
Frontiers in Ecology and Evolution

OPEN ACCESS

EDITED BY

Robert Klinger,
United States Department of the Interior,
United States

REVIEWED BY

Charles Krebs,
University of British Columbia, Canada
Daniel Scherrer,
Swiss Federal Institute for Forest, Snow and
Landscape Research (WSL), Switzerland

*CORRESPONDENCE

Peter D. Billman

peter.billman@uconn.edu

RECEIVED 08 April 2023

ACCEPTED 14 June 2023
PUBLISHED 25 July 2023

CITATION

Billman PD, Beever EA, Westover ML
and Ryals DK (2023) Spatio-temporal
variability in the strength, directionality,
and relative importance of climate on
occupancy and population densities
in a philopatric mammal, the
American pika (Ochotona princeps).
Front. Ecol. Evol. 11:1202610.
doi: 10.3389/fevo.2023.1202610

COPYRIGHT

© 2023 Billman, Beever, Westover and Ryals.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 25 July 2023

DOI 10.3389/fevo.2023.1202610
Spatio-temporal variability in
the strength, directionality, and
relative importance of climate
on occupancy and population
densities in a philopatric
mammal, the American pika
(Ochotona princeps)

Peter D. Billman1*, Erik A. Beever2,3, Marie L. Westover4

and Dylan K. Ryals2,5

1Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT,
United States, 2U.S. Geological Survey Northern Rocky Mountain Science Center, Bozeman,
MT, United States, 3Department of Ecology, Montana State University, Bozeman, MT, United States,
4Department of Biological Sciences, Los Rios Community College District, Sacramento, CA, United
States, 5Department of Entomology, Purdue University, West Lafayette, IN, United States
Species distribution models (SDMs) have been widely employed to evaluate

species–environment relationships. However, when extrapolated over broad

spatial scales or through time, these models decline in their predictive ability

due to variation in how species respond to their environment. Many models

assume species–environment relationships remain constant over space and

time, hindering their ability to accurately forecast distributions. Therefore,

there is growing recognition that models could be improved by accounting for

spatio-temporal nonstationarity – a phenomenon wherein the factors governing

ecological processes change over space or time. Here, we investigated

nonstationarity in American pika (Ochotona princeps) relationships with

climatic variables in the Rocky Mountains (USA). We first compared broad-

scale differences in pika–climate patterns for occupancy and population

density across the Southern, Central, and Northern Rockies. Next, we

investigated within-ecoregion variation across four mountain ranges nested

within the Northern Rockies. Lastly, we tested whether species–climate

relationships changed over time within the Central Rockies ecoregion. Across

all analyses, we found varying levels of nonstationarity among the climatemetrics

for both occupancy and density. Although we found general congruence in

temperature metrics, which consistently had negative coefficients, and moisture

metrics (e.g., relative humidity), which had positive coefficients, nonstationarity

was greatest for summer and winter precipitation over both space and time.

These results suggest that interpretations from one ecoregion should not be

applied to other regions universally – especially when using precipitation

metrics. The within-ecoregion analysis found much greater variation in the

strength-of-relationship coefficients among the four mountain ranges, relative

to the inter-regional analysis, possibly attributable to smaller sample sizes per
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mountain range. Lastly, the importance of several variables shifted through time

from significant to insignificant in the temporal analysis. Our results collectively

reveal the overall complexity underlying species–environment relationships.

With rapidly shifting conditions globally, this work adds to the growing body of

literature highlighting how issues of spatio-temporal nonstationarity can limit the

accuracy, transferability, and reliability of models and that interpretations will

likely be most robust at local to regional scales. Diagnosing, describing, and

incorporating nonstationarity of species–climate relationships into models over

space and time could serve as a pivotal step in creating more informative models.
KEYWORDS

nonstationarity, spatio-temporal analysis, Rocky Mountains, species–climate
relationships, distribution models, density, American pikas
1 Introduction

Contemporary climate change continues to shape species’

distributions and biological communities globally. Observational

and experimental studies have now documented responses

spanning shifts in distributions, abundance, body size, phenology,

behavior, and biotic interactions, among many others (Eastman

et al., 2012; Thurman and Garcia, 2019; Goodman et al., 2022;

Calabrese and Pfennig, 2023; Kerner et al., 2023). Shifts in

distributions and declines in abundance have caused particular

concern, given that both indicate species may not be evolving

rapidly enough to cope with the impacts of recent climate change,

thereby increasing risks of extirpation and extinction (Radchuk

et al., 2019). Accordingly, understanding the underlying biological

processes (i.e., mechanisms) that influence species responses

remains a priority for management decision-making and species-

distribution modeling efforts (Urban et al., 2016).

Pinpointing the factors that limit distributions, and how these

factors vary in importance over space and time, has long been of

interest in ecology (Darwin, 1859). To understand and model

multidimensional niche spaces, species-specific life histories should

be well understood; simultaneously, investigators should also

consider how factors constraining populations might vary across

temporal and spatial scales. For example, Brown (1984), emphasized

that the abiotic factors constraining distributions differ between cool-

and warm-edge range limits. Although rising temperatures may cause

declines in occupancy at warm limits, they may concurrently allow

greater survival and expansion beyond current cold-edge range limits

(e.g., Sultaire et al., 2022). Given the recent motivation to identify

evolutionary “winners’’ and “losers” under climate change based on

biological traits, a binary classification of species’ vulnerability would

be an oversimplification, considering that species often

simultaneously benefit and suffer from climate shifts, depending on

populations’ range position and numerous other factors (Somero,

2010). This, along with spatial variability in local adaptation,

microrefugia, disturbances, and biotic interactions, may partially

explain why species–climate relationships tend to be markedly

heterogeneous over space and, thus, difficult to predict.
02
Given the large variability in the relative importance of

environmental constraints across species ranges, species

distribution models (SDMs) have recently sought to account for

some of this heterogeneity (Peterson et al., 2011; Guisan et al., 2017;

Martıńez-Minaya et al., 2018). Broadly, correlative SDMs aim to

statistically and spatially model distributions using known or

suspected relationships between organisms and environmental

conditions. One recent meta-analysis concluded that SDMs

generally perform best when predicting species occurrences, but

sequentially decline in predictive ability for population abundance,

fitness, and genetic diversity (Lee-Yaw et al., 2022). Although SDMs

have had increasing success (i.e., predictive accuracy) in recent

years, one major limitation is they generally cannot be applied

elsewhere in a species’ range other than where the training data

originated (Charney et al., 2021; Rousseau and Betts, 2022).

