

species. In practice, however, faunal data from field inventories or

archeological excavations rarely represent exhaustive inventories.

There is much variety when it comes to survey (e.g. owl pellet

counts, pitfall and snap traps, acoustic techniques, camera surveys),

with a potential impact on sampling efficiency that can alter
FIGURE 2

The dataset was divided into a training set, consisting of non-adjacent blocks distributed uniformly (75% of the data, in blue), and a test set (25% of
the data, in pink). Blocks from the training set were assigned randomly to five folds, each marked with a distinct color that shows allocation of blocks
to folds, for 5-fold cross validation.
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richness and abundance estimates (Andrews, 1990; Umetsu et al.,

2006). To ensure the reliability of climatic inferences and their

extrapolation to local rodent surveys where sample success is lower,

trained models were tested on eight faunal lists derived from

published rodent surveys from various African countries

(Table 3). These lists show discrepancies between the number

of identified species and the theoretical maximal specific

diversity according to the literature. Climatic conditions predicted

with the fitted models can then be compared with real local

conditions, allowing estimating the reliability of our method. Of

course, it is not expected that predictions from a small

number of species will exactly match climatic records at the eight

locations; however, the comparison of actual and predicted

bioclimatic values can be viewed as an easy “test case” and a first

demonstration of the exportability of our methods to no-analog

small mammal communities.

To visually identify the areas with the highest similarity in terms

of climatic conditions to the predictions derived from faunal lists,

maps have been generated by rasterizing the Euclidean distance
Frontiers in Ecology and Evolution 08
values between the output vector containing the 20 predicted

variables and each cell of the dataset.
3 Results

3.1 Performance of ML models

Performances of the seven algorithms for predicting the 20

target climatic variables after cross-validation are shown in Table 4

(RMSE and aR²) and Supplementary Table 1 (MAE and R²). Each of

the non-linear ML models achieved substantially better prediction

performances than the linear models. The highest performing

model is RF, closely followed by XGBOOST and NNET, based on

the RMSE and aR² values on the test set. The lowest performing

model is PLS, regardless of the output variable. Relationship

between the observed and predicted outcomes using RF models

on test setare illustrated with scatter plots for each variable in

Figure 3. There are also differences in the models’ performances
FIGURE 3

Actual (observed) and predicted values of the 20 bioclimatic variables for the test data set (n = 89420) with the random forest model.
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with respect to the predicted output variable: evapotranspiration

(ET), annual precipitation (bio12) and temperature seasonality

(bio4) are consistently predicted very accurately (aR² = 0.98 for

the three variables with RF model); by contrast, the mean

temperature of the driest quarter (bio9) and the precipitation of

the coldest quarter (bio19) are the most difficult variables to predict

using the faunal input variables. Based on these scores, we adopted

the random forest (RF) as the most efficient ML regression model

for the rest of the analysis.
3.2 Climatic predictions on new dataset

RF-based prediction of the distinct bioclimatic conditions from

several published rodent lists (details in Table 3) provided results

that are in most cases matching closely with records from weather

stations around the areas. Figure 4 shows the predictions from the

RF models for nine temperature parameters compared to the

temperature records from the climate stations in the study areas.

There is a high correspondence between the observed

temperature records from the weather stations and the values of

temperature variables predicted by the RF algorithms based on the

rodent lists. This is all the more striking, since these inferences are

made with original faunal data beyond the data set used for

model fitting.
4 Discussion

4.1 Nonlinear vs. linear models

Unsuprisingly, all the nonlinear ML models consistently

provided better performances than the linear models. In

particular, RF, XGBOOST, and NNET appear to be the most

promising algorithms for predicting climatic variables based on

the presence or absence of rodents. Unlike linear models, they are

successful in capturing nonlinear patterns and interactions (Bishop,

2006). The actual spatial limits of distribution of rodent species are

controlled by complex interactions between several biotic (e.g.,

competition, predation, vegetation) and abiotic (e.g., soil
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nutrients, anthropogenic land-use change, water availability, fires,

etc.) factors. As a result, bioclimatic factors can drive differential

responses on the abundance and presence of some species that can

hardly be captured by linear statistical models. This is not

particularly surprising, as similar observations were also made for

other climate predictions with ML based on pollen samples

(Salonen et al., 2019; Sobol et al., 2019). The corollary to this is

that RF identified important contributing taxa that were not or were

little considered by linear models, such as the genera Euxerus

or Hystrix for predicting annual mean temperature (see Figure 5).

