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Introduction: A major goal for conservation planning is the prioritized protection

and management of areas that harbor maximal biodiversity. However, such spatial

prioritization often suffers from limited data availability, resulting in decisions

driven by a handful of iconic or endangered species, with uncertain benefits

for co-occurring taxa. We argue that multi-species habitat preferences based on

field observations should guide conservation planning to optimize the long-term

persistence of as many species as possible.

Methods: Using habitat suitability modeling techniques and data from the

community-science platform iNaturalist, we provide a strategy to develop

spatially explicit models of habitat suitability that enable better informed,

place-based conservation prioritization. Our case study in Greater Los Angeles

used Maxent and Random Forests to generate suitability models for 1,200

terrestrial species with at least 25 occurrence records, drawn from plants (45.5%),

arthropods (27.45%), vertebrates (22.2%), fungi (3.2%), molluscs (1.3%), and other

taxonomic groups (< 0.3%). This modeling strategy further compared spatial

thinning and taxonomic bias file corrections to account for the biases inherent

to the iNaturalist dataset, modeling species jointly and separately in wildland

and urban sub-regions and validated model performance using null models

and a “test” dataset of species and occurrences that were not used to train

models.

Results: Mean models of habitat suitability of all species combined were similar

across model settings, but the mean Random Forest model received the highest

median AUCROC and AUCPRG scores in model evaluation. Taxonomic groups

showed relatively modest differences in their response to the urbanization

gradient, while native and non-native species showed contrasting patterns in the

most urban and the most wildland habitats and both peaked in mean habitat

suitability near the urban-wildland interface.

Discussion: Our modeling framework is based entirely on open-source software

and our code is provided for further use. Given the increasing availability of

urban biodiversity data via platforms such as iNaturalist, this modeling framework

can easily be applied to other regions. Quantifying habitat suitability for a

large, representative subset of the locally occurring pool of species in this

Frontiers in Ecology and Evolution 01 frontiersin.org

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2023.983371
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2023.983371&domain=pdf&date_stamp=2023-06-06
https://doi.org/10.3389/fevo.2023.983371
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fevo.2023.983371/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-11-983371 June 1, 2023 Time: 10:13 # 2

Beninde et al. 10.3389/fevo.2023.983371

way provides a clear, data-driven basis for further ecological research and

conservation decision-making, maximizing the impact of current and future

conservation efforts.

KEYWORDS

urbanization, green infrastructure (GI), environmental niche modeling (ENM), species
distribution model (SDM), spatial conservation prioritization, nature based solutions,
community science, iNaturalist

Introduction

Increased urbanization in the Anthropocene has given rise
to megacities, fundamentally transforming previously existing
landscapes across much of the globe. The environment of cities is
strikingly different from adjacent non-urban areas, with elevated
levels of human population densities, impervious surfaces, roads,
vehicular traffic, artificial light at night, pollution, urban heat,
and many other factors shaping the microclimate, hydrology, and
soil properties of cites (Groffman et al., 2014). Species living in
urban areas must either cope with these altered environmental
conditions (Johnson and Munshi-South, 2017) or be relegated to
their fringing landscapes. The conservation of high levels of urban
biodiversity has become a goal of many urban administrations
(Waldrop, 2019) aiming to counteract the loss of human-nature
interactions by city-dwellers (Soga and Gaston, 2016) and recoup
the multifaceted benefits of biodiversity for human well-being
(Fuller et al., 2007; Methorst et al., 2020), and more generally
for sustainable urban footprints and biodiversity-ecosystem service
synergies (Ziter, 2015; Schlaepfer et al., 2020).

To plan for effective biodiversity conservation, we must first
understand the geographical distribution of as much of the
regional species pool as possible. The central position of “place” in
Morrison’s virtuous cycle framework for biodiversity conservation
(Morrison, 2016) emphasizes this point—we need to know the
places to focus conservation actions, followed by local community
engagement. However, the available data on which conservation
decisions hinge is typically restricted to only a small subset of
all species in a given landscape (Hochkirch et al., 2021) and is
often biased toward charismatic or endangered species. These
species may serve as umbrella species, where the benefits of
conservation efforts directed at them cascade across other, co-
occurring species (Roberge and Angelstam, 2004). However, the
umbrella functionality of a species can be difficult to quantify
(Fleishman et al., 2001; Roberge and Angelstam, 2004) and
may vary for species richness, abundance, or functional diversity
(Branton and Richardson, 2011; Sattler et al., 2013). Despite these
uncertainties, the traditionally limited availability of information
on species distributions usually necessitates using a limited set
of species as surrogates to guide decisions on the protection and
restoration of habitats for conservation.

Urban areas are no exception to this general trend, and
historically knowledge of patterns of distribution and abundance
of local biodiversity in our cities has been limited (Kohsaka et al.,
2013). However, this is changing. Emerging community-science
projects, also referred to as citizen-science (Cooper et al., 2021),

have turned cities into hotspots of biodiversity monitoring, and
this trend is only increasing over time (Devictor et al., 2010).
Observations of species that are accessible on platforms such
as eBird or iNaturalist frequently center on urban habitats
and their surrounding landscapes, simply because those areas
are the most accessible to large numbers of people (Spear
et al., 2017). Unrestricted by the limited capacity of researchers
for field observations, iNaturalist alone surpassed 33.7 million
observations globally in 2022, up more than 10-fold from
3.3 million observations in 20171, rendering such datasets an
unprecedented resource for urban conservation prioritization (Li
et al., 2019; Callaghan et al., 2020a). Observations on iNaturalist
are taxonomically diverse and unstructured with respect to
survey methodology. The nature of how users utilize iNaturalist,
which relies on proximity, ease of access, and human esthetics,
presumably biases these datasets in predictable ways according to
human preferences for certain species/taxonomic groups, species
detectability, the reduced chance to take photographs of small,
distant or fast-moving species (Di Cecco et al., 2021), site
accessibility (Zizka et al., 2021), and varying sampling effort at
sites (Beck et al., 2014). Of course, these biases are inherent to
most datasets, including herbarium and museum records, which
contain similar spatial, environmental, temporal, and taxonomic
biases (Newbold, 2010; Martin et al., 2012; Kling et al., 2018).

