
Frontiers in Ecology and Evolution 01 frontiersin.org

Sex-specific changes in autosomal 
methylation rate in ageing common 
terns
Britta S. Meyer 1*, Maria Moiron 2, Calvinna Caswara 3, William Chow 4, 
Olivier Fedrigo 5, Giulio Formenti 5, Bettina Haase 5, Kerstin Howe 4, 
Jacquelyn Mountcastle 5, Marcela Uliano-Silva 3,4,6, Jonathan Wood 4, 
Erich D. Jarvis 5,7, Miriam Liedvogel 1,2† and Sandra Bouwhuis 2†

1 Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany, 2 Institute of Avian 
Research, Wilhelmshaven, Germany, 3 Berlin Center for Genomics in Biodiversity Research, Berlin, Germany, 
4 Wellcome Genome Campus, Wellcome Sanger Institute, Cambridge, United Kingdom, 5 The Rockefeller 
University, New York, NY, United States, 6 Department of Evolutionary Genetics, Leibniz Institute for Zoo and 
Wildlife Research (IZW), Berlin, Germany, 7 Howard Hughes Medical Institute, Chevy Chase, MD, United 
States

Senescence, an age-related decline in survival and/or reproductive performance, 
occurs in species across the tree of life. Molecular mechanisms underlying this within-
individual phenomenon are still largely unknown, but DNA methylation changes with 
age are among the candidates. Using a longitudinal approach, we investigated age-
specific changes in autosomal methylation of common terns, relatively long-lived 
migratory seabirds known to show senescence. We collected blood at 1-, 3- and/or 
4-year intervals, extracted DNA from the erythrocytes and estimated autosomal DNA 
methylation by mapping Reduced Representative Bisulfite Sequencing reads to a 
de novo assembled reference genome. We found autosomal methylation levels to 
decrease with age within females, but not males, and no evidence for selective (dis)
appearance of birds of either sex in relation to their methylation level. Moreover, 
although we found positions in the genome to consistently vary in their methylation 
levels, individuals did not show such strong consistent variance. These results pave 
the way for studies at the level of genome features or specific positions, which 
should elucidate the functional consequences of the patterns observed, and how 
they translate to the ageing phenotype.
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1. Introduction

Senescence is a within-individual decline in survival probability (actuarial senescence) and/or 
reproductive performance (reproductive senescence) with age. Although the rate and shape of the 
decline vary both among and within species, this detrimental process occurs in most species across 
the tree of life (Shefferson et al., 2017). It is hypothesized to have evolved because unavoidable 
environmentally-driven mortality reduces the strength of selection against poor performance with 
age (Fisher, 1930; Medawar, 1952; Williams, 1957; Hamilton, 1966). From a genetic point of view, 
this so-called ‘selective shadow’ could allow for the accumulation of late-acting deleterious mutations 
over evolutionary time (mutation accumulation, Medawar, 1952), or for selection favouring alleles 
with beneficial effects early, but detrimental effects late in life (antagonistic pleiotropy, Williams, 
1957). Moreover, early-life investment of limited resources in reproduction over that in perfect 
somatic maintenance and repair would also be evolutionarily beneficial, such that senescence could 
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be  a ‘best-of-a-bad-job’ consequence of accumulated, unrepaired 
damage (disposable soma, Kirkwood, 1977).

Although the classical theories of mutation accumulation and 
antagonistic pleiotropy assume a purely sequence-level genetic basis to 
senescence, the disposable soma theory does not. Given its firm 
foundation in life history theory, resource acquisition and allocation 
(sensu van Noordwijk and de Jong, 1986) are important facets to 
consider. Both are known to show phenotypic plasticity in response to 
environmental variation (e.g., Erikstad et al., 1998; Descamps et al., 
2016), and experimental manipulation of one of these facets without 
adjustment of the other is known to affect rates of senescence (e.g., 
Boonekamp et al., 2014). As such, part of the senescence process is also 
expected to be  underpinned by more flexible, regulatory processes 
(Wilson et al., 2008). In line with this, numerous studies across taxa have 
shown that senescence is underpinned by both genetic and epigenetic 
processes (Sen et al., 2016; Melzer et al., 2020).

