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Inland populations of sugar
maple manifest higher
phenological plasticity than
coastal populations
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QC, Canada, 4Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences
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Plasticity is vital for plants to rapidly acclimate to environmental changes,

especially under the climate change. Global warming could advance bud break

and extend the growing season, but it also increases the risk of frost damage to

developing leaves. In this study, we explored the phenological plasticity of bud

burst of half-sib family sugar maple (Acer saccharum Marsh.) seedlings from 11

seed origins in two common gardens at the center and the northern edge of the

species distribution in Quebec, Canada. Results showed that the phenological

plasticity of sugar maple originating from inland was significantly higher than

those from coastal areas at the beginning of leaf development. This discrepancy

may result from the long-term frost change frequency of seed origins. Our study

suggests that in the context of climate warming, the higher plasticity observed in

sugar maple originating from inland areas may benefit from the phenological

adaptation of sugar maple and the survival of local populations. It also suggests

that inland populations may have a higher potential regarding to assisted

migration, but this needs to be confirmed for other functional traits

than phenology.
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1 Introduction

Global climate change has affected tree growth significantly, and trees have to adapt to

the environmental changes in-situ or migrate to new growth conditions to survive (Aitken

et al., 2008). Phenotypic plasticity, determined as the ability to alter phenotype quickly in

response to environmental changes (Nicotra et al., 2010; Matesanz and Valladares, 2014;

Merilä and Hendry, 2014), is faster than genotypic adaptation and plays a crucial role in
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survival in various environments (Chevin et al., 2013; Franks et al.,

2014). However, to achieve high phenotypic plasticity, plants need

to invest resources to perceive environmental information and

produce a series of allocational, anatomical, or morphological

traits adjustments to adapt to changing conditions (DeWitt, 1998;

Van Kleunen and Fischer, 2005; Auld et al., 2010). Multiple

phenotypes exhibit a wide range of variability, which increase the

chance to adapt to weather events and gain a high competitive

ability (Gomulkiewicz and Kirkpatrick, 1992; Hufford and

Gomulkiewicz, 1999; Holloway, 2002), while others may

inevitably mismatch the environmental conditions, leading to

maladaptation (Ghalambor et al., 2007). Thus, plants with higher

plasticity could develop a better competitive ability under climate

change. However, the environmental conditions vary within the

species range, which create the potential for local adaptation and a

variety of amplitudes in the expression of plasticity due to species

origins (Vitasse et al., 2013; Valladares et al., 2014).

Phenotypic plasticity could enable genotypes to develop specific

reaction norms under environmental changes, thus buffering the

rapid growth condition changes and facilitating future genetic

variation (Holloway, 2002; Sultan, 2004; Nicotra et al., 2010). The

degree of plasticity depends on the variability of environmental

conditions (Churkina et al., 2005; Vitasse et al., 2009a; Vitasse et al.,

2009b). Wide inter-annual variability in environmental conditions

may promote higher plasticity at the individual level to cope with the

unstable conditions and produce higher intra-specific trait variations

at the population level (Rubio de Casas et al., 2008; Kumordzi et al.,

2019; Cardou et al., 2022). However, under stable conditions, there is

a tendency for populations to exhibit reduced plasticity (Chevin

et al., 2010; Matesanz et al., 2010; Valladares et al., 2014). Compared

to the center of the distribution, marginal populations are generally

more isolated and show higher plasticity (Valladares et al., 2014).

This divergent plasticity shows a deviating sensitivity to

environmental factors, indicating a higher ability of marginal

populations to cope with changing environmental conditions.

Plant phenology is the study of periodically recurring patterns of

growth and development during the year, such as the start (leaf

unfolding) and end (leaf coloring) dates of growing seasons (Lieth,

2013; Piao et al., 2019; Inouye, 2022). Numerous efforts have been

made to incorporate phenology into climate change models to better

understand the response of trees (Chuine and Beaubien, 2001; Badeck

et al., 2004; Cleland et al., 2007; Rosbakh et al., 2021). For example,

climate warming leads to earlier sprouting and longer growing

season, potentially increases net carbon uptake of the ecosystem

(Keenan et al., 2014). Also, the temperature has been demonstrated to

be a driving factor of ecotypic variation (Silvestro et al., 2019). The

developmental phase from dormancy to activity period is one of the

most critical transitions in the bud tissues (Jewaria et al., 2021). The

breaking of endodormancy in spring requires efficient accumulation

of cold temperature in autumn and winter (chilling) (Singh et al.,

2016). After that, heat in spring (forcing) and photoperiod could

strongly affect the further reactivation of bud break and growth (Chen

et al., 2018; Huang et al., 2020). Understanding the adaptive capacity

of phenological responses to climate fluctuations, particularly

changes in chilling and forcing factors, is crucial for predicting the

prospects of species in the context of climate change.
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As an important economic species in eastern North America,