In contrast to these more traditional data sources, observations
on community-science platforms have two important advantages:
They accumulate data orders of magnitudes faster than
conventional research data (Spear et al., 2017; Callaghan et al.,
2020b), and they include observations from private land, which
conventional research data frequently cannot sample (Martin
et al., 2012). Given the knowledge of potential biases in occurrence
datasets, methodologies for adequately addressing them have
been proposed for models that use occurrence records and
landscape predictors to describe and predict the environmental
niche space of species (Warren et al., 2010). These techniques
are widely used in biodiversity assessments (Araújo et al., 2019)
and we refer to them as habitat suitability modeling (they are
also commonly called environmental niche modeling, ENM, or
species distribution modeling, SDM). When the input data are
managed appropriately, these models allow users to correct for
sampling biases via spatial thinning (to reduce over-representation
at hotspots of observer activity; Steen et al., 2021), by scaling
background locations to the distribution of sampling effort in the

1 https://www.inaturalist.org/stats/“year”
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FIGURE 1

Study extent in the Greater Los Angeles area in Southern California, USA. (A) PCA-derived urbanization intensity is depicted as a gradient from
wildland (dark green) to urban (dark grey). The urban-wildland interface received values close to zero in this urban PCA space (shown in white),
which, spatially, closely resembles the delimitation of urban from wildland areas by the US Census Bureau (B); US Census Bureau “urban” consists of
88.5% of values above zero in urban PCA space, i.e., more urban cells, and 11.5% below zero, i.e., more wildland cells; US Census Bureau non-urban,
or “wildland,” consists of 4.4% values above zero, i.e., more urban cells, and 95.6% below zero, i.e., more wildland cells. The US Census Bureau
delimitation is used in the modeling framework, which was applied to the full extent as well as separately to urban and wildland extents. (C) The
study extent with respect to County boundaries and California (inset).

landscape (Kramer-Schadt et al., 2013; Merow et al., 2013; Kling
et al., 2018), and/or by creating habitat-specific models (Fourcade
et al., 2014). Following these precautionary measures to address
spatial biases of occurrence datasets, bias-corrected models of
habitat suitability can be parameterized and used to infer habitat
suitability for sites that have not been sampled, which is frequently
done across thousands of species simultaneously (Bradie and
Leung, 2016; Kling et al., 2018). While many approaches to model
habitat suitability exist, we use Maxent and Random Forests, which
frequently rank among the top-performing modeling methods and
require only a fraction of the computational resources of similarly
high-performing methods, such as boosted regression trees or
ensemble methods (Harrigan et al., 2014; Valavi et al., 2022).

We present a framework utilizing Maxent and Random
Forest modeling in combination with the iNaturalist dataset
for Greater Los Angeles (Figure 1), the largest metropolitan
region in the US by area and the second largest by human
population size. More than 1.5 million iNaturalist observations
are available for this study extent (as of November 2021),
including observations of 6,082 species whose identifications
were verified by the iNaturalist community. Using only those
terrestrial species with a minimum of 25 occurrence records,
we generated habitat suitability models for 1,200 taxonomically
diverse species composed of native taxa, ranging from velvet ants

(Dasymutilla spp.), swallowtail butterflies (Papilio spp.), tarantulas
(Aphonopelma spp.), rattlesnakes (Crotalus spp.), coyotes (Canis
latrans), mountain lions (Puma concolor), oak (Quercus spp.),
maple (Acer spp.), sycamore (Platanus racemosa) and pine trees
(Pinus spp.), poppy (Eschscholzia spp.) and Clarkia flowers
(Clarkia spp.), manzanita shrubs (Arctostaphylos spp.), lichenized
fungi (Lecanoromycetes), and non-native, human commensal
species, including earthworms (Lumbricus terrestris), pill bugs
(Armadillidium vulgare), honey bees (Apis mellifera), cockroaches
(Blattidae), rats (Rattus spp.), house sparrows (Passer domesticus)
and house cats (Felis catus; Supplementary Figure 1). By producing
a mean model of habitat suitability of all species (also referred to
as stacked models, Calabrese et al., 2014), as well as models for
all native and non-native species separately, we created spatially
explicit models at 1 km x 1 km raster cell resolution to summarize
spatial biodiversity value. Land managers can use these models to
guide spatial prioritization and protection, direct conservation and
restoration efforts, or simply track current biodiversity, enabling
ongoing efforts to create meaningful urban biodiversity indices
(Kohsaka et al., 2013; Isaac Brown Ecology Studio and La Sanitation
and Environment, 2018).

