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Chemical and population genetic
analysis show no evidence of
ecotype formation in a European
population of the parasitoid
wasp Nasonia vitripennis

Jan Buellesbach1*†, Mark Lammers1†, José van de Belt2

and Bart A. Pannebakker2*

1Institute for Evolution & Biodiversity, University of Münster, Münster, Germany, 2Laboratory of
Genetics, Wageningen University & Research, Wageningen, Netherlands
Ecotypes, subpopulations or strains of a single species locally adapted to

divergent ecological conditions within the same habitat are often considered

to be the first steps in sympatric speciation. It has been suggested that two

ecotypes are distinguishable in Nasonia vitripennis, a prominent model organism

for parasitic Hymenoptera, with one ecotype parasitizing fly pupae in bird nests,

and the other one parasitizing fly pupae on carrion. This differentiation into two

ecotypes has been hypothesized to indicate incipient sympatric speciation in

populations of this globally distributed species. In the present study, we

investigated the differentiation into these two distinct ecotypes focusing on

chemical profiles and the population genetic divergence in a wild N. vitripennis

population from the Netherlands. Isofemale lines were obtained from bird nest

boxes and from deer carrion, respectively, representing both microhabitats. To

test for phenotypic differentiation, we determined the surface cuticular

hydrocarbon (CHC) profiles from wasps of both host patches. Using a panel of

14 microsatellites, we concordantly determined the population genetic structure

and tested for genetic differentiation between foundresses obtained from both

microhabitats. Both the phenotypic as well as the genetic datasets show no

evidence for any kind of separation based on the postulated two ecotypes, but

rather suggest free interbreeding with no gene flow interruption between the

two distinct host patches. Our findings challenge previous assumptions on

clearly distinguishable ecotypes in N. vitripennis, and demonstrate how a

chemical ecological assessment coupled with population genetics can be

instrumental in re-evaluating the potential of ecological differentiation and

incipient speciation mechanisms in parasitoid wasps.
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1 Introduction

Niche differentiation can occur when co-existing populations

split through local adaptation to divergent conditions based on

biotic or abiotic factors (Hutchinson, 1957; Holt, 2009).

Consequently, a population can become separated through

adaptation to different microhabitats, e.g., by divergent dietary

specializations (e.g. Bakovic et al., 2019), or through phenological

separation (e.g. Lin and Hyyppä, 2019). The formation of such

barriers to gene flow has the potential to gradually increase

reproductive isolation of emerging subpopulations or ecotypes

(Coyne and Orr, 2004). Ecotypes are defined as subpopulations

for which the main barriers to gene flow are ecological (Turesson,

1922; Stronen et al., 2022). Correlated divergences in host or mate

preferences can further increase pre-existing niche differentiation

(Holt, 2009), which then can be reinforced by genetic

incompatibilities (Butlin, 1987; Higgie et al., 2000). Persistent

reproductive isolation is required for the maintenance of ecotypes

(Yannic et al., 2018; Stronen et al., 2022). Eventually, the long-term

coexistence of increasingly diverging ecotypes may lead to

sympatric speciation (Coyne and Orr, 2004; Ortiz-Barrientos

et al., 2009).

While differentiation between populations or strains from

different microhabitats may be due to phenotypic plasticity (Yeh

and Price, 2004; Pigliucci, 2005), genetic divergence between such

strains constitutes potential evidence of reduced gene flow (Coyne

and Orr, 2004; Sunamura et al., 2011). Ecotypes can coexist without

clearly separated phenotypes (Menz et al., 2015; Taylor et al., 2020),

but they cannot be maintained without some degree of reproductive

isolation (Holt, 2009; Stronen et al., 2022). Unambiguous cases of
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ecotypes show evidence of phenotypic differentiation that correlates

with genetic differentiation (e.g. Menz et al., 2015; Le Moan et al.,

2016; Yannic et al., 2018).