This provides an example of how non-linear models captured

more detailed effects that allow to better characterize the climatic

components of an environment. However, an overly sophisticated,

complex statistical model may be prone to overfitting; this occurs

when a model fits exactly against its training data and learns detail

and noise to the extent that it negatively impacts its performances

on unseen data (Dietterich, 1995; Hawkins, 2004). It is nevertheless

possible to avoid overfitting bias in several ways such as using cross-

validation, backtesting, regularization or by carefully tuning the

hyperparameters pertaining to the model.
4.2 Performance of the RF algorithm

Using tree-based ensemble methods, we successfully predicted

bioclimatic components of multiple African environments based on

rodent communities. Although the actual distribution of most

rodent species is driven by many environmental and

anthropogenic factors that are hardly quantifiable (including type

and density of vegetation, soil physical characteristics, elevation,

predator status, farm management practices, for instance), rodents

are primary consumers with strict ecological requirements for most

of them; thus, we were expecting to predict bioclimatic variables

with a fair degree of accuracy. The striking performance achieved by

our RF models provides support for the contribution of ML

approaches to predictive environmental modelling from

species distribution.

The set of 19 bioclimatic variables from Worldclim is derived

from monthly temperature (minimum and maximum

temperatures) and rainfall values. Our models achieved the best
TABLE 3 List of published rodent inventories from various African localities, with the number of identified taxa (various taxonomic ranks included)
used in the predictions and the theoretical maximum number of species at this location based on the literature.

area study n taxa identified max species richness

1 South East Tunisia Ettis et al., 2019 6 16

2 Alatish National Park, Ethiopia Habtamu and Bekele, 2008 13 10

3 Volta Region, Ghana Decher et al., 2021 18 37

4 Mount Oku, Cameroon Ebague et al., 2019 13 31

5 Réserve de Faune à Okapis, DR Congo Katuala et al., 2005 22 44

6 Bwindi Impenetrable National Park, Uganda Kasangaki et al., 2003 45 49

7 Tarangire National Park, Tanzania Stanley et al., 2007 15 35

8 Mountain Zebra National Park, South Africa Parker, 2021 20 19
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performances for primary variables that derive directly from these

values, such as annual precipitation, temperature seasonality,

precipitation of the wettest quarter, etc. By contrast, predicted

variables for which we obtained more mixed performances are

secondary variables, i.e., combinations of the temperature and

precipitation values, such as mean temperature of wettest quarter,

precipitation of coldest quarter, and mean temperature of driest

quarter. This can have a significant impact on depicting climate or

environment when one chooses to select for any reason only a few

response variables.

One of the advantages of the RF regression algorithm is the

possibility of easily including many covariates with minimal tuning

(see Table 2) and supervision in comparison with other nonlinear

methods such as XGBOOST or NNET. However, there are several

obstacles that may hamper the accuracy and performance of our

models. The most obvious one relates to the reliability of species

distribution data. As a rule, the geographic range for widespread

species is less precise than for species with restricted distributions.

This may result in a further overrepresentation of widespread taxa

in the dataset (with an impact on the relative important variables for

each model) and mask the distribution of species along climatic
Frontiers in Ecology and Evolution 10
gradients. By using range maps instead of observed points of

occurrence, however, it will be easy to quickly refine predictor

variables as more detailed data on rodent species occurrence will

be available in the future. In addition, although no less than 463

species of African rodents were used as predictors, this large

number of variables may still be insufficient for highly accurate

climate modelling at the scale of the entire African continent.

In the wild, the same association of rodent species can occur

in different places with different climatic characteristics. Among

the 350k localities recorded in our dataset, around 40% only

display a unique combination of occurring species, while the

remaining 60% of the localities have one or more replicates.

This is especially the case for environments with low specific

diversity, such as the central Sahara or the Namib Desert,

for example.
4.3 Paleoclimate reconstruction

Our method using RF algorithm has strong potential to be used

as new quantitative paleoclimate and paleoenvironmental
TABLE 4 Performance evaluation of ML regression methods.