The question of what species to protect is controversial when
discussing non-native species (Sax et al., 2022) and may be
especially difficult to answer in cities (Gaertner et al., 2016). The
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city of LA’s ambitious goals toward a no-net-loss of biodiversity
largely focuses on native species (City of Los Angeles, 2019) and
some ecosystem services may be enhanced by focusing only on
native species. For example, native California chaparral vegetation
provides less fuel for fires and has better wind-stopping qualities
than non-native vegetation (Keeley, 2020), and in the Greater
Los Angeles area some species of native trees and shrubs attract
higher densities of birds (Wood and Esaian, 2020; Smallwood
and Wood, 2023) and insects (Adams et al., 2020) than non-
native tree and shrub species. However, individuals of non-
native species in urban areas also have recognized value when
viewed through an ecosystem services lens; they provide habitat,
disperse seeds, and take over the roles of native pollinators in
some situations (Sax et al., 2022). Given the overarching role
of urban biodiversity in conveying direct benefits to human
health (Sandifer et al., 2015; Methorst et al., 2020), as well
as generating an appreciation for biodiversity and avoiding the
‘extinction of experience’, non-native species in urban areas may
sometimes surpass their native counterparts as important agents
for developing a public understanding and personal motivation
to conserve biodiversity (Schuttler et al., 2018). It has also been
argued that urban individuals of endangered non-native species
outside of their native range may qualify as a form of ex
situ conservation; the endangered red-crowned parrot (Amazona
viridigenalis) in Los Angeles is one example (Shaffer, 2018). We
believe these to be important benefits of non-native species in
urban areas which deserve consideration in urban conservation
prioritization, as they are weighed against the equally important
potential threats non-native species can impose on ecosystems and
human health (Gaertner et al., 2016). As emphasized by Morrison
(2016), identifying the benefits to biodiversity are often specific
to place, species (including native versus non-native taxa), local
human population and/or need; establishing a positive feedback
cycle, or virtuous cycle in Morrison’s language, between people
and biodiversity conservation, is almost certainly different in urban
Los Angeles than in the wilderness of the adjacent San Gabriel
mountains. Our goal here is to provide the place-based biodiversity
data, across types of species and geographic areas, that is required
to establish such positive feedback cycles.

Given this variability in how to think about native vs. non-
native biodiversity and the various modeling parameters that
address sampling biases explored here, there are three key elements
of our study: (1) identify the optimal habitat suitability modeling
strategy to address the biases in iNaturalist occurrence data,
(2) quantify mean habitat suitability across a gradient of urban
intensity and identify hotspots of urban biodiversity, and (3)
contrast mean habitat suitability for native and non-native species
and different taxonomic groups along a gradient of urban intensity.
We predict higher suitability for native species in wildland areas
than in fully urbanized sites and the opposite for non-native species,
following the conceptual framework of Cadotte et al. (2017) and
based on observations across taxonomic groups that high levels
of urbanization increase the ratio of non-native to native species
(Celesti-Grapow et al., 2006; Ricotta et al., 2010). We further predict
that the highest levels of mean habitat suitability in plants will
occur where urban areas transition into wildland based on greater
habitat heterogeneity, a pattern frequently found for plant species
richness across urbanization gradients (Celesti-Grapow et al., 2006;
McKinney, 2008). At the same time, the position of this peak likely

varies with the taxonomic group, as levels of species richness along
urbanization gradients often vary across many groups of plants
and animals (McKinney, 2008; Piano et al., 2020; Theodorou et al.,
2020). We end with a discussion of the utility of our modeling
framework and highlight its potential application in future urban
biodiversity conservation and research.

Methods

Study extent

Our study extent is located in Greater Los Angeles, totals
7,797 km2 and fully encompasses the City of Los Angeles, large
parts of the Los Angeles-Long Beach-Anaheim, CA Metropolitan
Statistical Area, plus parts of adjacent Ventura County in the west,
small parts of Riverside and San Bernardino Counties to the east
and into Orange County in the south (Figure 1). Developed land
use types predominate (60.3%; Supplementary Table 1) followed
by mostly vegetated areas (37.2%), while highly managed, working
landscapes, such as agricultural areas, are uncommon (0.7%). Using
the US census bureau delineation (U.S. Census Bureau, 2018;
Figure 1B), 65.1% of the study extent is urban. We refer to the
remaining 34.9% of the area collectively as wildlands, as they
entail vast expanses of native vegetation, with little development
(Supplementary Table 1), including parts or all of the Santa
Monica Mountains, Simi Hills, Santa Susana Mountains, Verdugo
Hills, Griffith Park, San Gabriel Mountains, Chino Hills, Santa Ana
Mountains, and the San Joaquin Hills (Figure 1B). The study extent
thus encompasses extensive urban areas that are home to a dense
human population of 13.4 million (2,640 people/km2), framed
by sparsely populated wildland areas with a modest combined
population of 86,700 thousand humans and a density almost two
orders of magnitude lower (32 people/km2; calculated based on
data by Rose et al., 2017). This study extent is thus uniquely suited
to study species’ distribution patterns within an urban megacity and
the immediately adjacent wildlands, separated by a sharp urban-
wildland interface (Figure 1A). Given the extreme environmental
differences between urban and wildland areas and the potential for
contrasting habitat association of species in urban and wildland
areas (Fourcade et al., 2014), we modeled (1) the combined urban
and wildland habitat (which we refer to as the full study extent)
and (2) the urban (5,074 km2) and wildland (2,723 km2) areas
separately to assess habitat suitability (see details below).

Occurrence datasets

Occurrence records from iNaturalist were downloaded via
GBIF and directly from the iNaturalist site to include non-
research grade observations, which are not integrated into GBIF,
but necessary to control for observer bias (see section “Exploring
different settings for occurrence and background point selection”
in Supplementary material). iNaturalist is a rapidly-growing
platform where the general public can submit observations of
species and iNaturalist users can add species identifications to
observations. As soon as two identical, independent species-level
identifications of an observation are proposed, and the observation
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contains a photo voucher, a location, and a date, it receives a
“research grade” quality grade. This label, however, is dynamic and
persists only as long as 2/3 of the proposed identifications agree;
observations can toggle between research and non-research grade
as a consequence.