Epigenetic processes are those that affect the regulation of gene 
expression (Holliday, 2006). This regulation is complex and encompasses 
several mechanisms, a major one of which is DNA methylation, the 
addition of a methyl-group to the fifth carbon site of a cytosine in a CpG 
(5’-C-phosphate-G-3’) dinucleotide context (Jaenisch and Bird, 2003; 
Miranda and Jones, 2007; Suzuki and Bird, 2008). Such DNA methylation 
could lead to transcriptional silencing of genes and repetitive elements, 
as DNA methylation acts as a ligand for methyl-binding domains, which 
in turn are targets for further chromatin-modifying complexes such as 
histone deacetylase complexes or chromatin remodeling complexes 
(Jaenisch and Bird, 2003; Suzuki and Bird, 2008; Brenet et al., 2011; 
Miller and Grant, 2013). DNA methylation of gene bodies, however, can 
lead to increased gene expression (Suzuki and Bird, 2008) or be involved 
in alternative splicing (Lev Maor et  al., 2015). Age-specific DNA 
methylation has been described for many model species (e.g., Maegawa 
et  al., 2010; Hannum et  al., 2013; Tharakan et  al., 2020), and the 
methylation status of specific CpGs has been shown to be a powerful 
predictor of both chronological and biological age, i.e., to function as an 
epigenetic clock (Bocklandt et  al., 2011). Although age-specific 
methylation therefore seems the norm, at least in model organisms, the 
direction of methylation changes with age is harder to predict: both 
non-directional changes (representing epigenetic drift, Fraga et al., 2005; 
Tan et al., 2016), and global directional changes (representing global 
hyper- and hypomethylation, Zampieri et al., 2015; Ciccarone et al., 
2018; but see Unnikrishnan et al., 2019) have been reported.

Research on senescence, including its epigenetic underpinning, has so 
far mostly focused on humans or model organisms kept under controlled 
laboratory conditions. Extending the taxonomic range and incorporating 
field studies is crucial to understand the evolutionary ecology of senescence 
(Monaghan et  al., 2008). For this extension, birds are an especially 
interesting taxon. They have longer life spans relative to their body size 
than mammals (e.g., Lindstedt and Calder, 1976), and various populations 
of birds with vastly different life histories have been studied over several 
decades, such that many basic insights into their senescence patterns can 
now be obtained (Bouwhuis and Vedder, 2017). Bird genomes are rather 
compact, show high levels of synteny across species (Zhang et al., 2014), 
and, similar to those of other vertebrates, are globally methylated (Suzuki 
and Bird, 2008; Li et  al., 2011; Sepers et  al., 2019). With respect to 
age-specific DNA methylation in birds, we are aware of the existence of an 
epigenetic clock for short-tailed shearwaters (Ardenna tenuirostris; De 
Paoli Iseppi et al., 2019), and of findings of early-life within-individual 
increases in global methylation in both great tit (Parus major; Watson et al., 
2019) and zebra finch (Taeniopygia guttata; Sheldon et al., 2020) nestlings. 

However, we  are not aware of any study reporting age-specific DNA 
methylation patterns in avian adulthood, or in avian late-life specifically.

When studying age-specific trait expression, many studies, including 
most of those producing epigenetic clocks or otherwise studying 
age-specific differences in DNA methylation patterns, use cross-sectional 
samples and analysis tools. Patterns revealed by cross-sectional approaches, 
however, are the result of a combination of within- and among-individual 
processes. If we aim for understanding the within-individual process of 
senescence, we need to account for the effect of compositional changes of 
a population, for example when birds with a certain level of DNA 
methylation are more likely to die and selectively disappear from the study 
population (e.g., Vaupel and Yashin, 1985; Forslund and Part, 1995). 
Mixed-effect models applied to (partly) longitudinal data to specifically 
test whether within-individual patterns and population-level patterns are 
the same, or differ, are a powerful analytical tool to do so (van de Pol and 
Wright, 2009). Across taxa, efforts have increasingly been made to validate 
and complement findings from cross-sectional analyses of senescence 
through longitudinal studies (Nussey et al., 2008; Bouwhuis and Vedder, 
2017; Gaillard et al., 2017), and this methodological turn is also reflected 
in studies of human DNA methylation (Bollati et al., 2009; Tan et al., 
2016). Longitudinal studies of DNA methylation and ageing in model 
species and natural populations are, however, rare (but see Lemaître et al., 
2021) and needed (Bell et al., 2019).