sugar maple (Acer saccharumMarsh.) has been studied to predict the

response to climate change (Putnam and Reich, 2017). A previous

study showed that phenotypic plasticity plays a dominant role in

regulating the bud phenology of sugar maple populations (Guo et al.,

2023). However, the geographical pattern of plasticity and the

possible climatic drivers are less known. In this study, we examined

the intra-specific climatic variation and phenological plasticity of

sugar maple seedlings from 11 Canadian origins, which were planted

in two common gardens at the central and northern edges of their

distribution range. We expect that sugar maple originating from the

inland have higher phenotypic plasticity for bud break than those

from coastal areas because of higher frost change frequency.
2 Materials and methods

2.1 Seed origins, seed collections, and
common garden tests

This study examined open-pollinated progenies of sugar maple

from 11 seed origins across the species’ range in Canada (Figure 1;

one half-sib family per seed origin). This area is included in the

bioclimatic domains of deciduous and mixed forests of the northern

temperate zone, which is dominated by both broadleaves and

conifers (mainly Acer saccharum Marsh., Acer rubrum L., Betula

alleghaniensis Britt., Abies balsamea (L.) Mill.).

The mean annual temperature among the seed origins ranged

between 3.1 and 5.7°C, with the lowest recorded at seed origin 1 and

the highest at seed origin 8 (Supplementary Table 1). Seed origin 1

represented the coldest location, with a minimum mean annual

temperature of -10.9°C. Conversely, seed origin 6 exhibited the

warmest conditions, with a minimum mean annual temperature of

-9.0°C and a maximum mean annual temperature of 20.0°C

(Supplementary Table 1). The range of mean annual temperature

across the seed origins was 2.2°C. Additionally, it is worth noting

that the mean annual temperature in Ripon was 4.5°C, and 3.2°C in

Chicoutimi. Annual precipitation ranged from 1144 to 3385 mm,

increasing from west towards the east.
2.2 Plant material

In April 2018, we used seed material from sugar maple

populations to cultivate one-year-old seedlings in greenhouses.

Subsequently, in the spring of 2019, these seedlings were

transplanted into two common gardens located in Chicoutimi

and Ripon (Quebec, Canada, Figure 1). Chicoutimi and Ripon are

located at the central and northern edge of the natural distribution

of sugar maple, respectively. The different growing conditions of

two common gardens provided an experimental design that helped

to study the effects of genetic variations and phenological plasticity

in bud phenology. The trials were set up using a single-tree plot

layout with a spacing of 3 m × 3.5 m. On average, between 6 and 10

seedlings from each seed origin were planted, resulting in a total of

145 and 173 seedlings in Chicoutimi and Ripon, respectively.
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2.3 Phenological observations

During mid-April to mid-June in 2020, we meticulously

monitored bud and leaf phenology for all seedlings twice a week.

Generally, the observed two-year-old seedings had five buds. To

ensure methodological consistency and reduce the influence of

confounding factors in subsequent analyses, we deliberately

selected and closely observed the apical bud, which is widely

accepted and established practice in the field (Rosique-Esplugas

et al., 2021). We recorded the progression of bud and leaf

development, divided them into eight distinct phases, following

the methodology outlined by Skinner and Parker (1994): (1) bud

swell, characterized by reddish scales and an enlarging bud; (2) bud

elongation, displaying a yellowish hue between the scales; (3) green

tip stage, with light green tips and the area between the scales but

the bud still closed; (4) bud break, featuring loosened scales but

barely visible expanding leaf tips; (5) extended bud break, where the

leaf bundle expanded beyond the scales but without separated

leaves; (6) initial leaf emergence, marked by leaves starting to

expand perpendicularly to the base of the bud; (7) initial leaf

expansion, showcasing light green, small, and wrinkled leaves;

and (8) full leaf expansion, with entirely flattened and expanded

leaves. The onset of each phenological phase was determined as the

first day (DOY, day of the year) when that specific phase was

observed in each individual.
2.4 Statistical analyses

The daily minimum, maximum, and mean temperature for the

year 2020 were obtained by extracting data based on the coordinates
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of the common gardens from the ERA5 dataset using Google Earth

Engine (Gorelick et al., 2017). Climatologies at high resolution for

the earth’s land surface areas (CHELSA) climate data include

monthly temperature, precipitation, and derived parameter

estimates at a spatial resolution of 30 arcsec from 1979-2013

(Karger et al., 2017). Four climatic variables, including frost

change frequency (the number of events in which the minimum

temperature or maximum temperature goes above or below 0°C),

growing degree days (the annual cumulative sum of temperatures

exceeding 0°C), growing season length (the number of days with

temperatures exceeding 5°C, without snow cover and soil water

available), and number of frost days (the annual count of days when

the daily minimum temperature is less than 0°C) were downloaded

from CHELSA to describe the annual trend and extreme conditions

across seed origins and between common gardens. A Principal

Component Analysis (PCA) was then performed to determine the

contribution of each climatic variable to the total variance. All seed

origins were classified into different groups using four climatic

variables (frost change frequency, growing degree days, growing

season length, and number of frost days) according to the results of

the Partitioning Around Medoids clustering algorithm, the

extension of the k-means clustering algorithm (Kaufman and

Rousseeuw, 1987).