Mechanistic modeling offers an alternative to correlative

approaches by modeling distributions based on individual-level,

physiological processes that are hypothesized to constrain species

(Riddell et al., 2017; Briscoe et al., 2022), such as water requirements

necessary to dissipate heat (Riddell et al., 2019). Nonetheless,

mechanistic models require high-quality biological data that

explain how species experience their environment and are

therefore limited by our understanding of how environmental

factors actually constrain species (Kearney et al., 2010; Urban

et al., 2016).

Both correlative and mechanistic modeling approaches

currently struggle with accommodating nonstationarity, a

phenomenon wherein ecological processes and relationships vary

in strength, direction, and relative importance over space and time

(Rollinson et al., 2021). Nonstationarity can arise from shifts in

species’ relationships with environmental variables both spatially

and temporally, as well as from shifts in environmental conditions.

For example, one recent study found that snowshoe hares (Lepus

americanus) are primarily constrained in their distribution by

snow-cover duration, but the degree of the snow’s importance

interacts strongly with maximum temperature across the species’

range (Sultaire et al., 2022). Mounting evidence suggests that due to

widespread nonstationarity in ecological relationships, inferences
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from one time period and region should not be used to infer or

predict range dynamics elsewhere or in other time periods (Pardi

et al., 2020); accordingly, heavy reliance on range-wide distribution

models could create the possibility of overgeneralizations and

inaccurate models for more-localized climate-adaptation

management and decision-making. Collectively, these

observations raise the following questions: 1) What are the most

appropriate scales to investigate to best understand species–

environment relationships (e.g., Guisan et al., 2007), especially to

be most useful for resource managers (Carroll et al., 2022)?;

2) Should future monitoring efforts ideally focus on local,

regional, or continental scales?, and, accordingly, 3) Where

should model training and validation data be acquired from (e.g.,

Scherrer et al., 2021)?; 4) When are SDMs transferable over time in

a reliable manner (e.g., Smith et al., 2013)?; and 5) What range of

environmental conditions are necessary to survey to ensure models

are robust (e.g., Thuiller et al., 2004)? Ecological forecasts remain

limited today by our overall nascent understanding of varying

degrees of nonstationarity across both space and time, and

climate is only one niche component that makes SDM

transferability difficult (e.g., these models often ignore biotic

interactions and habitat fragmentation and loss, Dıáz et al., 2019).

Further complicating advances in forecasting climate-driven

responses, rates of warming are remarkably heterogeneous over

earth, with high-elevation and high-latitude regions generally

experiencing much faster rates than elsewhere (Wang Q et al.,

2016). For example, warming across four of earth’s largest

mountain chains (the Alps, Andes, Himalayas, and Rockies) has

been notably faster than surrounding lowlands, whereas differences in

precipitation have been less consistent (Pepin et al., 2022). The

variable rates of warming may therefore leave mountain-dwelling

populations at greater risk relative to their low-elevation counterparts

under shifting conditions. Complex topography in mountains

provides a high diversity of local climates for species to exploit,

highlighting how mountain systems may now act as exceptional

testing grounds for questions related to ecological nonstationarity in

species responses to climate over local and regional scales, as well as

through time.

Here, we evaluate species–climate relationships using

occupancy and population density data to evaluate the degree of

spatiotemporal nonstationarity in a small mammal. To do so, we

tested relationships at several scales including within ecoregions,

across ecoregions, and over time, using the American pika

(Ochotona princeps, Richardson, 1828) as our focal species.

American pikas (“pikas,” hereafter) are small, climate-sensitive

lagomorphs that occupy patchily distributed, broken-rock (e.g.,

talus) habitats in western North America, predominantly in

mountainous areas (Hafner and Sullivan, 1995). We used a newly

integrated dataset of occupied and historically occupied patches

that were surveyed between 2011 and 2021. These data cover three

expansive ecoregions, and all field surveys used identical sampling

protocols. Because shifts in climate often cause contrasting

demographic responses across seasons (e.g., Cordes et al., 2020),

we examined both summer and winter metrics that we

hypothesized act as proxies of specific, mechanism-based
Frontiers in Ecology and Evolution 03
pathways that shape population dynamics (SI, Table 1).

Accordingly, we incorporated seasonal metrics for temperature,

precipitation, and moisture. In this study, we specifically predicted

the following:
1. Across ecoregions, the strength and direction of climate

relationships of both response metrics (occupancy and

density) will exhibit high spatial nonstationarity, with

coefficients displaying large variability within each

climate metric.

2. Within an ecoregion, species–climate relationships will

show higher congruence in strength and directionality

among mountain ranges that are in close geographic

proximity, compared to those further away.