We created two occurrence datasets from iNaturalist
observations, one to train models and an independent dataset
to test models. The raw training dataset contained all 1,537,123
iNaturalist occurrences falling within our Greater Los Angeles
study extent and was downloaded using the search queries on
the iNaturalist website. We filtered this dataset according to the
following five criteria to include only: (1) research grade entries;
(2) non-captive and non-cultivated individuals; (3) spatially
unobscured records; (4) observations with a maximum inaccuracy
of 100 meters, which equals 10% of the 1km raster cell edge length
(or 1% of the area) used in analyses; and (5) species with 25 or
more observations. This yielded a training dataset of highest
quality observations (both spatially and taxonomically) with
sufficient observations to train models accurately. It contained
388,793 occurrence records of 1,286 species with observations
made between 1 January 2000 to 31 December 2021. We also
excluded all fully marine and aquatic species, including all
species of Actinopterygii, Elasmobranchii, and Bivalvia, and some
species of Mollusca, Arthropoda, and Plantae (e.g., marine and
freshwater slugs and snails, water striders, water scorpions, some
Malacostraca, and the plant genus Pistia), reducing the number of
species in the training dataset to 1,200.

The raw test dataset contained 130,640 iNaturalist observations
downloaded from GBIF.org (2022) and was restricted to
observations made in 2022 only, ensuring there is no overlap
with the training dataset which ended in 2021. This test dataset
was identically filtered using the same five criteria as the training
dataset with the exception that we relaxed criterion (5) and
included species with fewer than 25 observations. The final test
dataset consisted of 113,729 occurrence records of 3,458 species,
including occurrence data for 2,258 species that were not present
in the training dataset. We think that using this test dataset is
particularly suitable to evaluate the ability of mean models to
predict habitat suitability of species not used for training. It serves
to test whether our training dataset reasonably serves as a surrogate
for the entire local pool of sampled and unsampled species (see
details below).

For all 1,286 species of the training dataset, we determined
California native or non-native status using Calflora (2022),
iNaturalist species accounts, and the expert opinions of colleagues,
primarily at the Natural History Museum of Los Angeles County
(NHMLAC) and UCLA (see acknowledgments).

We ran the r-package “CoordinateCleaner” (v2.0-20; Zizka
et al., 2019) on the training dataset to check for multiple errors
in the coordinates using the function clean_coordinates(). This
resulted in 26,580 coordinates flagged as being in the sea or too
close to the coast and an additional 4,949 coordinates flagged
because they were within a 10 km radius of recognized biodiversity
institutions, such as museums or universities. We retained these
flagged records in both cases. In the case of coast proximity,
occurrence records that fall into non-terrestrial space would be
dropped in the downstream modeling procedure as we only
used terrestrial environmental predictors, and we wanted to
retain all truly terrestrial records, including those close to shore,

following recommendations by Zizka et al. (2019). For institution
proximity, we visually checked flagged records and found them to
be proximate to the NHMLAC (2,330 observations), Occidental
College (1,045 observations), or UCLA (645 observations), but
represented reasonable species observations from a museum
or college-associated green space. Historically, some traditional
museum samples have erroneously received coordinates of the
biodiversity institutions where they are housed rather than the
coordinates of the actual sampling sites (Zizka et al., 2019), but this
does not seem to be the case in the contemporary iNaturalist dataset
for the region.

To assess how well our training dataset covers the
environmental predictor space, we calculated a standardized
spatial PCA using “RStoolbox” (v0.3.0; Leutner et al., 2022) on
the set of landscape predictors chosen for Maxent modeling
(see Section “Landscape variables” below) and quantified the
distribution of occurrences across the available environmental
PCA space. Adequate distribution of occurrences along this
environmental PCA space is a key prerequisite for accurate
habitat suitability modeling because unsampled, environmentally
unique areas can limit the model’s ability to correctly infer habitat
suitability in such areas (Elith et al., 2011). We were particularly
concerned about high-elevation (above 600 m) sites because
these habitats make up only a small fraction of the entire sample
extent, are located mostly in remote wildland habitats that may
be undersampled by the public, and our initial analyses indicated
that they had generally low multi-species predicted suitability.
Given that these high-elevation sites often also had relatively few
observations/species, we were concerned that undersampling may
be contributing to this low suitability. We used a binomial test
(prop.test function in base r-package “stats” v3.6.2) to compare
the proportion of iNaturalist observations that were made in high-
elevation habitats for species that were included in the training
models (those with 25 or more observations) and species that
were excluded from these models because they had fewer than 25
observations. This specifically tested whether species that are more
closely associated with high-elevation habitats (those with a higher
proportion of observations at higher altitudes) were more likely
to drop out of the dataset due to an insufficient number of total
observations (< 25), which could bias high-elevation inferences of
mean habitat suitability.