Linear models Non-linear models

LM ELASTIC PLS RF EXTRA XGBOOST NNET

RMSE aR² RMSE aR² RMSE aR² RMSE aR² RMSE aR² RMSE aR² RMSE aR²

ET 931.27 0.95 928.37 0.95 1195.3 0.92 564.32 0.98 562.81 0.98 552.13 0.98 660.14 0.98

bio1 1.38 0.85 1.38 0.85 1.64 0.78 0.93 0.93 1.01 0.92 1.02 0.92 1.13 0.90

bio2 0.88 0.86 0.87 0.86 1.12 0.76 0.61 0.93 0.60 0.93 0.63 0.93 0.66 0.92

bio3 2.87 0.95 2.87 0.95 3.78 0.91 1.84 0.98 1.85 0.98 1.85 0.98 1.91 0.98

bio4 52.21 0.95 52.32 0.95 68.83 0.92 30.71 0.98 30.72 0.98 30.77 0.98 32.37 0.98

bio5 1.83 0.86 1.83 0.86 2.20 0.80 1.25 0.94 1.25 0.93 1.27 0.93 1.41 0.92

bio6 1.65 0.91 1.65 0.91 2.16 0.85 1.06 0.96 1.07 0.96 1.10 0.96 1.26 0.95

bio7 1.99 0.93 1.99 0.93 2.66 0.88 1.25 0.97 1.25 0.97 1.26 0.97 1.33 0.97

bio8 2.64 0.78 2.64 0.78 3.05 0.71 1.98 0.88 1.98 0.88 2.00 0.87 2.08 0.86

bio9 2.45 0.76 2.45 0.76 2.80 0.68 1.98 0.84 1.98 0.84 2.00 0.84 2.16 0.81

bio10 1.61 0.86 1.61 0.86 1.93 0.80 1.10 0.93 1.10 0.93 1.13 0.93 1.24 0.92

bio11 1.48 0.91 1.48 0.91 1.85 0.86 1.02 0.96 1.02 0.96 1.05 0.96 1.17 0.95

bio12 133.50 0.95 132.92 0.95 171.48 0.92 64.46 0.99 74.71 0.98 72.23 0.98 160.12 0.93

bio13 29.63 0.93 29.55 0.93 38.40 0.87 16.59 0.98 22.35 0.96 17.1 0.98 21.16 0.96

bio14 6.60 0.81 6.60 0.81 8.28 0.70 4.69 0.90 4.70 0.90 4.41 0.92 5.33 0.88

bio15 14.63 0.85 14.63 0.85 18.56 0.75 10.36 0.92 10.37 0.92 10.39 0.92 10.88 0.91

bio16 73.55 0.93 73.32 0.93 98.47 0.88 40.70 0.98 40.62 0.98 39.33 0.98 49.71 0.97

bio17 20.98 0.87 21.00 0.87 27.98 0.77 14.70 0.94 14.82 0.93 13.14 0.95 17.93 0.90

bio18 46.34 0.91 46.25 0.91 57.04 0.87 34.20 0.95 34.20 0.95 33.53 0.95 40.44 0.93

bio19 120.41 0.73 120.14 0.73 144.22 0.61 80.22 0.88 80.11 0.88 77.31 0.88 93.70 0.84
front
The best performing models for each variable are in bold. RMSE root mean square error, aR² adjusted coefficient of determination.
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reconstruction tool from fossil data. The discovery of new

paleontological and archeological deposits is continuing apace,

which often yield abundant and well-preserved faunal fossil

remains that constitute the prime material for describing past

environmental conditions. Our method may provide additional

details on paleoenvironmental conditions within which such fossil

assemblages were accumulated and deposited by retrodicting primary

and secondary variables independently with a great performance.

The aggregation of spatial data in the initial dataset allows to

produce visually impactful similarity maps to compare predicted

environments with the current environmental conditions (see

Figure 6). In the context of reconstructing fossil hominid

environments, for instance, these maps could illustrate potential

dispersal routes or paleodistribution maps.