3. Between two closely spaced time periods, the strength and

direction of species–climate relationships will not change

within each climate metric. In other words, such

relationships will exhibit relative temporal stationarity.
2 Methods

2.1 Model organism

We focus on American pikas here given their often-high

detectability (p > 0.90, Beever et al., 2010; Ray et al., 2016) as

well as our ability to quantify population density from patch-level

surveys using visual and auditory detections. Due to their limited

physiological thermoregulation, pikas occupy broken-rock

features, like talus fields and lavascapes, that buffer against

fluctuating ambient temperatures (Benedict et al., 2020). This

habitat is also readily delineated using satellite imagery prior to

field surveys and persists over centuries to millennia with little

structural change. Studies that have incorporated mechanistically-

informed variables suggest that heat and cold stress are often the

best predictors of pika distribution and density across various

ecoregions (e.g., Beever et al., 2003; Wilkening et al., 2011;

Johnston et al., 2019; Billman et al., 2021), and abundance has

often been linked strongly to precipitation and water-balance

(Beever et al., 2013; Johnston et al., 2019), highlighting the

species’ overall responsiveness to the direct effects of weather

and climate. In addition to direct exposure, the indirect effects of

climate have also been found to shape occupancy and/or

population density, such as precipitation’s role on the quality,

diversity, and availability of forage (e.g., Erb et al., 2014; Ray et al.,

2016; Varner et al., 2023). Although temperate mountain regions

exhibit high seasonality throughout the year, pikas do not

hibernate, which can leave them vulnerable to both winter

conditions, such as low snowpack, and summer conditions. Due

to numerous life-history characteristics, pikas appear to have a

comparatively lower adaptative capacity in the face of climate

change than many other montane mammals in western North

America, making them an ideal model organism for testing

climate-responsiveness theory and questions (Beever et al., 2023).
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2.2 Field surveys: occupancy
and population density

We surveyed for evidence of current or historical pika

occupancy in talus patches across the Rocky Mountains (USA)

between 2011 and 2021. Patches – each defined as a contiguous area

of broken-rock habitat separated from all other such areas by >25 m

– were identified using satellite imagery on the online mapping

platform CalTopo.com prior to fieldwork. Field surveys occurred

from June to September and were restricted to crepuscular hours, to

achieve the highest detectability (few surveys between 12:00 and

16:00; these occurred only when conditions were cooler, with fully

overcast skies). To survey, we walked 50-m transects across each

talus patch, spaced 15 m apart elevationally, to obtain estimates of

population density while avoiding double-counting individuals (#

of pikas/50 m, sensu Beever et al., 2011). We considered a patch

occupied if we unequivocally detected pikas visually, aurally, or if

we found fresh haypiles with at least 10 fresh sprigs (green with

chlorophyll) of herbaceous vegetation in them. A patch was

considered historically occupied or extirpated if we only found

old evidence such as old fecal pellets or degrading haypiles with no

fresh vegetation present. Patches that appeared unoccupied were

sampled with additional time and effort to be confident in their

unoccupied classification. Additional information regarding field-

survey protocol can be found in Beever et al. (2011; 2013) and

Billman et al. (2021).

Our surveys spanned three scales to assess variability in species-

climate relationships: inter-regional (among ecoregions), intra-

regional (i.e., among mountain ranges within a single ecoregion),

and between two sampling periods. The inter-regional comparison

included data from the Southern Rockies (New Mexico), Central

Rockies (Wyoming and Montana), and the Northern Rockies

(Montana and Idaho) which represent three of six recognized

lineages of O. princeps (Schmidt et al., in prep, Galbreath et al.,

2010). Site-selection protocol differed slightly among ecoregions

(e.g., elevational-transect design in Northern Rockies vs a near-

census in Southern Rockies), so we provide an in-depth description

of each region’s site-selection protocol in the Supplemental

Information. The intra-regional dataset covers the Beaverhead

Mountains, Italian Peaks, Lemhi Range, and the Tobacco Root

Mountains nested within the Northern Rockies, which were

surveyed in 2018–19. The temporal-analysis data were collected

in the Central Rockies, with the “historical sampling period”

spanning 2011–2016 and a “recent sampling period” from 2019–

2021. These sites were all located within the Greater Yellowstone

Ecosystem, including Yellowstone and Grand Teton National Park.

All sites included in the temporal analysis were surveyed in both

periods. However, several fewer sites were occupied in the latter

period and excluded from the density analysis but retained (marked

as unoccupied) in the occupancy analysis. Although these time

periods seem relatively short when examining changes in

occupancy, interannual patch turnover has been documented to

be high for pikas in response to weather variability (e.g., Rodhouse

et al., 2018). We excluded all talus patches without evidence of

current or past pika occupancy, as these sites may not always have
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been structurally or otherwise suitable (following Billman et al.,

2021). However, this may create minor differences between our

study and others that have retained such no-evidence sites.
2.3 Climate data

Seasonal climate data were extracted from the standalone

program, ClimateNA (Wang T et al., 2016). These data are locally

downscaled from PRISM climate rasters using bilinear interpolation

and account for site-specific elevation, latitude, and longitude.

Summer (JJA) and winter conditions (DJF) are hypothesized to

be the most stressful to pikas, so we extracted Summer: minimum,

mean, and maximum temperature (respectively, Tmin, Tmean, Tmax),

precipitation, relative humidity (RH), and climate moisture index

(CMI), and Winter: Tmean and precipitation. We hypothesized each

of these variables represents a mechanistic pathway of climatic

influence on pikas. For example, winter precipitation (i.e., snowfall)

has been shown to have a positive effect on site occupancy as higher

snowpacks buffer pikas from sub-zero temperatures that occur

above the snow (Beever et al., 2010; Johnston et al., 2019).

Similarly, snowfall may be associated with higher population

densities as heavy snowpacks provide a water source for high-

quality forage in spring and summer in montane systems (Yandow

et al., 2015). Full descriptions of the hypothesized mechanisms tied

to each climate stressor can be found in Table 1 of the SI appendix.

For occupancy, we calculated the average climate conditions

over the four years’ seasons prior to surveying. Winter metrics

included the winter immediately preceding surveys and the

previous three winters, whereas summer metrics comprised the

previous four summers. The 4-year window minimized overlap in

the temporal dataset in the Central Rockies (i.e., ~95% resurveys

were 4+ years after initial surveys, mean = 5.2 years). We excluded

current summer conditions for occupancy because a large

proportion of surveys occurred in June, so current-season metrics

would therefore represent future conditions (after surveys occurred)

in many instances. For density predictors, we included only the

winter conditions immediately preceding surveys, as well the

previous year’s summer conditions (to avoid using data from

after the date when a survey occurred in early summer).
2.4 Data analysis

For each region separately, climate metrics were scaled and

centered using Z-scores to evaluate the relative importance of

metrics that often differed by one to several orders of magnitude.