Here, we report on a longitudinal study of autosomal methylation levels 
in the common tern (Sterna hirundo). Common terns are long-lived 
migratory seabirds whose patterns of senescence have been the topic of 
various studies. Although breeders of both sexes show little sign of 
reproductive senescence - they breed earlier in the year and fledge more 
offspring as they grow older (Nisbet et al., 2002; Zhang et al., 2015c; Nisbet 
et al., 2020) - breeding and survival probabilities are known to decline with 
age (Zhang et al., 2015b; Vedder et al., 2021b). In addition, there is evidence 
for sex-specific transgenerational senescence, with daughters of older 
mothers and sons of older fathers suffering from reduced lifetime 
reproductive success (Bouwhuis et al., 2015). Studies aiming to identify a 
molecular basis for these within- and transgenerational effects have so far 
focused on telomere dynamics, and found that: (i) telomeres shorten with 
age (Bichet et al., 2020); (ii) telomere length is genetically correlated with 
lifespan (Vedder et al., 2021a); and (iii) paternal age is negatively correlated 
with offspring telomere length (Bouwhuis et al., 2018). The explanatory 
power of telomere length, however, is very low for all of these patterns (e.g., 
1.1% of phenotypic variation in lifespan is explained by additive genetic 
variation in telomere length, Vedder et al., 2021a), such that additional 
mechanisms are expected. To evaluate whether age-specific changes in 
global DNA methylation could be such a mechanism, we (i) sequenced and 
de novo assembled a high-quality chromosome-scale reference genome and 
(ii) used it to compare within-individual age-specific changes in DNA 
methylation at shared sites across the genome. Although rates of within-
generational senescence do not differ between the sexes (Zhang et  al., 
2015a), transgenerational effects are known to be sex-specific (Bouwhuis 
et al., 2015), such that we also considered sex-specificity of any patterns in 
autosomal methylation status.

2. Materials and methods

2.1. Study population

The data we present were collected as part of a long-term individual-
based study of a mono-specific common tern colony located on six 
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artificial concrete islands at the Banter See (53°30’40” N, 08°06’20” E) 
in Wilhelmshaven, Germany. Fledglings from this colony have been 
marked with metal rings since 1984, subcutaneously injected with 
transponders since 1992 (Becker and Wendeln, 1997) and molecularly 
sexed since 1996 (Becker and Wink, 2003). This marking and sexing, 
combined with placement of antennae on elevated platforms on the 
edges of the colony site and around each nest during incubation (shared 
between both parents), allows for a well-described family structure of 
all known-sex and known-age philopatric birds (e.g., Moiron 
et al., 2020).

2.2. Reference genome

To create the chromosome-scale reference genome, blood of one 
adult female common tern was collected in 100% EtOH and stored at 
−80°C. 30μg of High Molecular Weight DNA (HMW DNA) was 
isolated from the whole blood sample using an agarose plug protocol of 
the Bionano Prep Blood and Cell Culture DNA Isolation Kit (cat no. 
RE-130-10) modified for avian nucleated erythrocytes. Lysates were 
embedded into agarose plugs, followed by Proteinase K and RNase A 
treatments and 1X TE drop dialysis purification. Four sequence datasets 
were generated following the VGP 1.5 pipeline (Rhie et al., 2021): 67.91x 
Pacific Biosciences (Pacbio) continuous long reads (CLR); 698.35x 
Bionano Genomics optical maps; 169.30x 10X Genomics linked-reads; 
and 79.62x Arima Genomics Hi-C Illumina reads.