For each common garden, we calculated the average bud

phenology for all individuals of the same seed origin, and we used

the difference in leaf development between the two common

gardens to illustrate population-level plasticity. The analysis of

variance (ANOVA) was used to test the difference in plasticity

among groups of seed origins based on the abovementioned cluster

results. All statistical analyses were performed using R software (R

Core Team, 2021).
FIGURE 1

Locations of the 11 seed origins (represented by circles) of sugar maple. The triangles mark the locations of the two common gardens in Chicoutimi
and Ripon.
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3 Results

3.1 PCA and cluster results of the climate
of the study sites

The average frost change frequency among the seed origins was

67 occurrences, ranging from the highest of 79 occurrences in seed

origin 7 to the lowest of 50 occurrences in seed origin 10. The average

growing season length was 176 days, with the longest and shortest

also recorded in seed origin 7 and 10 (186 and 161 days, respectively).

The mean growing degree days were 1570 days, with the longest days

recorded in seed origin 7 at 1772 days and the shortest recorded in

seed origin 11 at 1330 days. The average number of frost days was

154 days, ranging from a maximum of 171 days in seed origin 2 to a

minimum of 135 days in seed origin 10 (Supplementary Table 2).

PCA extracted two main principal components (PC), explaining

77.2% and 14.5% of the variability in climatic parameters for seed

origins for PC1 and PC2, respectively. Frost change frequency was

most strongly correlated with PC1 (-0.94) and had the highest

contribution at 68.33%, indicating that frost change frequency was

the primary influencing factor (Figure 2; Supplementary Table 3).

According to the K-medoids clustering results (Figure 2;

Supplementary Figure 1), the seed origins 1-7 were classified as

group 1, and the seed origins 8-11 were classified as group 2. Seed

origins in group 1 had longer growing season length, higher number

of frost days, and higher frost change frequency than those in group

2 close to the Gulf of Saint Lawrence River.
3.2 Bud and leaf phenology difference
between two common gardens

Bud and leaf phenology occurred earlier in Ripon compared to

Chicoutimi (Figure 3). Phases 1-3 occurred on DOY 121, 124, and

127 in Ripon, 10 days before Chicoutimi (DOY 131, 134, and 137).

The differences between sites for the phases 4-6 were 9, 6, and 3 days,

respectively. Phases 7 and 8 differed by 1-4 days between the two

common gardens. The differences in bud phenology between the two

sites gradually diminished as the phases progressed. Overall, the

leafing period in Ripon spanned 30 days, whereas it covered 23 days

in Chicoutimi.
3.3 Phenological plasticity on the
population level

The seed origins with the highest or lowest phenological plasticity

varied across the eight developmental phases. Seed origin 3 exhibited

the highest variation for phases 1 and 2, with an 11-day difference

between the two common gardens (Supplementary Table 4). In

phases 3-5, seed origin 1 showed the most significant difference of

8-13 days between the two common gardens, while seed origin 7

showed the most significant difference in phases 6-8, with a 6-9-day

gap. Additionally, seed origin 10 demonstrated the lowest variation in

phase 1, with a 9-day difference between the common gardens.
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For phases 2-4, seed origin 8 exhibited the least variation, with a 7-

8-day difference between the gardens. In phases 5-7, seed origin 9 had

the smallest difference, ranging from 0-4 days. Seed origin 3 showed

the lowest variation in phase 8, with no difference between the

common gardens. Almost for all phases, the phenological variation

of seed origins in group 1 was higher than that in group 2 (Figure 4).