However, empirical evidence for ecotypes is generally biased

towards plants, fish and mammals, while other taxa, particularly

invertebrates, remain largely understudied in this respect (Stronen

et al., 2022). In light of the continuous and prominent decline in

insect biodiversity, undermining their tremendous contributions to

virtually all ecosystems on earth, this massive oversight appears

particularly puzzling (Scudder, 2017; Crespo-Pérez et al., 2020;

Raven and Wagner, 2021). Therefore, eligible insect model

organisms where the discrimination between populations,

ecotypes, subspecies and “true species” can be readily assessed are

necessary to properly direct countermeasures against insect

biodiversity decline (Bakovic et al., 2019; Stronen et al., 2022).

The parasitoid jewel wasp genus Nasonia (Hymenoptera:

Pteromalidae) has been well-established as an insect model system

to study ecological and evolutionary aspects of adaptation

(e.g. Koppik et al., 2014; Shuker, 2023), reproductive isolation

(e.g. Giesbers et al., 2013; Bell and Bordenstein, 2022) and

evolutionary genetics (e.g. van de Zande et al., 2014; Pannebakker

et al., 2020). Its most well-known and cosmopolitan species, Nasonia

vitripennis, has been proposed to be differentiated into two ecotypes

distinguishable by their respective microhabitats (Schröder, 2000;

Malec et al., 2021; Figure 1). Females of this species parasitize a wide

array of different fly pupae, most commonly from the genera

Sarcophaga (flesh flies), Calliphora (blowflies) and Protocalliphora

(bird blowflies). Depending on the microhabitat where these host

genera mainly occur, the suggested N. vitripennis ecotypes are the

“nest ecotype”, where the wasps primarily parasitize Protocalliphora
FIGURE 1

Schematic overview of the life cycle of Nasonia vitripennis. Female wasps locate fly pupae, which can occur in two microhabitats: bird nests or carrion.
After localization of the hosts, female wasps inject venom into the host pupa and will oviposit typically 20–50 eggs. Larvae hatch from the eggs, and will
normally pupate after 3 larval instars (unless an alternative diapause stage is entered under adverse conditions). Adults eclose from pupation within the
host pupae. Males chew an exit hole into the host puparium wall and emerge first and will mate with females upon emergence from the host. Figure
drawn by Marc Maas.
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fly pupae on nestlings in bird nest boxes (Darling and Werren, 1990;

Peters and Abraham, 2010), and the “carrion ecotype”, where

Calliphora and Sarcophaga fly pupae on vertebrate cadavers are

mainly parasitized (Grassberger and Frank, 2004; Figure 1).

Ecotype formation in N. vitripennis may be reinforced by

reduced gene flow due to high levels of natural inbreeding: males

are flightless and thus mostly confined to their place of emergence

from the host, where they compete for access to mate with the later

emerging females (van den Assem et al., 1980). Due to their

gregarious lifestyle, matings then generally occur between siblings

of the same patch and are thus characterized by frequent local

inbreeding (Grillenberger et al., 2008). However, females can

disperse after being mated for distances of up to 2 km and locate

new host patches (Grillenberger et al., 2009).

A recent study demonstrated very early reproductive barriers

between the nest and carrion ecotypes in a sympatric N. vitripennis

population from Southern Germany, hinting at premating and

sexual isolation preceding ecological separation (Malec et al.,

2021). Here, we focus on a sympatric N. vitripennis population

from the Netherlands and test for potential degrees of separation

between the different ecotypes on a phenotypic and population

genetic level. We therefore assess the divergence of cuticular

hydrocarbon (CHC) surface profiles as a phenotypic indicator for

an incipient differentiation concordant with the studied

microhabitats. CHC profiles have repeatedly been demonstrated

to diverge rapidly in populations according to different ecological

conditions (Menzel et al., 2017; Menzel et al., 2018; Hartke et al.,

2019). Furthermore, CHC profiles have the potential to be utilized

as chemotaxonomic traits to successfully discriminate otherwise

indistinguishable sympatric populations of a single species

(Takahashi et al., 2001; Everaerts et al., 2008) or recently diverged

sister species (Finck et al., 2016; Sprenger et al., 2021). Notably,

CHC profiles were the most apparent phenotypic traits clearly

distinguishing the two most recently diverged species of the

Nasonia genus, N. giraulti and N. oneida (Raychoudhury et al.,

2010; Werren et al., 2010). In addition, female CHC profiles contain

sexual cues for the males in most Nasonia species, triggering

courtship and copulation behavior (Steiner et al., 2006;

Buellesbach et al., 2013; Mair et al., 2017; Sun et al., 2023).