The capacity of our models for coping with heterogeneous

taxonomic distinction may also help to refine ecological

inferences based on published faunal lists. In archeological and

paleontological context, fossils are not always identifiable at the

species level using traditional morphological characters. For

instance, the smallest species of rodents such as Mus, Dendromus

or Graphiurus species can be hard to identify due to higher

fragmentation rate in sediments and the lack of patent specific

dental or cranial characters (Linchamps et al., 2021). The task is

even more complicated for remote periods for which few

comparative specimens are available. With fossil assemblages

where such problems occur, only methods that consider variable

taxonomic resolution are useful for faithful paleoclimate

reconstruction. Calculating the most important variables that

contribute to the overall prediction showed that not only the

species level, but also the broader taxonomic levels, such as the

subfamily or the family (see Figure 5), can be particularly indicative

for modeling the climatic components of an environment.

It is assumed that confidence in the validity and performance of

a paleoenvironmental reconstruction usually decreases as the faunal

assemblage examined is older (Avery, 2007; Reed, 2007; Lyman,

2017). This is primarily due to the potential evolutionary changes in
FIGURE 4

On the left, map of Africa showing rodent species richness and the location of eight nature reserves associated with rodent surveys (see Table 3 for
the references of the locations); on the right, scatter plots of observed and predicted values for nine temperature variables using RF algorithm based
on each rodent survey. The black diagonal line represents the line of perfect prediction. The numbers under the countries correspond to the
number of species identified in the publication and therefore used for the predictions/theoretical maximum number of species at the same location.
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FIGURE 5

Comparison of the 20 most important relative variables of the random
forest (RF) model used to predict the annual mean temperature (bio1).
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species’ tolerances over time, which may introduce uncertainty into

the reconstructions. Holocene and Upper Pleistocene faunal

collections therefore usually provide the most accurate and

reliable interpretations, while the Quaternary faunas,

characterized by the emergence and establishment of modern

lineages, may still offer a reliable requisite degree of temporal

distance. To check how well do our RF models perform with

fossil data, predicted values could be compared with those from

other quantitative methods independent of the taxonomy such as

isotopic analyses (e.g. Cerling et al., 1997; Garrett et al., 2015),

ecomorphology (e.g. Kovarovic and Andrews, 2007; Plummer et al.,

2015) or teeth meso- and micro-use wear (e.g. Hopley et al., 2006).

Combining medium and large fauna would also give a more

comprehensive signal. Due to different modes of accumulation,

micromammals and larger mammals are seldom fossilized together,

although they coexisted (Andrews, 1990; Fernández-Jalvo and

Andrews, 2016). It can therefore be difficult to link different

taxonomic groups as taphonomic biases may have favored the

over-representation of one group. This issue comes up frequently

among researchers, and the most successful attempts at a holistic

approach often involve laborious and time-demanding crossing of

the disciplines in paleosciences (Lotter, 2005). At the same time,

future knowledge of the distribution and habitats of extinct species

for which little information is available may result in better

integration of fossil taxa.

Although this method can deal with uncertainties in taxonomic

identification, it would still require data from clear stratigraphic

context with a proper sampling effort to ensure the

representativeness of the mammal community. In this perspective,

some taphonomic calibration tools would benefit from being

combined with our method for finer paleoenvironmental

interpretations. In the case of vertebrate accumulations, various

taphonomic processes may alter the faunal composition from living

to dead to fossil assemblage, such as predation, breakage, or

dispersion of bones (Brain, 1981; Behrensmeyer, 1984; Andrews,
Frontiers in Ecology and Evolution 12
1990). A way to adapt the method to these particular conditions is to

define various exclusion thresholds for taxa not likely to occur in a

specific context, based on expert knowledge.
5 Conclusions

In this study, we develop a new well-performing method for

bioclimatic predictions using faunal communities as proxy data

with a ML regression approach. Among the different algorithms, the

random forest regression algorithm provided the highest

performance in predicting bioclimatic variables. Our standardized

protocol for compiling and processing mammal distribution data as

input source for environmental predictions allowed us to overcome

traditional obstacles in faunal-based climate reconstructions related

to the incompleteness and heterogeneity of the sample. This

approach has the potential to be a useful tool for landscape and

climate reconstructions of paleontological and archeological sites

where faunal remains are available. It may further be generalized to

embed other important types of environmental archives for even

finer climatic reconstructions.
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Map of Africa showing areas with bioclimatic conditions analogous to those predicted by RF algorithms based on the list of rodents from Mountain
Zebra National Park, South Africa (in blue), and from Bwindi Impenetrable National Park, Uganda (in green). Areas of more intense colors indicate
highest climatic similarity.
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Doré (Muséum national d’Histoire naturelle) for his help and useful