To create the Pacbio data, DNA was sheared using a 26G blunt end 
needle (Pacbio protocol PN 101-181-000 Version 05) to approximately 
~40kb fragment length. We  used 10μg of this fragmented DNA to 
generate a large-insert Pacbio library using the Pacific Biosciences 
Express Template Prep Kit v1.0 (#101-357-000). The library was then 
size selected (>15 kb) using the BluePippin system (Sage Science). The 
resulting PacBio Library was sequenced on 10 PacBio 1M v3 smrtcells 
(#101-531-000) on a Sequel instrument with the sequencing kit 3.0 
(#101-427-500) and a 10 h movie with 2 h pre-extension time. 
Unfragmented HMW DNA was used to generate a linked-read library 
on the 10X Genomics Chromium (Genome Library Kit and Gel Bead 
Kit v2 PN-120258, Genome Chip Kit v2 PN-120257, i7 Multiplex Kit 
PN-120262). We sequenced this 10X library on an Illumina Novaseq S4 
150 bp PE lane. uHMW DNA was labeled for Bionano Genomics optical 
mapping using the Bionano Prep Direct Label and Stain (DLS) Protocol 
(30206E) and 1 flow cell was run on the Saphyr instrument. Hi-C 
libraries were generated with the Arima Genomics v1.0 2-enzyme 
protocol (P/N: A510008), according to the manufacturer’s protocol and 
sequenced on Illumina HiSeq X.

The resulting four data types were processed using the VGP v1.5 
pipeline (Rhie et al., 2021), which includes: assembling Pacbio contigs 
using FALCON v2018.31.08-03.06; FALCON-Unzip v6.0.0.47841; 
purging false haplotype duplications with purge_haplotigs v1.0.3+ 1.Nov. 
2018; scaffolding with 10X with scaff10x v4.1.0; scaffolding with Bionano 
Solve DLS v3.2.1; scaffolding with Hi-C data with Salsa HiC v2.2; filling 
in gaps and polishing for base call accuracy with CLR and Arrow 
smrtanalysis v6.0.0.47841; and polishing with Illumina short reads with 
longranger align v2.2.2; and freebayes v1.3.1. The resulting assembly was 
then manually curated to fix any errors, using gEVAL and Hi-C short 
read linked-read mapping profiles as described in Howe et al. (2021). 
BUSCO v4.1.4 with the bird lineage dataset (aves_odb10) was used to 
assess assembly completeness. The reference genome was submitted to 
NCBI as GCA_009819605.1, as part of the Vertebrate Genomes Project 

(VGP).1 Reference genomes consisting of short-read assemblies (e.g., 
using Illumina reads) exhibit GC bias, where GC-rich regions such as 
promoters could be incorrectly assembled or even missing (Kim et al., 
2021). Our reference genome, however, has GC-rich promoter regions 
due to the use of Pacbio long reads (Kim et al., 2021; Rhie et al., 2021).

2.3. Blood sampling and methylation 
sequencing

Blood of breeding common terns was sampled in the years 2013, 
2014 and 2017 using larval stages of the bloodsucking bug Dipetalogaster 
maximus. Within 9-14 days of clutch completion of each focal bird in 
each year, bugs were placed into dummy eggs with holes and placed in 
the nests (Becker et al., 2006; Arnold et al., 2008; Bichet et al., 2019). 
After 20–30  min of incubation by the focal bird, “bug eggs” were 
collected and the focal birds’ blood, sucked by the bug, was removed 
from the bugs’ abdomen using a syringe. Upon collection, whole blood 
was stored in EDTA buffer (2%) in a fridge (3–7°C) for up to 3 weeks, 
before the red blood cells were transferred to glycerol buffer (40%) and 
frozen at −80°C. Each bug was used only once to prevent cross-
contamination of blood samples.

In total, we obtained 74 samples from 34 individuals making up 17 
breeding pairs: 3 breeding pairs (i.e., 6 individuals) were sampled in all 
3 years (i.e., with intervals of 1, 3 and 4 years), 14 breeding pairs (i.e., 28 
individuals) in two of the 3 years (with a 1-year interval for 4 breeding 
pairs, a 3-year interval for 9 breeding pairs and a 4-year interval for 1 
breeding pair; see Supplementary Table S1 for details). The age of the 
sampled females ranged between 4 and 20 years, that of males between 
3 and 19 years.

Genomic DNA was extracted from each sample and libraries for 
RRBS were generated as described in Klughammer et  al. (2015), 
following standard steps such as MspI digestion, end-fill-in, A-tailing 
and size selection. This included the enrichment of the libraries with 
Pfu-Turbo Cx Hotstart DNA polymerase to allow the assessment of the 
bisulfite conversion rate. After clean-up and quality control, libraries 
were sequenced with an Illumina HiSeq 4000 (50 bp SE).