Numerous studies have already sought to identify the top models

and predictors of pika occupancy and density using multivariate

modeling and AIC (e.g., Beever et al., 2011; Johnston et al., 2019;

Billman et al., 2021), so we explicitly did not include that objective

in this study. Rather, we examined the univariate effects of each

climate variable on both responses. We used simple linear

regression modeling for population density and logistic regression

modeling for occupancy. As expected, density estimates showed a
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strong positive skew, so estimates were log-transformed to better

meet the assumptions of parametric testing. We excluded

unoccupied patches in the density analyses to differentiate the

possible divergent drivers of occupancy and density. Given the

species’ consistently high detectability (p ≥ 0.90, Beever et al., 2013;

Ray et al., 2016), we used naive logistic regression models for

occupancy, which assume perfect detectability (p = 1); naive

models for this species have already been shown to be robust

against parameter estimate bias in previous investigations (e.g.,

Rodhouse et al., 2010). We used the lm() function in base R for

density analyses, and the glm() function in the lme4 package (Bates

et al., 2015). All plots were created using ggplot2 (Wickham, 2011).

Effect sizes and 95% confidence intervals were extracted from all

model summaries. Coefficients for the logistic regression models are

on the log-odds scale. Principal component analysis (PCA) plots

were created using the ggfortify package (Tang et al., 2016), more

specifically the prcomp() and autoplot() functions which scaled the

eight climate variables prior to plotting (Figure 1). All analyses were

conducted in R Statistical Software (v.4.2.2; R Core Team, 2021).

Overall, we evaluated effect size strength (i.e., magnitude),

directionality (+/−/non-significant if 95% CI included zero), and

relative importance compared to other variables.
3 Results

There was marked heterogeneity in species–climate

relationships across space and time. We surveyed and included a

total of 1,867 talus patches for the inter-ecoregional dataset, 734

patches for the intra-regional dataset in the Northern Rockies, and

264 patches for the temporal dataset in the Central Rockies. Inter-
Frontiers in Ecology and Evolution 05
regionally, approximately 30% of sites (N = 565) were historically

occupied (i.e., possibly extirpated). Patches were distributed

between 1,381 and 3,884 m above sea level, and breakdowns of

patch occupancy by region and mountain range can be found in

Table 2 of the SI Appendix. Patch sizes ranged from 1 pika home

range (~315 m2, ~20-m-diameter circle) to patches in Grand Teton

NP that spanned >1 km2. Lastly, patch-level population densities

ranged from 0.23 to 4.0 pikas/50 m surveyed.
3.1 Inter-regional analysis

Across the three ecoregions, occupancy and density were all

significantly negatively associated with the four temperatures

metrics (mean b coefficient ± 1 SD; occupancy: −0.90 ± 0.21,

density: −0.23 ± 0.08) and positively associated with the two

moisture metrics (RH and CMI, mean b coefficient ± SD;

occupancy: 0.62 ± 0.25; density: 0.25 ± 0.11). However, there was

more nonstationarity in precipitation metrics across space than

other metrics (Figure 2). Winter precipitation (i.e., snowfall) was

positively associated with both responses in the Northern and

Central Rockies, but unexpectedly not in the Southern Rockies.

On the other hand, summer precipitation was only positively

associated with both response metrics in the Northern Rockies, as

well as occupancy in the Southern Rockies, but there were no

relationships between summer precipitation and density in the

Southern Rockies and both responses in the Central Rockies. The

overall strength of species–climate relationships was stronger in the

Northern and Central Rockies relative to the Southern Rockies.

Notably, the precision of coefficient estimates did not consistently

increase with greater sample sizes across regions.
FIGURE 1

PCA plot illustrating the climate space of all sites across the three ecoregions. This PCA included all eight climate variables and explains 83.75% of
the variance on the first two axes. For the Central Rockies cluster, we excluded the historical survey period to be more consistent with the timing of
the surveying in the other two periods (~2016–2021).
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3.2 Intra-regional analysis

All relationships coefficients were significant and consistent in

directionality (within variables) across mountain ranges, with the

exception of all Italian Peaks density variables, and Tmean in winter

and relative humidity in summer for occupancy (Figure 2).

Temperature was, again, consistently negative for both response

metrics (when excluding the Italian Peaks, for density). Moisture

and precipitation metrics were all positively associated with

occupancy and density, as hypothesized (when excluding the

Italian Peaks). For occupancy, the Beaverhead Mountains

overwhelmingly displayed stronger species–climate relationships

(i.e., larger coefficients) than did the other three mountain ranges,

with only a few exceptions (Figure 2). Overall, coefficients showed a

greater range across the various climate metrics in the intra-regional

analysis relative to the inter-regional analysis (occupancy: inter-

regional range = −1.18 to 1.47, intra-regional range = −1.76 to 3.30;

density: inter-regional range = −0.39 to 0.36, intra-regional range =

−0.41 to 0.64).
3.3 Temporal analysis

Similar to the inter- and intra-regional analyses, temperature

consistently had a negative effect on both occupancy and density

over time, with the exception of Tmax in summer for density

(Figure 3). Variability in the strength of relationships to

temperature was notably greater for density than for occupancy.

Relative humidity was significant only in the historical sampling

period for both response metrics. Climate moisture index was
Frontiers in Ecology and Evolution 06
positively associated with occupancy in both periods and density

in the historical period, but negatively associated with density in the

current period. Winter precipitation (i.e., snowfall) consistently had

a positive effect on both responses in both periods, whereas summer

precipitation had no effect on occupancy in either period, and was

only significant for density in the current period. However, this

summer-precipitation effect on density was surprisingly negative

(b = −0.38, 95% CI: −0.52 to −0.23). Overall, there was lower

congruency in the strength and directionality than expected

between the two time periods that were only several years apart

(e.g., only ~69% of cases showed consistent directionality).
4 Discussion

Here, we examined how species–climate relationships vary across

spatial and temporal scales using a readily detectable small mammal

whose range spans approximately one-third of North America.