Habitat suitability modeling

Many techniques can build habitat suitability models, also
referred to as environmental niche models (ENMs) or species
distribution models (SDMs), from occurrence data and a set of
landscape predictors (Valavi et al., 2022). These models quantify
the distribution of environmental niche space at species’ presence
locations and can be used to predict the suitability at unsampled
locations, as a function of environmental predictors (Harrigan
et al., 2014). The resulting predictions are best interpreted
as depicting relative habitat suitability, circumventing issues of
interpreting model output as the probability of presence or the
relative occurrence rate, which is only valid in the rare cases
of entirely random spatial sampling strategies for occurrence
data or with complete knowledge of a species abundance in a
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FIGURE 2

Hotspots of urban biodiversity. The mean RANDOMFOREST model of
habitat suitability, for (A) all species, (B) native species and (C)
non-native species.

given landscape (Merow et al., 2013). To generate these models,
environmental predictors at user-specified presence points (the
occurrence data) are contrasted with environmental predictors at
a variable number of background points, which can be chosen
from within the study extent following different strategies. By
default, some methods, including the default settings of Maxent,
randomly sample background points, such that each 1-km raster
cell locality has an equal probability of being chosen. This approach
includes a random sampling of cells containing and lacking
species observations. Alternatively, it is often recommended to
scale the background point distribution to match the sampling
intensity dedicated to each location in the study extent, as one
way to correct for sampling bias (Kramer-Schadt et al., 2013;
Merow et al., 2013). This strategy increases the likelihood of

locations being chosen as background points if they contain
many observations and decreases the likelihood for sites with
fewer observations.

The number of occurrences necessary to parameterize a model
is an important consideration. While models can be parameterized
with as few as three occurrence records (Proosdij et al., 2016),
model predictions derived from such small sample sizes are often
highly variable and should be treated with caution; predictions
generally converge with 25-30 occurrence records (Wisz et al.,
2008). Based on this convergence, we filtered our training dataset
to species with at least 25 observations.

Finally, it is important to recognize that using habitat suitability
modeling on a spatial extent as small as in this study does not allow
one to quantify a species’ full environmental niche space. Rather,
the model reflects the (limited) environmental niche space available
within the study extent, and can be used to understand habitat
suitability within this study extent but not necessarily beyond, in
space or time (Araújo et al., 2019).

We used two different methods to model habitat suitability,
the maximum entropy-based approach of Maxent (Phillips et al.,
2004), and the tree-based approach of Random Forests (Breiman,
2001). Studies comparing different modeling techniques frequently
identify these two methods as among the top-performing (Harrigan
et al., 2014; Valavi et al., 2022), and they are considerably less
computationally intensive than other high-performance models,
such as boosted regression trees or Ensemble methods (Valavi et al.,
2022). Maxent and Random Forests allow the user to account for
potential biases in the occurrence dataset (Kramer-Schadt et al.,
2013; Merow et al., 2013; Fourcade et al., 2014), have high predictive
power across sample sizes (Wisz et al., 2008), and are comparable in
accuracy to other techniques (Kaky et al., 2020; Valavi et al., 2022).
We implemented Maxent (v3.4.4; Phillips et al., 2022) through the
r-package “dismo” (Hijmans et al., 2017) and Random Forests using
the r-package “randomForest” (v4.7-1.1; Liaw and Wiener, 2022)
using R Statistical Software (v4.1.2; R Core Team, 2021). Maxent
modeling was replicated (Sillero and Barbosa, 2021) and run with
10-fold cross-validation (CV), using AUC values calculated on
independent test datasets as a measure of model fit. Random
Forest models were fitted with a down-sampling procedure as
recommended by Valavi et al. (2022) which uses equal numbers
of occurrence and background points, preventing class imbalance
issues. Random Forest models were fitted using the default values
for mtry and ntree = 1,000.

Addressing biases in the modeling
framework

We first explored different modeling strategies on a set of 15
plants and animal species using Maxent. For these species we made
use of our knowledge of their distribution and relative abundance
in the study extent, which we acquired during extensive fieldwork,
to evaluate the performance of different modeling strategies to
predict habitat suitability accurately. To address, and account for,
sampling bias in the iNaturalist dataset, we tested several strategies
to select occurrence records (Steen et al., 2021) and background
points (Kramer-Schadt et al., 2013; Merow et al., 2013; Kling
et al., 2018; section “Exploring different settings for occurrence and
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background point selection” in the supplementary materials). To
test for divergent habitat preferences and for species distributions
that are in potential dis-equilibrium with the environment caused
by rapid urbanization or recent introductions, (Fourcade et al.,
2014; Searcy and Shaffer, 2014) we modeled each species for the
full study extent, and separately in urban and wildland habitats
(Supplementary Figure 2; section “Exploring separate modeling in
urban and wildland extents” in Supplementary material). Based
on our expert assessment of model performance for these 15
species, we identified the best model settings and spatial extents.
We summarize the results here, as they are central to our methods
(see comprehensive details in section “Exploring separate modeling
in urban and wildland extents” in Supplementary material). We
noticed considerable differences between models generated at the
full, urban, and wildland extents but there was no extent that
consistently returned the most realistic results, so we modeled
in all three extents. The best models were generated with the
following settings for occurrence records and background point
selection: (1) THINNED, which uses a single occurrence record per
species and raster cell as the occurrence dataset and a uniform
prior for background point selection; (2) PHYLUMBIAS, uses
all occurrence records of a species as the occurrence dataset
and a prior for background point selection that scales to the
number of iNaturalist observations of all species of the same
Phylum as the target taxon; and (3) CLASSBIAS, also uses all
occurrence records of a species as the occurrence dataset and a
prior for background point selection that scales to the number
of iNaturalist observations of all species of the same Class
as the target taxon. These three model settings were adopted
for all 1,200 species in our post-pruning dataset and all three
spatial extents, resulting in a total of 6,953 models fitted for
all combinations of species, model settings, and spatial extent
that resulted in at least 25 occurrence records. All 6,953 single-
species models were validated using a null modeling approach with
randomly placed occurrences similar to Merckx et al. (2011; section
“Null model validation”) to ensure that model performance was
significantly improved over that expected by chance (Raes and
ter Steege, 2007; Gomes et al., 2018). Only models of species that
exceeded null model expectations were used to calculate mean
models.