comments that enhanced the quality of this work.
Frontiers in Ecology and Evolution 13
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fevo.2023.1178379/

full#supplementary-material
References
Andrews, P. (1990).Owls, caves and fossils: predation, preservation and accumulation
of small mammal bones in caves, with an analysis of the pleistocene cave faunas from
westbury-Sub-Mendip (Somerset, U.K: University of Chicago Press).

Andrews, P. (1995). Mammals as palaeoecological indicators. Acta Zool.
Cracoviensia 38, 1.

Andrews, P., and Hixson, S. (2014). Taxon-free methods of palaeoecology. Annales
Zoologici Fennici 51, 269–284. doi: 10.5735/086.051.0225

Andrews, P., Reynolds, S. C., and Bobe, R. (2022). “Approaches to the study of past
environments,” in African Paleoecology and human evolution. Eds. R. Bobe and S. C.
Reynolds (Cambridge: Cambridge University Press). doi: 10.1017/9781139696470.002

Archer, K. J., and Kimes, R. V. (2008). Empirical characterization of random forest
variable importance measures. Comput. Stat Data Anal. 52 (4), 2249–2260.
doi: 10.1016/j.csda.2007.08.015

Avery, D. M. (2001). The plio-pleistocene vegetation and climate of sterkfontein and
swartkrans, south Africa, based on micromammals. J. Hum. Evol. 41 (2), 113–132.
doi: 10.1006/jhev.2001.0483

Avery, D. M. (2007). Micromammals as palaeoenvironmental indicators of the
southern African quaternary. Trans. R. Soc. South Afr. 62 (1), 17–23. doi: 10.1080/
00359190709519193

Bartlein, P., Harrison, S., Brewer, S., Connor, S., Davis, B., Gajewski, K., et al. (2011).
Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis.
Climate Dyn. 37, 775–802. doi: 10.1007/s00382-010-0904-1

Beery, S., Cole, E., Parker, J., Perona, P., and Winner, K. (2021). “Species distribution
modeling for machine learning practitioners: a review,” in ACM SIGCAS Conference on
Computing and Sustainable Societies (COMPASS) (COMPASS ’21); June 28–July 2, 2021;
Virtual Event, Australia. New York, NY, USA: ACM. doi: 10.1145/3460112.3471966

Behrensmeyer, A. K. (1984). Taphonomy and the fossil record: the complex
processes that preserve organic remains in rocks also leave their own traces, adding
another dimension of information to fossil samples. Am. Scientist 72 (6), 558–566.

Bellinger, C., Mohomed Jabbar, M. S., Zaïane, O., and Osornio-Vargas, A. (2017). A
systematic review of data mining and machine learning for air pollution epidemiology.
BMC Public Health 17 (1), 907. doi: 10.1186/s12889-017-4914-3

Bertrand, R., Lenoir, J., Piedallu, C., Riofrıó-Dillon, G., de Ruffray, P., Vidal, C., et al.
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Nogués-Bravo, D., Rodrıǵuez-Sánchez, F., Orsini, L., de Boer, E., Jansson, R.,
Morlon, H., et al. (2018). Cracking the code of biodiversity responses to past climate
change. Trends Ecol. Evol. 33 (10), 765–776. doi: 10.1016/j.tree.2018.07.005

Parker, D. M. (2021). Mammals in the mountains: an historical review and updated
checklist of the mammals of the mountain zebra national park. Koedoe 63 (1), 1–10.
doi: 10.4102/koedoe.v63i1.1683

Plummer, T. W., Ferraro, J. V., Louys, J., Hertel, F., Alemseged, Z., Bobe, R., et al.
(2015). Bovid ecomorphology and hominin paleoenvironments of the shungura
formation, lower omo river valley, Ethiopia. J. Hum. Evol. 88, 108–126. doi: 10.1016/
j.jhevol.2015.06.006

R Core Team (2020). R: a language and environment for statistical computing
(Vienna, Austria: R Foundation for Statistical Computing). Available at: https://www.
eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-
development-core-team-2006.