Overarchingly, we found higher temperatures consistently had a

negative effect on both pika occupancy and densities, while

moisture metrics mostly had positive effects on both responses.

However, the importance of precipitation in summer and winter

showed the highest nonstationarity across space, with winter

snowpack having no effect on either response in the Southern

Rockies, and summer precipitation having no effect on either

response in the Central Rockies. Moreover, the precision of effect

sizes was generally the lowest for precipitation metrics, both at inter-

and intra-regional scales. Our findings illustrate the existence of some

nonstationarity of biotic responses to certain climate factors,

cautioning extrapolation beyond single regions or time periods.
FIGURE 2

Coefficient estimates from univariate parameter estimates by climate metric and season in parentheses (S = summer, W = winter) for inter- and
intra-regional analyses. Significant relationships between each response and climate variable (CIs do not overlap 0) are colored and opaque, whereas
insignificant relationships (CIs overlap 0) are partially transparent. Coefficient estimates above the horizontal zero line suggest that variable has a
positive effect on occupancy and density, and vice versa for estimates below the line. The cropped lower CI limit for the Italian Peaks’ winter
precipitation for density extends down to −1.12.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1202610
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Billman et al. 10.3389/fevo.2023.1202610
4.1 Among-ecoregion variability

At the inter-regional scale, which spans over twelve degrees of

latitude and nearly ten degrees of longitude, there was general

congruence in approximate coefficient size and directionality of

temperature metrics for both responses. Overwhelmingly, warmer

temperatures had a negative effect on both pika occupancy and

density across the three vast ecoregions. In winter, warmer

temperatures are typically correlated with lower snowpack,

followed by lower snow retention into summer, which may

explain why warmer winters have a negative effect. These results

corroborate numerous other studies that highlight the sensitivity of

pikas to warmer temperatures across seasons (Beever et al., 2003;

Wilkening et al., 2011; Stewart et al., 2015). In contrast, several

other investigations have found the effect of temperature on pikas to

vary across study areas (Jeffress et al., 2013; Rodhouse et al., 2018).

Nevertheless, high summertime temperatures have also been

implicated in constraining dispersal abilities and corridors used

by pikas (Henry et al., 2012; Castillo et al., 2014), suggesting that the

previously occupied sites in hotter areas may be less likely to be

recolonized. Given that all three ecoregions have warmed in recent

decades, our results indicate that further temperature-related patch-

level extirpations seem likely for the species, unless increases in

precipitation possibly ameliorate thermal stress.
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In addition to temperature, we found full congruence in the

directionality of the two moisture metrics across ecoregions,

suggesting that water balance constitutes a predictable selective

pressure on pikas. However, the two seasonal-precipitation metrics

were less consistently significant, showing several insignificant

relationships depending on the ecoregion and response metric.

Such differences appear to align with the amount of snowfall

received and its duration, across our study regions. Downscaled

data from ClimateNA are tightly correlated with weather-station

measurements for temperature metrics (R2 ≥ 0.99) but not as much

with precipitation metrics (R2 ≥ 0.64), leading to substantially lower

predictive power for precipitation metrics (Wang T et al., 2016).

Therefore, we cannot rule out possible climate-downscaling

discrepancies as a contributor to insignificant relationships with

precipitation. Still, we suspect the lack of consistent relationships

with precipitation may be due to unaccounted-for interactions with

temperature that may be biologically relevant. For example, another

study found that high temperatures were indeed more influential on

pika occupancy in drier national parks (Jeffress et al., 2013).

Whereas Erb et al. (2011) found that annual precipitation best

predicted pika occupancy across 69 sites in the Southern Rockies,

we found that only precipitation in summer had a small positive

effect on occupancy, whereas winter precipitation surprisingly had

no effect in the Southern Rockies. West of the Rocky Mountains, in
FIGURE 3

Coefficient estimates for univariate parameter estimates by climate metric and season for the Central Rockies temporal analysis. The light green
triangle points represent the historical-period sampling (2011–2016), whereas the dark green circle points represent the recent-period sampling
(2019–2021).
frontiersin.org

https://doi.org/10.3389/fevo.2023.1202610
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Billman et al. 10.3389/fevo.2023.1202610
the Great Basin ecoregion, Millar et al. (2018) described the climate

envelope of pika-extant sites as ranging from 7–83 mm for summer

precipitation, whereas our pika-occupied sites had consistently

more summer precipitation (Southern Rockies: 137–392 mm,

Central: 68–247 mm, and Northern: 82–203 mm). Millar et al.

(2018) suggested that Great Basin pikas can accommodate

substantially more-arid summer conditions than what we have

found in the Rocky Mountains, indicating that thresholds of pika

sensitivity may vary across ecoregions. For example, 99.4% of our

historically occupied (possibly extirpated) sites in the Rockies were

still wetter in term of summer precipitation (Southern Rockies:

135–387 mm, Central: 57–239 mm, and Northern: 75–208 mm)

than pika-occupied sites in the Great Basin (Millar et al., 2018). For

summer Tmax, Millar et al. (2018) reported their pika-extant sites

ranged from 11.4 to 29.9°C; our extant sites fell entirely within their

ranges (14.4–26.8°C). However, our warmest (Tmax) historically

occupied sites across our three regions only reached 27.4–29.1°C,

suggesting a possible lower threshold for summer heat tolerance in

the Rocky Mountains relative to the Great Basin.

Across temperature and precipitation metrics, our results

continue to illustrate how climate-envelope thresholds may differ

substantially across species’ ranges. Such differences may also, in

part, reflect genetic, behavioral, habitat (e.g., microrefugia, forage

quality), or other differences among populations that remain

difficult to model. Our findings reiterate other studies’ calls for

consideration of the context-dependencies of scale prior to

formulating range-wide generalities (Schwalm et al., 2016).