We created mean models using the continuous predictions
of habitat suitability, as recommended by Calabrese et al. (2014),
and did so separately for each of the model settings and spatial
extents. We rescaled all mean models to a 0—1 scale and evaluated
them using the test dataset. Across THINNED, PHYLUMBIAS,
and CLASSBIAS model settings, models generated at the full
extent received higher AUCROC values than those generated
separately for urban and wildland extents (Supplementary
Figure 3; see section “Creating and validating mean models” in
Supplementary material for comprehensive details). Therefore,
we limited all further analyses and modeling to the full extent.
We created an additional COMPOSITE model at the full extent,
composed of the best-performing model of each species, which
we identified as the model with the highest AUCROC value among
model settings.

In summary, this generated four mean Maxent models that
were all modeled at the full extent and that we will refer to
as the THINNED, PHYLUMBIAS, CLASSBIAS, and COMPOSITE

models.

Model evaluation

We used the test dataset (see above) to evaluate and rank
the performance of each of the mean Maxent models using
AUC. We randomly drew 5–100 occurrence records from the test
dataset and used a varying number of background locations as
absences. We chose the number of background locations to vary
between 3 and 50 times that of the number of occurrence records,
which means that the theoretically possible number of background
locations varied between 15 and 5,000. This procedure was repeated
1,000 times for each of the mean Maxent models to generate a
distribution of AUCROC and AUCPRG values, which we calculated
using the evalmod() function in the “precrec” r-package (v0.13.0;
Saito and Rehmsmeier, 2017) and the calc_auprg() function in
the “prg” r-package (v0.5.1; Kull, 2016). As outlined in Valavi
et al. (2022), AUCROC and AUCPRG are complementary and assess
model performance either based on both presences and absences or
based only on presences, respectively. AUCROC is computed using
the number of true positives, or sensitivity, and the proportion
of false positives, calculated as 1-the number of true negatives.
AUCROC values vary between 0–1, where 1 indicates a perfect
model, i.e., presence locations have higher habitat suitability values
than absence locations and there is no overlap in their distributions.
Values close to 0 indicate the unlikely, but theoretically possible,
opposite case, where absence locations receive higher habitat
suitability values than presence locations and there is no overlap
in their distributions. A value of 0.5 indicates that a model is
no better than randomly assigning habitat suitability values at
presence and absence locations. However, there can be considerable
variation around the AUCROC value of null models, which is
why we included the additional null modeling step (see above
and section “Null model validation” in Supplementary material).
AUCPRG is calculated based on the precision of predicted presences,
calculated as the proportion of true and false positives, and the
sensitivity, calculated as the proportion of true positives versus
false negatives. The AUCPRG metric is scaled so that perfect models
also approach the value of 1, as in AUCROC, while negative values
indicate that models are no better than randomly differentiating
between presence and absence locations (Valavi et al., 2022).

Following these evaluations of mean Maxent models, we
ranked them by AUCROC and AUCPRG scores to identify the best-
performing model. Using the same settings as for the best mean
Maxent model, we generated new habitat suitability models for each
species using a Random Forest modeling approach (see above),
and created another mean model from these, which we refer to as
the mean RANDOMFOREST model. In a final step, for comparison,
we evaluated and ranked the mean RANDOMFOREST model in
the same way as the mean Maxent models and identified the
best-performing overall model.

Landscape variables

We assembled environmental layers that are relevant to the
study region’s biogeography, climate, and landscape. We assembled
a total of 37 landscape variables, including all 19 bioclim variables
(based on data compiled between the years 1960-1990; Hijmans
et al., 2005), 9 soil variables (Walkinshaw et al., 2021), climatic
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water deficit (Flint et al., 2013), elevation, slope (U.S. Geological
Survey, 2017), surface imperviousness, land cover, tree canopy
cover (U.S. Geological Survey, 2014), NDVI (ORNL DAAC, 2018),
artificial lights at night (ALAN; The Earth Observatory Group,
2018), and water cover (U.S. Geological Survey, 2019). To reduce
data collinearity, we reduced the number of landscape variables by
checking pairwise correlation coefficients (calculated at the grid-
cell level) and removing predictors until all correlation coefficients
were below 0.7 (Dormann et al., 2013) using the raster.cor.matrix()
function from the r-package “ENMTools” (v1.0.6; Warren et al.,
2021). We chose the resulting final set of 10 landscape variables
to preferentially include ones that, in our view, directly influence
species across taxonomic groups, as recommended for creating
habitat suitability models (Merow et al., 2013). These included:
Bioclim02 (mean diurnal range), bioclim06 (mean temperature of
the coldest month), bioclim09 (mean temperature of the driest
quarter), bioclim16 (precipitation of the wettest quarter), soil
bulk density, soil cation exchange capacity, climatic water deficit,
imperviousness, NDVI, and percent water cover (Supplementary
Figure 4). All of these data layers were available at a resolution of
1km or higher and we rasterized all spatial polygons or lines objects,
or resampled rasters, to a 1 km2 resolution using the r-package
“raster” (v3.5-15; Hijmans and van Etten, 2022). To evaluate the
importance of bioclimatic predictor sets averaged over different
periods, we compared model performance using Maxent (based on
the THINNED settings only) for the WorldClim dataset averaged for
1960-1990 (Hijmans et al., 2005) and 1970-2000 (Fick and Hijmans,
2017), the CHELSA dataset for 1980-2010 (Karger et al., 2017,
2018), and the ClimateNA dataset for 1990-2020 (Wang et al., 2016;
AdaptWest Project, 2021).