Furthermore, we screened the population genetic structure of

representative foundresses from the two distinct host microhabitats

with established Nasonia microsatellite markers for any degree of

genetic differentiation. Interestingly, we could not confirm any

separation between the ecotypes, neither on the phenotypic nor on the

genetic level, hinting at unhindered gene flow between wasps from the

carrion and nestmicrohabitats and strongly suggesting a re-evaluation of

the potential of N. vitripennis to form truly separated ecotypes.
2 Materials and methods

2.1 Wasp collection and establishment of
experimental strains

Wasps were collected from nest boxes and carrion in a 1.4 × 2.5

km field site in the Hoge Veluwe National Park, the Netherlands, in
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June 2018. Wasps originating from nest boxes were sampled by

collecting the fly host pupae from 45 nest boxes after fledging of the

birds (Parus major L.). The collected host pupae were incubated

individually at room temperature, and the emerging wasps were

identified as N. vitripennis based on morphology.

Wasps originating from carrion were sampled by laying out four

deer legs (Cervus elaphus L.), baited with mesh bags containing fly

pupae (Calliphora spp.) in individual containers on a layer of

vermiculite. To prevent interference with non-insect carrion feeders,

the containers were placed in a 1 m3 wire cage with a wide mesh,

suspended at 1 m above the ground (Supplementary Figure S1). Two

cages, each with two deer legs, were placed at two locations in the field

site. In those, mesh bags with fly pupae were replaced every 6 days

uponwhich the carrion was visually inspected for the presence of adult

wasps. When adult wasps were present on the carrion (we did not

observe alive adults in the nest boxes), individual females were isolated

directly and were allowed to parasitize Calliphora spp. host pupae as

foundresses of separate isofemale lines. From the bird nest boxes, fly

host pupae were collected and isolated individually in glass vials (11 ×

63 mm). Upon emergence, a single female from each host was isolated

and allowed to parasitizeCalliphora spp. host pupae for establishing an

isofemale line similar to the carrion-derived females. To keep

relatedness among isofemale lines low, only one single isofemale line

was set up per nest box. After parasitization, individual foundresses of

the isofemale lines fromboth carrions and the nest boxeswere stored at

−80°C for molecular analysis.
2.2 Chemical analysis and CHC profiling

After approximately 31 laboratory generations, we randomly

selected males from five and females from four isofemales lines

derived from carrion, as well as males from three and females from

four isofemale lines derived from nest boxes, respectively. For each

sex from each isofemale line, five respective individual wasps were

each extracted in 30 µl of MS pure hexane (UniSolv, Darmstadt,

Germany) in a GC-vial (Agilent, Santa Clara, California, USA)