2.4. Methylation data selection

Across all 74 samples, individuals were sequenced with an average 
of 51,482,011 (range: 24,942,071–82,760,425) reads 
(Supplementary Tables S1, S2). After conversion of unmapped bam files 
to fastq with SamToFastq.jar from picard v1.118, the quality of the 
sequencing reads was checked using Fastqc v0.11.5 (Andrews, 2010) and 
Multiqc v1.8 (Ewels et  al., 2016). Spiked-in sequences were used to 
estimate over- and underconversion using RefFreeDMA (Klughammer 
et al., 2015). Trimgalore v0.3.3 (implemented in RefFreeDMA; Krueger 
et al., 2021) was used to remove adaptors to guarantee good mapping 
and to remove low quality bases (≥20) as well as short read fragments 
(≥16 bp).

We used Bismark v0.22.3 (Krueger and Andrews, 2011) to prepare 
and index the reference genome for subsequent mapping of the 
bisulfite-converted reads using Bowtie 2 v2.4.1 (Langmead and Salzberg, 

1 https://genomeark.github.io
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2012), allowing for one mismatch (score_min L, 0, −0.20). Methylation 
extraction was conducted with Bismark Extractor v0.22.3 (Krueger and 
Andrews, 2011) with the ‘ignore’ option to remove unmethylated 
cytosines introduced during the end-repair step. We combined data 
from the cytosines of both strands at each CpG site with a custom-made 
python script. The R-package Methylkit v.1.16.1 in R v.4.0 (Akalin et al., 
2012; R Core Team, 2021) and its function methRead were used to load 
and analyse the methylation calls.

Methylation calls were filtered to those with a minimum coverage 
of 10 reads per CpG position. CpGs with a coverage >99.9th percentile 
most likely result from PCR bias and were removed. These two steps 
were performed using the filterByCoverage function in Methylkit. 
Across all 74 samples, there were on average 5,536,718 CpG positions 
before, and 661,447 CpG positions after, filtering for >10x and <99.9th 
percentile coverage (Supplementary Tables S1, S2). Methylation call 
distributions between samples were normalized using the 
normalizeCoverage function implemented in Methylkit to reduce the 
potential bias of systematic oversampling in some samples. We then 
merged CpG positions of the different samples using the unite 
function to make sure positions were sequenced in at least 70% of the 
samples (within and across the sexes) to facilitate a longitudinal 
analysis approach. Following Meng et al. (2010) and Sziráki et al. 
(2018), sites that showed little or no variation were removed as well, 
applying a threshold of a standard deviation <0.15. This resulted in 
927,490 observations of 15,700 positions, distributed across all 
autosomal chromosomes (Supplementary Figure S1), which we used 
to assess autosomal methylation rates by using the number of 
positions read as our denominator and the number of cases in which 
the position was methylated as our dependent variable (see 
Statistical analyses).

2.5. Statistical analyses

To identify and partition sources of variation in autosomal 
methylation rates, we used the R package glmmTMB (Brooks et al., 
2017) to run a generalized linear mixed model (GLMM) with the 
BFGS algorithm as an optimizer, using the number of methylated and 
unmethylated Cs (represented by the sequenced Cs and Ts) for each 
position as our dependent variable, assuming a binomial error 
distribution (Lea et al., 2017). As fixed effects we added ‘sex’ (as a 
two-level class variable using males as the reference category) and age 
(as a covariate). With respect to the latter, each individual’s age was 
partitioned into an ‘average age’ and ‘delta age’ component following 
van de Pol and Wright (2009). Average age was calculated as the 
average of all ages at which we assessed a bird’s autosomal methylation 
rate, while delta age was calculated as the difference between the 
bird’s actual age and its average age (i.e., delta age = age − average 
age). When adding both age variables as covariates, average age 
represents the among-individual, and delta age the within-individual 
age effect (van de Pol and Wright, 2009). If the among- and within-
individual age effects were to differ, this would indicate that the effect 
of age among individuals cannot be  explained by changes within 
individuals, thereby revealing age-specific selective (dis)appearance 
of individuals with certain levels of methylation (van de Pol and 
Wright, 2009). We additionally included the interaction between sex 
and delta age in our model to test for sex-differences in the within-
individual age trajectory of methylation. Random effects included 
were ‘bird identity’ (1–34), genomic ‘position identity’ (1–15,700 