Using the spatial PCA function from the R-package
“RStoolbox”, we generated a standardized spatial PCA based
on only imperviousness and ALAN, the “urban PCA”, to generate
a gradient of urban intensity, which we used for analyses of species
responses to the intensity of urbanization.

Further analyses

To evaluate and summarize the quality of the modeling
framework presented here, we scored it following the 15 criteria
established by Araújo et al. (2019), which provide minimum
requirements of habitat suitability modeling for application in
biodiversity assessments.

In addition to validation of mean habitat suitability models
(see above), we compared Schoener’s D, Warren’s I, and rank
correlation coefficients between mean models of habitat suitability
using the raster.overlap() function in ENMtools (Warren et al.,
2010). We provide all three metrics but place more emphasis on
rank correlation coefficients for the interpretation of results because
the other two measures tend to overestimate raster similarity
(Warren et al., 2021). We categorized correlation coefficients > 0.9
as very similar, those between 0.7 and 0.9 as similar, and all
coefficients below 0.7 as different (Dormann et al., 2013).

To quantify the influence of landscape variables on the highest-
ranking mean model of habitat suitability, we used Random Forest
models (Breiman, 2001) and the r-package “randomForest”, with
ntree = 10,000 and mtry = the number of predictor variables/3

(Liaw and Wiener, 2022). We used the best mean model of habitat
suitability for (1) all species, and subsets of (2) only native and (3)
only non-native species as response variables, and all 37 landscape
variables as predictors.

By quantifying the influence of the number of iNaturalist
observations on the highest-ranking mean model of habitat
suitability, we tested for signatures of sampling bias persisting in
the mean models of habitat suitability. As above, we used Random
Forest models for this and the best mean model of habitat suitability
for (1) all species, (2) only native and (3) only non-native species
as response variables and four different summaries of the number
of iNaturalist observations as predictors (the sum of iNaturalist
observations of all species, and separately, the sum of iNaturalist
observations of plants, vertebrates, and arthropods).

In another effort to evaluate whether sampling bias is driving
the results of the mean habitat suitability models, we used density
plots across the urban PCA space of all iNaturalist observations
and of the highest predicted mean habitat suitability. For the latter,
we included only those raster cells of the highest-ranking mean
habitat suitability model that fell within the highest quartile of
predicted values.

We used loess regressions to visualize changes in mean habitat
suitability values across the urban PCA space, separately for plants,
vertebrates, and arthropods, as well as for native and non-native
species. We used GAM (generalized additive models) models to
quantify the strength of these associations using adjusted R2 values
(r-package “mgcv” v1.8-40; Wood, 2017).

Results

Native and non-native status of species
of the training dataset

For the training dataset, we generated habitat suitability models
for 1,200 species and were able to determine the native/non-native
status of 1,183 (98.6%) of those species. Of that set of taxa, 835
species (70.6%) are native and 348 (29.4%) are non-native. The
majority of the 17 species for which we could not determine the
native/non-native status were Fungi (6) and Insecta (6), followed
by Plantae (3), Myxomycetes (1), and Platyhelminthes (1). The
proportions of native species were higher for vertebrates (88%) and
arthropods (77%) than for plants (59.3%; Supplementary Table 2).

Occurrence records across elevation

Testing the possibility that species restricted to remote, high-
elevation sites may be underrepresented in our iNaturalist-based
training dataset, we found a significantly higher proportion of
observations from high-elevation areas (> 600 m) in species with
a total number of observations below 25 than in species with a
total number of records of 25 or more, for which habitat suitability
models were created (χ2 = 131.24, df = 1, p-value < 0.001). This
suggests that species more strongly associated with high elevation,
may be underrepresented in our analyses, either because of true
rarity, sampling bias, or the delineation of the study extent.
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Comparison of US Census Bureau
defined urban and wildland regions to
urban PCA

The US Census Bureau delimitation of urban areas was
utilized to separate urban from non-urban (wildland) areas for
separate Maxent modeling in these two study extents. However,
urbanization also needs to be considered as a quantitative, rather
than a qualitative, landscape attribute. To quantify the level of
urbanization on a continuous scale, we generated a raster PCA of
the levels of impervious surface and artificial lights at night, which
we designate as the urban PCA. The first axis of this urban PCA
explained 97.4% of the total variation in these two variables and
is therefore a reasonable proxy for urban intensity as defined by
artificial hardscapes and light. PC1 ranged from -0.7 – 4.7, and
values at or near zero spatially resemble the borders of the US
Census Bureau delimitated urban areas (which is a two-state, rather
than continuous, delimitation) at the urban-wildland interface. US
Census Bureau urban areas consist of 88.5% of values above zero
and 11.5% below zero on PC1, while wildland regions (that is, non-
urban areas defined by the Census Bureau) consist of 4.4% of values
above zero and 95.6% of values below zero on PC1 (Figures 1A,
B). This indicates that there is a strong correlation between these
discrete and continuous measures of urbanization. Consistent with
this result, the proportion of NLCD (National Land Cover Dataset)
land cover types was also significantly different between these two
classes, with developed land-use types dominating in urban areas
(> 87%) and shrub/scrub dominating in wildland areas (> 70%;
Supplementary Table 1).