Nonstationarity in precipitation metrics especially warrants

caution of their inclusion in broad-scale modeling, whereas

temperature and moisture metrics appeared to play a more

predictable role in shaping occupancy and population densities,

herein. For precipitation metrics, the use of spatially varying

coefficients (SVCs) in distribution modeling may be one effective

solution to account for this large spatial variation in the relative and

absolute importance of these metrics.

Investigations into spatial nonstationarity in species-

environment relationships have been growing in recent years,

with studies of ten documenting the greatest spat ia l

nonstationarity in climate metrics specifically (Pease et al.,

2022b). Identifying the key drivers of variability in these

relationships is especially important for management decision-

making and policy. Given that management actions are generally

implemented at local- to regional-scales, results from one region

applied elsewhere should be evaluated with particular care since

species–climate relationships vary across spatial and temporal

extents, over which environmental stressors can differ (Pease

et al., 2022a). Yet, species-specific data limitations may constrain

robust modeling efforts at local scales when resources and data are

limited. This may be especially pronounced in rural areas, where

species occurrence records are less common than near urban

settings (Bowler et al., 2022). One solution to fill spatial gaps at

local scales may involve heavier reliance on citizen-science data for

additional occurrence and density records in some instances, but

experts may still need to determine true absences for presence-

absence models. In addition, there are widespread biases in
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occurrence records across species due to various reasons (e.g.,

body size, rarity, and group size, Callaghan et al., 2021), but

intraspecific species–environment relationships often do not

correlate to patterns with heterospecifics in the same community

or in closely related species (e.g., Rossi et al., 2023). Accordingly,

considerations may be necessary at the species level. Our results

show that the level of species-specific nonstationarity depends on

which climate metrics are evaluated in modeling (i.e., some metrics,

like temperature, exhibited surprising levels of stationarity over

large spatial domains), a pattern that is likely prevalent across taxa.

We therefore caution that community-scale modeling that does not

account for species-specific relationships with climate may be

ineffective for predicting the future distributions of species,

especially when extrapolating into novel conditions and the

distant future.
4.2 Within-ecoregion variability

Relative to the inter-regional comparison, intra-regional

coefficients were more variable, showing a larger range of

strengths (occupancy: within-region: −1.76 to 3.30, among-

regions: −1.18 to 1.47; density: within-region: −0.41 to 0.64,

among-regions: −0.39 to 0.36). However, this may partially be

due to smaller sample sizes within mountain ranges relative to

across mountain ranges (Table 2, SI Appendix). Excluding the

Italian Peaks, responses in the other three mountain ranges

showed consistent directionality of each response to climate, with

both summer and winter precipitation and moisture-related metrics

having reliably positive effects. For these four variables, coefficients

still varied widely in most cases (e.g., relative humidity for

occupancy, coefficient range: 0.32–2.3 on the log-odds scale).

Temperature had consistently negative effects on both occupancy

and abundance, in alignment with the inter-regional analyses. The

general consistency of response directionality among the three

mountain ranges provides some promise that within ecoregions,

results from one mountain range may be relevant (to some extent)

to other nearby mountain ranges for both occupancy and density in

a given time period.

Results from the Italian Peaks diverged from the other three

ranges, whereby all climate relationships were insignificant for

density, and winter Tmean and summer relative humidity were

insignificant for occupancy. To note, the Italians Peaks were the

only mountain range where pika population densities decreased

slightly with elevation (see Figure S2 in Billman et al., 2021). The

underlying geology of the Italian Peaks is predominantly limestone.

Unlike the larger metamorphic and igneous talus found throughout

the other mountain ranges, limestone talus in this mountain range

was typically smaller in size (10- to 50-cm-diameter rocks, on

average) and, consequently, shallower than larger-clast talus

slopes. Although numerous studies have promoted optimism for

the microclimate buffering capacity of talus as a long-term refugia

for pikas (e.g., Millar et al., 2013), one recent study found that deep,

subsurface temperatures in talus in Colorado (USA) had still

warmed substantially between 1963–64 and 2009–21 (Monk and
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Ray, 2022). Accordingly, we suspect that the lack of pika–climate

relationships for density in the Italian Peaks may largely be due to

poor thermal buffering of the small, limestone talus; smaller rock

diameters and shallower talus depth likely translate to warmer

interstitial temperatures at low elevations and colder temperatures

at high elevations. Thermally stressful conditions at the lowest and

highest elevations in this mountain range would suggest a linear

relationship for density would have no detectable effect; instead, the

relationships may be quadratic, with the most favorable conditions

for population densities at the mid elevations. On the contrary, the

Beaverhead Mountains generally showed the strongest effect sizes,

particularly for occupancy (Figure 2), which may have been due to

topographic similarity of sampled watersheds in this mountain

range. This range is especially linear and all watersheds on the

west have comparable elevational spans of habitat and minimum

elevations of occupancy, whereas the east-side watersheds retracted

very little and also have comparable minimum elevations of current

occupancy to one another (Billman et al., 2021). These elevational

patterns of occupancy (vs extirpation) likely explain why the pika-

climate relationships there were often the strongest compared to the

other ranges. Lastly, the Beaverhead sites exhibited the broadest

climate space in a PCA that included all eight climate variables

(Figure S1). Overall, these context-dependencies highlight necessary

caution when applying interpretations among mountain ranges

with differing topography and geology, for example.

Although some empirical studies found that species–climate

relationships become more stationary, and predictable, at broader

scales (e.g., Miller and Hanham, 2011), others have found

stationarity decreases at larger scales, such as when study regions

are spaced far apart (e.g., McAlpine et al., 2008). Discrepancies here

likely arise because far-apart study domains may or may not be

similar in terms of climate, vegetation, and species composition,

among other factors. Because the four mountain ranges in our

Northern Rockies intra-regional analysis had similar climatic

conditions and other similarities, like vegetation, we predicted

that stationarity would be higher in terms of coefficient

directionality and magnitude relative to the inter-regional

analysis. However, we surprisingly found less congruence in

effect-size magnitude and more consistency in climate-

relationship directionality (when excluding the Italian Peaks).