while being swirled on an orbital shaker (IKA KS 130 Basic, Staufen,

Germany) for 10 minutes. Extracts were then transferred to a 250 µl

conical insert (Agilent, Santa Clara, California, USA) and

evaporated under a constant flow of CO2. The dried extracts were

resuspended with 5 µl of an MS pure hexane solution containing

7.5 ng/ml of n-dodecane (EMD Millipore Corp., Billerica,

Massachusetts, USA) as an internal standard. Three ml of the

extract were injected into a GC-QQQ Triple Quad (GC: 7890B,

Triple Quad: 7010B, Agilent, Waldbronn, Germany) with a PAL

Autosampler system operating in electron impact ionization mode

with 70 eV. The split/splitless injector was operated at 300°C in

Pulsed splitless mode at 10.42 psi until 2 min with the Purge Flow to

Split Vent set at 50 ml/min at 2 min. Separation of compounds was

performed on a 30 m × 0.25 mm ID × 0.25 mm HP-1

Dimethylpolysiloxane column (Agilent J&W GC columns, Santa

Clara, California, USA). The temperature program started from 60°

C, held for 1 min, and increasing by 40°C per min to 200°C,

followed by an increase of 5°C per min to 320°C, where it was held

for 5 min. Helium served as carrier gas with a constant flow of
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1.2 ml per min and a pressure of 10.42 psi. CHC peak detection,

identification and quantification were performed using Quantitative

Analysis MassHunter Workstation Software (Version B.09.00/Build

9.0.647.0, Agilent Technologies, Santa Clara, California, USA).

Peaks were identified according to their diagnostic ions and

retention indices calculated with a C21–C40 alkane standard

solution (Merck, Darmstadt, Germany). The pre-defined

integrator Agile 2 was used for the peak integration algorithm to

allow for maximum flexibility. All peaks were then additionally

checked for correct integration and quantification, and, where

necessary, re-integrated manually. To standardize the peak areas,

they were divided by total peak area sum per chromatogram,

resulting in relative ratios. A Principal component analysis was

performed based on the relative overall CHC divergence between

the putative ecotypes and sexes with the program R, version 4.1.0

(R Core Team, 2020).
2.3 Microsatellite and population
genetic analysis

DNA was isolated from ten adult isofemale line foundresses

collected from carrion, and from 18 foundresses emerging from the

fly hosts collected from the nest boxes (one per nest box) using a

standard high-salt chloroform protocol (Maniatis et al., 1982). A set of

14 established microsatellite loci was used to determine genetic

differentiation between all tested individuals from the Hoge Veluwe

population (Beukeboom et al., 2010; Pannebakker et al., 2010;

Koevoets et al., 2012). Microsatellite details are provided in

Supplementary Table S1. Microsatellite markers were amplified

using the Qiagen multiplex PCR kit (Qiagen, Hilden, Germany)

according to the manufacturer’s recommendations. Amplification

was done in 5 ml volumes, PCR conditions were as follows:

Denaturation at 95°C for 15 min, followed by 30 cycles of 94°C for

30 s, 57°C for 1.5min, and 72°C for 1min, followed by a final extension

at 72°C for 45 min. Fragments were diluted 250:1, separated on an

Applied Biosystems 3730 DNA Analyzer (Applied Biosystems, Foster

City, CA, USA) and analyzed using Geneious R11 (Biomatters Ltd.,

Auckland,NewZealand). Hardy-Weinberg equilibriumwas calculated

for all microsatellite markers using a heterozygosity-based estimator

(GIS) (Nei, 1987) and P-values based on 9999 permutations. Allmarker

pairs were tested for linkage disequilibrium (LD), using aMarkov chain

method (10,000 dememorization steps, 100 batches, 5,000 iterations)

and Fisher’s exact test, followed by Bonferroni correction for multiple

testing. Genetic diversity parameters, number of alleles (Na), effective

number of alleles (Ne), observed heterozygosity (Ho), expected

heterozygosity (He) and the fixation index (GIS) were calculated. To

quantify the degree of differentiation between wasps collected from

carrion and the nest box habitats, we calculated the fixation indexG’ST,

which is an FST equivalent that corrects for bias from sampling only a

limited number of populations (Nei, 1987), and P-values based on

9999 permutations. Next, we tested for the existence of genetic clusters

within the Hoge Veluwe population, using a Principal component

analysis (PCA) based on the allele frequencies, and a Bayesian

assignment as implemented in the program InStruct 1.0 (Gao et al.,

2007), which is an extension of the STRUCTURE algorithm (Pritchard
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et al., 2000) that allows for deviations from the Hardy-Weinberg

equilibrium through correction for inbreeding. Because N. vitripennis

shows high levels of inbreeding (Luna and Hawkins, 2004;