scored as the base-pair-number on our scaffold) and an ‘observation’-
level random effect (1–927,490 scored at the lowest level of 
observation, i.e., one value for each genomic position for each 
individual). The latter was added to (successfully) account for 
overdispersion detected by the R package performance (Lüdecke et al., 
2021), whereas the first two were included to account for 
pseudoreplication caused by repeated sampling of individuals and 
genomic positions, respectively. Although we could have theoretically 
added breeding pair identity as a random effect, doing so would only 
add information when pairs regularly break up and reform among 
sampling events. Our common tern pairs all stayed together, such that 
we would not be able to disentangle the effects from pair and bird 
identify effects.

Because we found a significant interaction between sex and delta age 
(see Results), we also split our data set in one for males and one for females 
and ran sex-specific analyses including ‘average age’ and ‘delta’ age as fixed 
effects and ‘bird identity’, genomic ‘position identity’ and ‘observation’ as 
random effects. Moreover, by including positions that were sequenced in 
at least 70% of the samples, we facilitated a longitudinal analysis approach 
and a comparison between males and females, but excluded CpGs from 
the sex chromosome. To also assess age-specificity in methylation rate of 
the W chromosome, we also ran the sex-specific model for females for the 
103 CpG positions we could assess there by including positions that were 
sequenced in at least 70% of the female samples.

Model evaluation and summary of parameter estimates and statistics 
were conducted using the R package parameters (Lüdecke et al., 2020). 
Results were plotted using the R-package sjplot (Lüdecke, 2018).

3. Results

3.1. Reference genome

The reference genome was generated using 68x PacBio sequencing 
reads, Bionano Genomics optical maps, 10X Genomics linked-reads and 
Arima Hi-C reads. This allowed us to scaffold the assembly to 
chromosome-level (Rhie et al., 2021) and we successfully assigned 99.3% 
of the assembled sequence to 25 identified autosomes, two sex 
chromosomes and the mitochondrial genome, leaving only 95 scaffolds 
unlocalised. The total length of the primary haplotype assembly was 
1.23 Gbp with a contig N50 of 22.0 Mb and a scaffold N50 of 85.5 Mb. 
The assembly included 96.0% complete single-copy and 0.4% duplicated 
orthologs according to the BUSCO analysis. Only 1.3% of the gene 
models were fragmented, and 2.3% missing (n = 8,338 genes). This 
represents a high-quality assembly, surpassing the aspired VGP 
contiguity metrics ~20-fold (Rhie et al., 2021).

3.2. Age-specific global methylation

Across the 74 samples, 29,044,662 RRBS reads (~ 55.6% mapping 
efficiency) could be  uniquely mapped to the reference genome 
(Supplementary Tables S1, S2). The mean bisulfite conversion rate was 
99.2% (Supplementary Tables S1, S2). 15,700 autosomal CpG positions 
occurred in at least 70% of samples within and across the sexes, and 
across these positions methylation rates ranged from 0 to 1  in both 
males and females (Supplementary Figure S2). The average predicted 
methylation levels per sample ranged from 0.437 to 0.752 (mean: 0.562) 
in females and from 0.424 to 0.777 (mean: 0.627) in males (Figure 1).
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When analyzing sources of variation in methylation rates across the 
15,700 autosomal CpG positions, we found a significant main effect of 
sex, as well as a significant interaction between sex and delta age 
(Table  1). The main effect of sex showed males to have higher 
methylation rates than females, the interaction term indicated that 
methylation rates showed different age-specificity in males and females. 
Subsequent sex-specific analyses showed that methylation rates declined 
with age within individual females, but did not change with age within 
individual males (Figure 1; Supplementary Tables S3, S4). In the main 
model (as well as in the sex-specific models, Supplementary Tables S3, S4), 
the effect of average age was non-significant and the credible intervals 
of the average and delta age components strongly overlapped (Table 1), 
suggesting no selective (dis)appearance of individuals based on their 
autosomal methylation rates.