Interestingly, pika–climate relationships for precipitation and

moisture metrics were consistently stronger (i.e., larger

magnitudes) at local scales relative to the inter-regional analysis,

suggesting that variability in range-wide modeling datasets may

dampen the overall strength of species–climate relationships at local

scales, which are more relevant to managers.

On the contrary, we found comparable coefficients for

temperature metrics between intra- and inter-regional analyses for

density (mean temperature b coefficient: −0.22 vs. −0.23, respectively),
and occupancy (−1.06 vs. −0.90, respectively). Because eco-

evolutionary processes are hierarchically structured in nature,

patterns found at local scales often do not align with those at much

broader scales (Osborne et al., 2007), making these findings

particularly surprising. For species with large distributions that span

immense climate gradients, species–climate relationships should
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generally be examined at the ecoregional scale when possible due to

comparable topography, geology, vegetation, and climatic conditions

(Smith et al., 2019). Within said ecoregions, we advise sampling

efforts span the largest gradient of environmental conditions possible

to evaluate variability in relationships over space. Given what we

found intra-regionally, anomalous conditions in select mountain

ranges (within an ecoregion) may warrant their exclusion from

regional models, but they should also receive additional sampling

efforts in the future would be beneficial to better understand and

predict species–climate relationships therewithin.

In this case, pika–climate relationships for temperature metrics

may be more practical than precipitation and moisture metrics for

extrapolating to new regions or at different scales if necessary, but

further exploration seem warranted. Our findings overall have

important implications for species distribution modeling in the

face of climate change, given that temperatures are rising across

most of the planet, but changes in precipitation vary considerably

and are less predictable (IPCC, 2022). Yet, precipitation and

moisture are predicted to grow increasingly important for

terrestrial species moving forward to maintain body cooling

requirements with rising temperatures (Riddell et al., 2019).

Provided that extirpations often occur at the hottest and driest

sites within a species range, understanding spatial nonstationarity

in precipitation and moisture metrics are critical for informing and

modeling extinction risks.
4.3 Temporal variability

In general, we found high agreement of directionality within

climate metrics over time, but less so for climate-density

relationships than for climate-occupancy. For both responses, we

identified only one case where the directionality of an effect changed

sign through time; density was positively influenced by climate

moisture index in the historical period, but CMI had a negative

effect in the more-recent survey period. In contrast, the results from

the occupancy analysis suggested moisture had a consistently

positive effect in both periods, highlighting how the drivers of

occupancy and density may not always align, a result documented

in other studies as well (e.g., Dibner et al., 2017). Climate-density

relationships are often less predictable than occupancy, since

shorter-term processes generally drive population densities

whereas changes in occupancy occur over longer periods and are

often influenced by larger-scale processes like macroclimate (Beever

et al., 2013; Schulz et al., 2019).

There were several cases where species–climate relationships

were significant in one period but not the other in our analysis. This

temporal nonstationarity appeared unpredictable and was found in

temperature, moisture, and precipitation metrics (density: Tmax,

relative humidity, and summer precipitation; occupancy: relative

humidity). One possible explanation for temporal divergence is that

correlations among climate metrics are often nonstationary

themselves over time, whereby changes in temperature do not

always correlate with changes in precipitation, for example (e.g.,

Bueno de Mesquita et al., 2021). In our case, summer relative
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humidity had a positive effect on occupancy in the historical period

but not the more-recent period, whereas all other relationships with

occupancy and climate were significant (except summer

precipitation in both periods). This may indicate that

temperature, winter precipitation, and CMI were more limiting in

the more-recent survey period than relative humidity. Similarly, the

relative importance of climate variables may have changed over

time (Marcinkowski et al., 2015). Our mixed results regarding

temporal nonstationarity somewhat stand in contrast to another

pika study that found relatively high temporal transferability of

SDMs in California (Stewart et al., 2015). Although the ecological

explanations discussed above may indeed account for this change in

variable importance over time, the range of climate values could

differ between periods, where conditions may never have reached

some stress threshold in the more-recent period. However, this

possibility is unlikely in the case of relative humidity, given that the

historical-period range was 44.5–70.5% and the recent-period range

was 44.5–71.6% – nearly identical. In fact, the overall climate space

of surveyed sites between periods had remarkable overlap when

using a PCA that included all eight climate metrics (Figure S2).

Overall, these patterns caution interpretations of results from

single-time period surveys, including those in the two spatial

analyses above. While biological interpretations of nonstationarity

in species–climate relationships remain important, mathematical

evaluation of whether the range of predictor values (prior to scaling

and centering) might vary substantially over time over time would

provide a valuable complement; this, in turn, could strongly alter

the magnitude and directionality of predictors on the response

across time periods.

A majority of studies on temporal stationarity in ecology thus

far have focused on tree rings. These studies have frequently found

that correlations between ring growth and climate fluctuate between

significant and non-significant; such fluctuations have been

attributed to changes in weather patterns through time. For

example, one study found that the effect of winter precipitation

on ring growth has decreased over time and become insignificant,

whereas the effects of spring temperature and prior-year summer

temperatures have become significant recently (Marcinkowski et al.,

2015). This often unpredictable de-coupling of species–climate

relationships on interannual and interdecadal timescales has

wide-ranging implications for SDMs, which typically assume

temporal stationarity (i.e., mean and variance change do not over

time). However, assuming stationarity is unlikely to capture the

complexity of underlying ecological processes and how variable

they can be through time. Similar to previous tree-ring studies, our

temporal-scale results highlight how assuming stationarity, even

over a short time span, could also be misleading and generate

incorrect interpretations of animal–climate relationships as well

(Bueno de Mesquita et al., 2021). Accordingly, recent studies have

recommended that temporal nonstationarity (rather than

stationarity) should be the baseline assumption when modeling

species–climate relationships through time (Tumajer et al., 2023).