However, the difference was significant only for phases 1-3 (p < 0.05;

Figure 4; Supplementary Table 5).
4 Discussion

4.1 Comparison of bud phenology in two
common gardens

Buds of sugar maple occured earlier in the southern common

garden (Ripon). In our study, the mean spring temperature (April-

May) in 2020 in Ripon was 4.6 °C, higher than that in Chicoutimi

(2.4 °C). Under warmer spring conditions, sugar maple may be

more effective in accumulating heat to achieve the threshold of

forcing condition, leading to an advanced break of dormancy

(Myking and Heide, 1995; Fu et al., 2013). Our results are

consistent with previous studies conducted in temperate and

boreal ecosystems (Fu et al., 2014; Zani et al., 2020; Vitasse et al.,

2022). For example, the timings of leaf unfolding of Fagus sylvatica

L. and Quercus petraea (Matt.) Liebl. advanced by 5.7 days for each

additional degree Celsius, as observed across five common gardens

(Vitasse et al., 2010). Similarly, the buds of Populus fremontii in

Arizona flushed earlier when the trees grow in the common gardens

located in warmer regions (Cooper et al., 2019; Gao et al., 2023).

The variability of DOY between Ripon and Chicoutimi decreased

for the later leafing stages (7 and 8). The difference in photoperiod is an

essential factor for spring phenology. Day length during bud burst

(phase 1) was 15.0 h in Chicoutimi, which was longer than that

recorded in Ripon (14.1 h) due to the different latitudes and timings of

growth reactivation between common gardens (Guo et al., 2022). A
FIGURE 2

Principal component analysis and cluster results of the climatic variability
among seed origins. Group 1 includes seed origins 1-7, while group 2
includes 8-11. (Fcf, frost change frequency; Gdd, growing degree days;
Gsl, growing season length; Nfd, number of frost days).
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more extended photoperiod could have facilitated bud development

(Way and Montgomery, 2014), thus resulting in similar timings of full

leaf expansion. A previous study demonstrated that sugar maple leafing

benefits from a longer day length, and photoperiod can outweigh the

delaying effects of colder springs (Ren et al., 2020). However, the similar

ending of leaf expansion in the two common gardens remains partially

unexplained and could result from the heat damage events occurring

during the studied year. Thus, a better understanding of the impact of

current weather on leaf development is needed and requires long-term

monitoring of bud phenology in the two common gardens.
4.2 The different degrees of plasticity
between inland and coastal areas

We found that inland sugar maple showed a higher plasticity at the

beginning of leaf development compared to those in coastal regions.
FIGURE 3

Reaction norm of phenological plasticity of sugar maple in the two common gardens. The solid line represents group 1 (seed origins 1-7), while the
dashed line represents group 2 (seed origins 8-11).
FIGURE 4

The phenological variations of sugar maple seed origins between
two groups. Significance levels are *< 0.05, and **< 0.01.
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In our study conducted under continental climatic conditions, sugar

maples were exposed to a wide inter-annual weather variability, mainly

for temperature. This temperature variation is a critical limiting factor

influencing bud phenology during the spring season (Guo et al., 2020).

Also, with a higher number of frost days and frost change frequency,

sugar maple originating from inland areas may face an increasing risk

of frost damage. In order tomitigate the risk of frost damage, enhancing

phenological plasticity becomes crucial. This adaptation allows for a

rapid response to weather fluctuations and extends the leafing period,

thereby improving the available carbon fixation period. (Körner and

Basler, 2010; Vitasse et al., 2014). Previous studies have demonstrated

that plasticity correlates with climatic variability, and species

experiencing a wider climatic fluctuation also exhibit higher plasticity

(Van Buskirk, 2008). For example, plasticity for plant performance

strongly correlates with inter-annual precipitation variability of original

sites (Pratt and Mooney, 2013). Also, phenotypic plasticity in final

shoot height and maximum biomass per shoot increases towards the

higher latitudes due to the range of climatic variability increases with

latitude (Ren et al., 2020). Our study demonstrated that plants from the

inland areas exhibit a higher plasticity, which may help them to

respond suitably to rapid changes in climate.

Climate might affect the phenology of different seed origins to

varying degrees. It was proved that under climate change, instead of the

assumption of homogeneously plasticity across a species’ range, the

model given the factor of population differentiation could increase the

forecasts of species range shifts (Valladares et al., 2014). In our study,

the higher plasticity was observed in inland areas, which showed a

higher variability in a given environmental condition. Compared with

coastal areas, sugar maple originating from inland areas may have

more advantages to cope with the changing climate. Therefore, future

studies on the effects of simulated climate change on species phenology

should consider specifically the different degrees of phenological

plasticity within the same species.
5 Conclusion

Phenotypic plasticity plays a vital role in the response of plants

to the environment, whose changes are critical for the survival of

individuals and local populations. In this study, we demonstrated

that due to the higher frost change frequency, sugar maple

originating from inland areas showed higher plasticity of bud

burst than those from coastal areas at the beginning of leaf

development. We predict that in an assisted migration context,

sugar maple originating from inland may rapidly acclimate its

phenology to the local environment. Thus, quantifying the

climatic conditions especially the frost change frequency

experienced by specific population, may increase the predictive

accuracy of its acclimatation potential, and help to define its

potential in assisted migration efforts.
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