When assessing the age-specificity of methylation rates in the 103 
CpG positions of the female W chromosome, neither average nor delta 
age was significant (Supplementary Table S5).

When comparing the random effects in the main model, most 
variance was explained by position identity (Table  1), showing that 
genomic positions vary in their average rate of methylation. Bird 
identity, on the other hand, explained variation in methylation rates to 
a much lesser extent (Table  1), such that there is little evidence for 
consistent variation in methylation among individuals.

4. Discussion

DNA methylation patterns at CpG sites are increasingly used as 
biomarkers, so-called epigenetic clocks, to predict both chronological 
and biological age across species and taxa (e.g., Lu et al., 2021). How 

DNA methylation rate changes within individuals and whether it can 
explain phenotypic senescence patterns, however, is still largely 
unknown (Bell et  al., 2019). Here, we  used blood samples from 
common terns collected at 1-, 3- and/or 4-year intervals and a 
longitudinal analysis approach to investigate whether autosomal 
methylation rates changed with age within individual birds, and 
whether any change differed between males and females sharing 
environments and broods. Based on our selection of 15,700 positions, 
we found female genomes to be generally less methylated than those of 
males, and to also become even less methylated as these females aged, 
whereas there was no such age-specific decline of autosomal 
methylation rate in males. Moreover, we found the estimates for the 
within- and among-individual components of age to be similar, such 
that there was no indication for selective (dis)appearance of individuals 
based on their methylation rate. Finally, we  provide evidence for 
positions in the genome to consistently vary in their methylation rates, 
whereas evidence for consistent variation among individuals was 
considerably less.

Our finding of female common terns showing a decrease in 
methylation rate as they aged fits with findings of global hypomethylation 
in older compared to younger mammals (Zampieri et  al., 2015; 
Ciccarone et al., 2018; Unnikrishnan et al., 2019). Such methylation loss 
is thought to partly originate from demethylation of large regions of 
repetitive sequences, CpG-poor promoters or large hypomethylated 
blocks of "open sea" regions outside the CpG islands (Bollati et al., 2009; 
Heyn et  al., 2012; Yuan et  al., 2015). Whether these changes affect 
chromatin configuration and thus genome (in)stability, and whether 
changes in promoter methylation interact with histone modifications 
and transcription factors to alter expression remains to be investigated 
(Zampieri et al., 2015; Ciccarone et al., 2018).

FIGURE 1

Within-individual changes in predicted average autosomal methylation rate for 17 male (black circles with solid lines) and 17 female (white circles with 
dotted lines) common terns sampled at 1, 3 and/or 4 year intervals. The x-axis, termed delta age, represents the within-individual difference in age (in years) 
in relation to the average age at sampling (at negative values the individual was younger than its average age at sampling, at positive values it was older). 
The predicted methylation rate on the y-axis is extracted from the model presented in Table 1, and based on 15,700 autosomal CpG positions.
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Male terns, in contrast, showed no signs of decreased methylation 
as they grew older. Although many studies developing epigenetic clocks 
have assumed age-related changes to be similar across the sexes and 
used mixed-sex datasets to obtain them [e.g., Horvath et al., 2021; Raj 
et al., 2021), others have found sex-differences in these clocks (e.g., in 
some human ethnicities (Horvath et al., 2016), baboons (Anderson 
et al., 2021) or elephants (Prado et al., 2021)]. Moreover, a rare partly 
longitudinal study in a wild population of roe deer also showed 
sex-specific epigenetic clock regions, with an accelerated ageing signal 
in males, which are known to undergo stronger survival senescence in 
this species (Lemaître et al., 2021). Combined with our findings, this 
suggests that tests for sex-specificity of methylation should best 
be the norm.