Grillenberger et al., 2008), it is relevant to account for this in our

analysis. Using InStruct, we tested a range of 1–12 clusters (K), with a

burn-in of 100,000 and 1,000,000 MCMC iterations and 20 iterations

for each K, using the inference of population structure and the selfing

rates for subpopulations mode (mode 2). The optimal K was inferred

from the deviance information criterion (DIC: Gao et al., 2011). As an

alternative method, we estimated the number of clusters using a K-

means clustering method based on the analysis of molecular variance

(AMOVA, Excoffier et al., 1992;Meirmans, 2012), forK=1–12 clusters,

with the simulated annealing approach for 1,000,000 steps with 20

random starts. The optimal K was inferred from the Bayesian

information criterion (BIC). All analyses were performed using

GenoDive 3.06 (Meirmans, 2020), except for the pair-wise linkage

analysis between the markers that was done using Genepop 4.7.5

(Raymond and Rousset, 1995; Rousset, 2008).
3 Results

3.1 Trapping success on carrion and in
nest boxes

In June 2018, a total of 45 nest boxes in the Hoge Veluwe

National Park were inspected for the presence or absence of fly

pupae. Twenty-six nest boxes (57.7%) contained fly pupae, and of

those fly-infested nest boxes, 19 (73%) contained N. vitripennis

wasps. Sampling on the carrion yielded a total of ten adult N.

vitripennis females (N=7 and N=3 on each deer leg, respectively).
3.2 Chemical analysis

We were able to detect 49 distinct CHC compounds in our

sampled N. vitripennis isofemale lines representative of both

postulated ecotypes. Their identifications or, in ambiguous cases,

all potential configurations according to their diagnostic ions, as

well as their mean relative quantities per postulated ecotype and

each respective sex are given in Supplementary Table S2. A

Principal component analysis only clearly discriminated the two

sexes into two distinct clusters, with no recognizable divergence

based on postulated ecotype. The first two principal components

contributed to 42.6% and 19.2% to the total separation of the

chemical profiles, respectively (Figure 2). A graphical overview of

relative quantities for each individual CHC compound identified in

our analysis separated by sex and postulated ecotype is given in

Supplementary Figure S2.
3.3 No genetic differentiation between N.
vitripennis wasps from distinct habitats

Microsatellite profiles were generated for 27 foundresses of the

isofemale lines derived from carrion (n=9) and nest boxes (n=18).
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Two females from nest boxes were excluded from further analysis,

because seven and four of the microsatellite loci failed to amplify in

these individuals, respectively, resulting in a robust dataset of 25

females in total that were genotyped for all 14 established

microsatellite loci. Of the 14 microsatellite loci, only two were in

Hardy-Weinberg equilibrium (HWE), Nv114 and Nv303

(Supplementary Table S1). The other 12 loci showed significant

deviation from HWE, consistent with the generally high inbreeding

rates observed in this species (Grillenberger et al., 2008). No

significant linkage disequilibrium was detected between the

microsatellite loci. Based on these analyses, we decided to include

all 14 loci in our subsequent dataset. Wasps from both

microhabitats showed a mean heterozygosity Ho=0.537

(SD=0.014), and a mean GIS=0.309 (SD=0.038) (Table 1), the

latter indicating a heterozygote deficiency, which is likely due to

inbreeding. A G’st analysis showed no genetic differentiation

between N. vitripennis females collected from nest boxes versus

females collected from carrion (G’st=0.003 (SD=0.007), P=0.347).