Reed, D. N. (2007). “Serengeti micromammals and their implications for Olduvai
paleoenvironments”, in Hominin Environments in the East African Pliocene. Eds. R.
Bobe, Z. Alemseged and A. Behrensmeyer (New York: Springer).
frontiersin.org

https://doi.org/10.5252/zoosystema2021v43a14
https://doi.org/10.5252/zoosystema2021v43a14
https://doi.org/10.1145/212094.212114
https://doi.org/10.1111/j.2007.0906-7590.05171.x
https://doi.org/10.5194/gmd-11-3999-2018
https://doi.org/10.20363/BZB-2019.68.1.013
https://doi.org/10.1016/j.quascirev.2019.105969
https://doi.org/10.1007/978-94-017-7432-1
https://doi.org/10.1006/jhev.1997.0188
https://doi.org/10.1002/joc.5086
https://doi.org/10.1002/joc.5086
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/j.jhevol.2014.10.005
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1038/s43247-021-00225-4
https://doi.org/10.1021/ci0342472
https://doi.org/10.1046/j.1466-822x.2001.00218.x
https://doi.org/10.1046/j.1466-822x.2001.00218.x
https://doi.org/10.1016/j.yqres.2005.08.022
https://doi.org/10.1016/j.palaeo.2005.09.011
https://doi.org/10.1073/pnas.0704469104
https://doi.org/10.1111/j.1461-0248.2005.00726.x
https://doi.org/10.1139/er-2020-0019
https://doi.org/10.1007/978-1-4612-0955-3_4
https://doi.org/10.1177/0959683608098952
https://doi.org/10.1177/0959683608098952
https://doi.org/10.1046/j.1365-2028.2003.00383.x
https://doi.org/10.1016/j.rse.2010.01.007
https://doi.org/10.1016/j.jhevol.2007.01.001
https://doi.org/10.1016/j.jhevol.2007.01.001
https://doi.org/10.1038/s41597-021-01009-3
https://doi.org/10.1038/d41586-019-00746-1
https://doi.org/10.1111/geb.12161
https://doi.org/10.1016/j.jasrep.2021.103085
https://doi.org/10.1038/nature10574
https://doi.org/10.1007/s10814-017-9102-6
https://doi.org/10.1038/nature16447
https://doi.org/10.1111/jbi.14330
https://doi.org/10.1016/j.quascirev.2019.05.026
https://doi.org/10.1016/j.palaeo.2011.01.014
https://doi.org/10.1016/j.palaeo.2011.01.014
https://doi.org/10.1111/ecog.06289
https://doi.org/10.1111/ecog.05939
https://doi.org/10.1111/ecog.05939
https://doi.org/10.1016/j.tree.2018.07.005
https://doi.org/10.4102/koedoe.v63i1.1683
https://doi.org/10.1016/j.jhevol.2015.06.006
https://doi.org/10.1016/j.jhevol.2015.06.006
https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006
https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006
https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006
https://doi.org/10.3389/fevo.2023.1178379
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Linchamps et al. 10.3389/fevo.2023.1178379
Reed, K., Spencer, L., and Rector, A. L. (2013). Faunal approaches in early hominin
paleoecology. Early Hominin Paleoecol., 3–34. doi: 10.5876/9781607322252:C01

Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., et al.
(2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or
phylogenetic structure. Ecography 40 (8), 913–929. doi: 10.1111/ecog.02881

Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H., and Possingham, H. P.
(2006). Tradeoffs of different types of species occurrence data for use in systematic
conservation planning. Ecol. Lett. 9 (10), 1136–1145. doi: 10.1111/j.1461-
0248.2006.00970.x

Rossum, G. V., and Drake, F. L. (2009). Python 3 reference manual: CreateSpace
independent publishing platform (Hampton, NH: CreateSpace Independent Publishing
Platform).
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