Interestingly, male and female terns from our study population do 
not differ in the onset or rate of senescence in survival or breeding 
probabilities (Zhang et al., 2015b; Vedder et al., 2021b), nor in their 
average lifespan (7.4 years for both males and females, Bouwhuis et al., 
2015), such that sex-specificity in the ageing process is only found in 
how parental age affects the quality of the offspring that recruit back 
into the population [with maternal age negatively affecting the 
reproductive performance of daughters and paternal age negatively 
affecting survival of sons (Bouwhuis et al., 2015)]. As such, we did not 
necessarily expect sex differences in the age-specificity of the birds’ 
autosomal methylation level. The fact that we were able to observe 
them, raises the question of which site-specific methylation patterns 
drive the pattern observed on the global level. As mentioned above, 
global loss is thought to originate from the demethylation of specific 
regions: repetitive sequences, CpG-poor promoters or large 
hypomethylated blocks of "open sea" regions outside the CpG islands 
(Bollati et al., 2009; Heyn et al., 2012; Yuan et al., 2015). CpG island 
promoters, on the other hand, have been found to show age-specific 
increases in methylation (Heyn et al., 2012; Day et al., 2013). As such, 
global demethylation may perhaps be  compensated for by such 
increases in males, but not females. In combination with the fact that 
we found genomic positions to consistently differ in methylation levels, 
this stresses the need for moving from the level of global autosomal 
methylation assessment that we and others (e.g., Watson et al., 2019; 

Sheldon et al., 2020) have started with, to fully annotating the (common 
tern) genome and studying patterns across genomic features and 
focal sites.

Besides finding a sex-specific overall level and within-individual 
change in autosomal methylation level with age, and significant among-
position consistency in methylation level, we found little evidence for 
consistent among-individual levels of autosomal methylation across 
years, or for selective (dis)appearance of birds in relation to their 
methylation level. This suggests that birds differentially change their 
autosomal methylation from year to year, i.e., show different gaps 
between epigenetic and chronological age each year, with these changes 
or gaps perhaps reflecting their individual-specific condition or 
environment, but not relating to their breeding status (breeding versus 
non-breeding) in the study population or their local survival. 
Implementing a random regression analytical framework is data-
hungry and not possible with our current dataset, but linking among-
year changes in e.g., body mass, other measures of physiology or 
age-specific reproductive performance seems a promising research 
avenue, especially when taking the analyses to a site-specific level, such 
that distinct genotype-methylation-phenotype correlations can 
be identified.

The strength of our study lies in its longitudinal sampling and 
analytical approach, which allows us to characterise within-individual 
changes, rather than infer them from cross-sectional data. At the same 
time, however, this sampling approach may come with some limitations. 
Non-destructive, longitudinal sampling in natural populations often 
relies on using blood as the focal tissue, but how DNA methylation of 
(in our case) erythrocytes translates to phenotypes mostly remains an 
open question that needs addressing (Husby, 2020), ideally in 
experimental study systems. Moreover, because we used RRBS, a high-
throughput and low-cost method, to assess methylation, our findings 
may mostly pertain to methylation of high density CpG regions (Smith 
et al., 2009; Gu et al., 2011). As such, we may have focally answered the 
question of what happens at CpG islands during ageing (Beck et al., 
2021), something which annotation of the common tern genome will 
be able to tell. Keeping this in mind, however, our study has provided 
evidence for a sex-specific overall level and within-individual change 
in autosomal methylation with age and has shown that CpG positions 
in the genome vary consistently with respect to their methylation levels, 
such that future work, changeing the perspective from genome-wide 
average estimates to the specific genome feature or base pair level, can 
elucidate whether, where and how much methylation might affect 
ageing males and females, as such establishing a longitudinal 
epigenetic clock.
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Table 1 Results from a generalised linear mixed model with a binomial error 
distribution testing whether variation in autosomal methylation level is 
explained by sex (males as a reference category) and the between- (average 
age) and within-individual (delta age) components of age.

Parameter Estimate 95% CI z p

Fixed effects

Intercept 0.6714 0.6011, 0.7418 18.706 <0.001

Sex −0.0753 −0.1248, −0.0258 −2.983 0.003

Average age −0.0003 −0.0056, 0.0050 −0.113 0.910

Delta age −0.0003 −0.0031, 0.0024 −0.234 0.815

Sex: delta age −0.0041 −0.0081, −0.0002 −2.083 0.037

Random effects

Bird identity 0.0713 0.0570, 0.0892

Position identity 1.3413 1.3263, 1.3566

Observation 1.2150 1.2123, 1.2176

Estimates and 95% confidence intervals (CI) are provided for each fixed (mean) and random 
(standard deviation) effect. Significant fixed effects (p < 0.05) are presented in bold.
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