The Bayesian assignment using InStruct found support for K=9

genetic clusters (Supplementary Table S3), but these did not diverge

according to microhabitat (Figure 3). However, the proportions of

ancestry estimated by Instruct (q-values) are very similar among the

individual wasps, consistent with absence of genetic structure

within the Hoge Veluwe population. This is confirmed by the

results of the K-means clustering, which indicate K=1, or a single
Frontiers in Ecology and Evolution 05
genetic group for the N. vitripennis population at the Hoge Veluwe

without separate substructures (Supplementary Table S4). This is

further reflected in a Principal component analysis that showed no

distinct genetic clusters according to host habitat i.e., postulated

ecotype (Figure 4).
4 Discussion

Based on our chemical profile analysis as well as our population

genetic assessment, we could not detect any degree of separation

into ecotypes in the studied Nasonia vitripennis population from

the Netherlands. Individual isofemale lines derived from host pupae

either occurring on bird next boxes or carrion could not be

unambiguously differentiated as either ecotype based on distinct

chemical profiles or their genetic divergence.

Concerning cuticular hydrocarbon (CHC) divergence, it has

been shown that CHC profiles have the potential to locally adapt to

divergent ecological conditions within a few generations (Menzel

et al., 2017; Menzel et al., 2018; Hartke et al., 2019). CHC differences

might also occur due to assortative mating and have been found to

be correlated with speciation events in other insects (Schwander

et al., 2013; Chung and Carroll, 2015). Moreover, CHC profiles have

frequently been found as the first and most characteristic

phenotypic traits to diverge between populations and

evolutionarily young species pairs (Espelie et al., 1990;

Raychoudhury et al., 2010; Sprenger et al., 2021). Therefore, it is

surprising that we could not detect any congruent CHC divergence

separating the two postulated N. vitripennis ecotypes. Interestingly,

a study focusing solely on bird nest boxes on a wide European

latitudinal gradient ranging from Corsica to Finland also did not

find any discernible CHC patterns correlating with local population

clines (Buellesbach et al., 2022a). This strongly suggests that CHCs

constitute genetically fixed traits with comparably little plasticity for

local adaptation in this species (Niehuis et al., 2011; Buellesbach

et al., 2022b).

Due to the long-standing postulation of the discernibility

between the bird and carrion ecotypes of N. vitripennis

(Grassberger and Frank, 2004; Peters and Abraham, 2010; Malec

et al., 2021), our findings that clearly do not support their

unambiguous differentiation on a phenotypic and genetic level

were unexpected. An important aspect largely neglected in earlier

studies conducted on populations of this species is the estimation of

how frequent habitat switches can occur in nature. As inseminated
FIGURE 2

Principal component analysis (PCA) based on cuticular hydrocarbon
extracts from 77 individual Nasonia vitripennis wasps of both sexes,
representative of the carrion and bird nest box ecotypes. Carrion
ecotype: 19 females from 4 isofemale lines, 24 males from five
isofemale lines. Bird nest box ecotype: 20 females from four
isofemale lines, 14 males from three isofemale lines. The first two
principal components contributed 42.6% and 19.2% to the total
separation of the samples, respectively.
TABLE 1 Number of alleles, fixation index and heterozygosity of the analyzed Nasonia vitripennis population from the Hoge Veluwe National Park, Netherlands.

Na(SD) Ne(SD) GIS (SD) Ho(SD) He(SD)

Nest box 9.643 (1.151) 5.957 (0.910) 0.329 (0.045) 0.511 (0.059) 0.761 (0.064)

Carrion 7.429 (0.810) 5.722 (0.726) 0.290 (0.067) 0.563 (0.075) 0.793 (0.065)

Overall 11.643 (1.409) 5.660 (0.756) 0.309 (0.038) 0.537 (0.062) 0.777 (0.062)
Number of alleles (Na), effective number of alleles (Ne), fixation index (GIS), observed heterozygosity (Ho) and expected heterozygosity (He) as well as standard error are given for wasps collected
from either nest boxes or carrion.
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female N. vitripennis wasps can disperse over distances as far as 2

km (Grillenberger et al., 2009), steady gene flow between bird nest

and carrion populations within these distances, as would be the case

in our studied ecosystem in the Netherlands, appears very likely.

Another potentially important aspect is the difference in phenology

between the two postulated ecotypes: As the occurrence of carrion

can be expected to be year-round, the nest ecotype would

presumably be restricted to the respective birds’ breeding season.