Responses to weather and climate conditions are also highly

variable across species (Rossi et al., 2023). Therefore, the degree of

nonstationarity can be expected to differ markedly among species
Frontiers in Ecology and Evolution 10
within the same community and site (Heres ̧ et al., 2022). This adds
an additional layer of complexity when modeling but must be

considered prior to applying interpretations from one species to

another. Collectively, a stronger emphasis should be placed on

understanding temporal nonstationarity in animals to more

effectively inform future SDMs, as well as management strategies

that rely on timely, near-term forecasts. More broadly, in the face of

deterministic climate change, directional selection across species

may be an important evolutionary process for many populations

over time (decades to centuries); however, increased frequency of

extreme events may instead lead to destabilizing selection as well.
4.4 Important considerations and caveats

The primary goal of this study was not to identify top models for

predicting occupancy and density, but rather to evaluate variability in

species–climate relationships over space and time using univariate

climatic factors. Accordingly, there are key interactions among

climate factors that likely also explain important mechanisms of

stress in this species. We only modeled linear relationships for

density, which may or may not be the most descriptive model

structure. We acknowledge these simple models constitute a great

over-simplification of the full dynamics governing species occupancy

and abundance. However, given 1) particular questions that we and

our management partners sought to address in the various regions,

and 2) our primary objective in this study to assess nonstationarity in

species–climate relationships across space and time, we believe our

current approach most directly addresses this objective. In addition,

our study did not model relationships with non-climatic factors that

are also important for occupancy and density, such as habitat

suitability and connectivity, forage quality and abundance,

interspecific interactions, microclimate temperatures, among others.

As described elsewhere, metapopulation dynamics, Allee effects,

human disturbances, and other transient processes also cloud the

relationship between species and their environment (Holt, 2020). We

acknowledge that, particularly relevant for our analyses of density,

error and uncertainties are not propagated in other ways through our

analysis; Bayesian approaches may better account for this

noisiness, explicitly.

Given that American pikas have been considered a sentinel

species for understanding metapopulation dynamics and the impact

of climate change on alpine species, our findings of consistently

strong species–climate relationships for most variables and scales

are particularly exciting and highlight how strongly macro-climate

appears to influence this species along with micro-climate

conditions. Although our sampling design differed slightly among

the Southern, Central, and Northern Rockies, we found many

consistent relationships among regions (i.e., stationarity, see Tmax

in summer) which suggests that methodological differences in study

design may not always lead to divergent results and interpretations.

Nevertheless, we do not encourage applying different survey designs

over space when it’s possible to avoid. The presence of local

adaptation across regions and the two pika lineage here was also

beyond the scope of this study but may well be an important factor
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in species–climate relationships when comparing multiple

ecoregions that have long had vastly different climatic conditions.

These considerations are important when evaluating the

applicability of SDMs for any given species, or otherwise

projecting results from one study region or timescale to another.

However, further studies examining species’ relationships with

univariate climate factors would be beneficial to improving our

understanding of species’ ecology, physiology, and conservation.

Nonstationarity, if unaccounted for, decreases model

performance and reliability, but so does climate novelty when

models aim to predict species’ responses beyond the range of the

calibration data. Nonstationarity can reflect true biological or

mechanistic changes in species–environment relationships over

space or time; in contrast, model error can emerge simply due to

inappropriate extrapolation into novel conditions. Whereas the

focus of our investigation was to examine issues related to

nonstationarity, ignoring climate novelty during SDM creation

and application will also provide biologically unrealistic

inferences and deteriorate model predictability. In addition, novel

conditions and nonstationarity may act synergistically in

influencing model performance and thus, overall utility. The

development of increasingly flexible model structures should seek

to account for both ecological nonstationarity and novel conditions

when possible, as both are predicted to increase under continuing

contemporary climate change (Radeloff et al., 2015).
5 Implications

The impending loss of global biodiversity underscores the

need to evaluate species’ vulnerabilities to further shifts in climate,

overexploitation, invasive species, and land-use patterns (Dıáz

et al., 2019). Species’ exposure and adaptive capacities are now

recognized to vary widely across spatial scales (Beever et al., 2023)

but given that ecological relationships are notoriously variable

over multiple spatial and temporal dimensions, understanding

patterns in new places, time periods, and under no-analog

conditions can be difficult. However, there are growing

opportunities to now capitalize on “big-data” systems that span

many disciplines to better evaluate the importance of scale.

Growing recognition of nonstationarity in ecological processes

has highlighted remaining questions related to the appropriate

scales for investigations, the limits of extrapolation, and the

overall usefulness of spatially explicit models. Although our

results were mostly comparable across three of the four ranges

within the single ecoregion, range-wide modeling using climate

envelopes from one region and time period would provide

inaccurate and unrealistic results in most cases – particularly for

precipitation, according to our results. Holistically, our results

stress how a better understanding of the appropriate spatial and

temporal scales of species–climate responses could create more

effective, tai lored climate-adaptation strategies under

shifting conditions.

Analyses in recent years have begun exploring new mathematical

methods in their models, like spatially varying coefficients (SVCs), to
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account for nonstationarity in species–climate relationships over

space and time (e.g., Humphreys et al., 2022; Sultaire et al., 2022),

justification for which is further supported by our analyses. Similarly,

geographically and temporally weighted regression and machine

learning in ecology should be considered in more instances, given

their often-superior performance relative to other methods in

forecasting processes in cases where nonstationarity is high (Feng

et al., 2021). Nevertheless, model structure choice should ultimately

be motivated by the study question at hand (Segurado et al., 2006).

While we encourage additional investigations into nonstationarity in

species–climate relationships across spatial domains, we anticipate

future investigations into how these relationships change through

time will yield the greatest insights in a rapidly changing world.

Although the full complexity of ecological networks can never be fully

modeled, we hope the results here provide further motivation to

continue discussions surrounding the relationships of patterns and

scale in order to improve biodiversity management and forecasts

moving forward.
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