When this season has passed by the end of spring for most birds, N.

vitripennis wasps are unlikely to already enter diapause, which

usually only occurs later in the year (Saunders, 1965; Paolucci et al.,

2013). It is thus far unknown whether wasps parasitizing hosts in

bird nests during early summer can simply switch to carrion hosts

once bird breeding season ends. However, wasps collected from bird

nest boxes do readily parasitize carrion-breeding Calliphora hosts

(van de Zande et al., 2014; Kalyanaraman et al., 2021). It is thus

unlikely that gene flow between microhabitats is interrupted over

long enough periods of time to allow for the establishment of stable

and distinct ecotypes in European N. vitripennis populations.

Interestingly, Malec et al. recently reported a reduction in F1

offspring between different N. vitripennis strains collected in

microhabitats corresponding to the postulated ecotypes within a

German population, suggesting incipient reproductive barriers
Frontiers in Ecology and Evolution 06
(Malec et al., 2021). However, they did not verify the infection

status caused by the naturally occurringWolbachia bacteria in their

investigated N. vitripennis strains. The strains used in Malec et al.

(2021) had been cultured in the laboratory for over 20 generations.

However, maternalWolbachia transmission is not 100% (Hoffmann

et al., 1990; Turelli et al., 1992) and prolonged laboratory rearing

has been reported to result in loss of the Wolbachia infection in N.

vitripennis strains (Pannebakker et al., 2020). This is crucial, as

Wolbachia-infected males are incompatible with Wolbachia-

uninfected females, leading to different degrees of offspring

reduction (Breeuwer and Werren, 1990; Bordenstein and Werren,

1998; Bordenstein et al., 2001). Therefore, without accounting for

the persistence ofWolbachia infections, interpretations of the cause

of offspring reduction between strains derived from different

ecotypes have to remain very cautious. However, previous

population genetic studies indicated gene flow can become

limited over larger distances (300 km or further) in separated N.

vitripennis populations (Grillenberger et al., 2009; Paolucci et al.,

2013), which could theoretically allow for different degrees of local

adaptation to occur. Nevertheless, in the aforementioned study on

European N. vitripennis clines over a large latitudinal gradient

(> 3,500 km), no population-specific mate preference or

assortative mating behavior that would have hinted at incipient

prezygotic reproductive isolation could be detected (Buellesbach

et al., 2022a). This also suggested that female sexual attractiveness as

encoded in the CHC profiles remains constantly detectable,

potentially constraining any larger profile divergences at least for

the females in N. vitripennis (Sun et al., 2023).

Our results therefore challenge the long-standing assumption of

clearly distinguishable ecotypes based on host microhabitats in N.

vitripennis and invite further, more careful investigations of within-

population variation in this cosmopolitan parasitoid species. Future

studies could potentially investigate several different populations

from more extreme environments, and also take into account the

postulated ancestral state of host preference, likely constituting

carrion since sampled bird nest boxes are almost always primarily

human-made (e.g. Darling and Werren, 1990; Peters and Abraham,

2010; Buellesbach et al., 2022a). Furthermore, natural dispersal rates

should be monitored and considered more cautiously to obtain a

more robust estimate on the actual degree of gene flow occurring

between different host patches.

In conclusion, we could not confirm the differentiation into the

nest and carrion ecotype in our sampled N. vitripennis population

from the Netherlands, neither on the population genetic nor on the

phenotypic level assessed through the wasps’ chemical profiles. Our

findings invite a more cautious approach to studying ecotype

formation in this model organism for parasitoid wasps and

strongly hint at persisting gene flow despite the ecological

preference for different host microhabitat patches.
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FIGURE 4
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FIGURE 3

Population structure of Nasonia vitripennis in the Hoge Veluwe
National Park in the Netherlands as calculated with InStruct for
optimal number (K=9) of genetic clusters. Each individual wasp is
represented by a vertical bar and colored according to assignment
to one of nine ancestry clusters. Samples are ordered according to
cluster assignment and microhabitat.
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