Model performance using different sets
of climatic variables

Comparisons of the WorldClim dataset for 1960–1990
and 1970–2000, the CHELSA dataset for 1980–2010, and
the ClimateNA dataset for 1990–2020 returned very similar
performances for Maxent (all comparisons were conducted using
the THINNED settings; see section “Modeling using climatic
variables across timespans” in supplements). Models using
the 1960-1990 WorldClim predictors received marginally, but
significantly, higher AUCROC values (Supplementary Figure 5)
and we, therefore, conducted all additional modeling using this
dataset.

Mean models of habitat suitability

The four mean Maxent models were composed of different
numbers of species, given the additional spatial requirements for
occurrence records of THINNED models and due to null model
validation (section “Null model validation”; Supplementary
Figure 6): THINNED = 1,023; PHYLUMBIAS = 1,196;
CLASSBIAS = 1,197; COMPOSITE = 1,199 species (derived
from 399 THINNED models, 335 PHYLUMBIAS and 465 CLASSBIAS

models; all based on the full extent modeling). The COMPOSITE

model contained single-species models ranging in AUC score from

0.629–0.998 (median = 0.843; Supplementary Figure 7), built
with 25–13,346 occurrence records per species (median = 99);
Supplementary Figure 8). The mean RANDOMFOREST model
of habitat suitability was created with the same settings, and for
the same set of species, as the THINNED Maxent model (see next
paragraph).

Model evaluation

Using the test dataset, the THINNED Maxent model ranked
higher for both AUCROC and AUCPRG values than the three
other Maxent models (CLASSBIAS, PHYLUMBIAS, and COMPOSITE

models; Figure 3). Random Forest modeling was therefore
conducted for the same 1,023 species modeled with Maxent using
the THINNED settings, i.e., based on a single observation per species
per raster cell as the occurrence dataset and a uniform prior for
background point selection. Following the same model evaluation
procedure as for the Maxent models, the mean RANDOMFOREST

model yielded the overall highest-ranking model, outperforming all
Maxent models on both AUCROC and AUCPRG scales (Figure 3).
Based on this, all further analyses, quantifying hotspots of urban
biodiversity, and the responses of different taxonomic groups and
native and non-native species to levels of urban intensity are based
on mean RANDOMFOREST models.

Raster comparisons of the RANDOMFOREST model and the
four Maxent models (THINNED, CLASSBIAS, PHYLUMBIAS, and
COMPOSITE) were very similar, and pairwise comparisons using
Schoener’s D ranged from 0.899–0.983, Warren’s I from 0.991–
1 and correlation coefficients from 0.884–0.997 (Supplementary
Table 3). Standard deviations between these five models, calculated
at the level of each raster cell, ranged from 0.000698–0.165, with a
median of 0.073 (Supplementary Figure 9).

Sampling bias

The first three axes of the environmental PCA explained 72.5%
of the variation (PC1 = 36.7%; PC2 = 22.1%; PC3 = 13.7%) and

FIGURE 3

Evaluation of the mean RANDOMFOREST model of habitat suitability
and the four mean Maxent models (THINNED, CLASSBIAS,
PHYLUMBIAS, and COMPOSITE). Grey bars indicate standard
deviations around the mean estimates of AUCROC and AUCPRG

following model evaluation using the test dataset.
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iNaturalist observations covered this environmental space well
(Supplementary Figure 10). Random Forest models using the
summed iNaturalist observations per raster cell (separately for
all species of arthropods, vertebrates, plants, and as a sum of all
species) as predictor variables and the mean RANDOMFOREST

habitat suitability model as the response variable explained
8.15% of the variation, indicating that mean habitat suitability
was not strongly associated with the spatial distribution of
iNaturalist observations. Density plots of the highest quartile mean
RANDOMFOREST habitat suitability values across the urban PCA
space show a similar pattern, with some similarities but also marked
differences to the density of all iNaturalist observations across the
urban PCA (Figure 4).

Effects of the native status of species and
different taxonomic groups

Using the mean RANDOMFOREST models of habitat suitability
as the response variables and all landscape variables as predictor
variables separately for all species, only native and only non-
native species, Random Forest models explained 97.5, 97.4, and
98.6% of the variation, respectively. The landscape variables that
explained most of the variation depended on the response variable
being modeled (Table 1); water cover, soil bulk density, NDVI,
and imperviousness explained most of the variation for the model
containing all species as a response (Supplementary Figure 11).

Rank correlation coefficients showed the strongest differences
in mean RANDOMFOREST habitat suitability models of only
native and only non-native species (correlation coefficient = 0.505;
Schoener’s D = 0.81; Warren’s I = 0.974). This difference persisted
in the response of native and non-native species to urban PCA
space; native species have higher mean suitability in wildland areas
than non-natives, while in areas that are fully urbanized, non-native
species have higher mean suitability than natives (Figure 5 and
Supplementary Figure 12).

GAM models testing the association of habitat suitability of
native and non-native species to the continuous urbanization
PCA space were highly significant (p < 0.001), with more
variation explained for non-native species (adjusted R2 = 0.28)
than for native species (adjusted R2 = 0.07). Within native species

FIGURE 4

Density plot of all iNaturalist observations of the training dateset
and the highest quartal values of the mean RANDOMFOREST model
of habitat suitability, plotted against urbanization PCA space.

(Figures 6A–C), GAM models testing the association of habitat
suitability and urban PCA space explained most variation in plants
(adjusted R2 = 43.6%), while the models for vertebrates and
arthropods had low predictive power (adjusted R2 < 1%) and all
models being highly significant (p < 0.001). For non-native species
(Figures 6D–F), GAM models testing the association of habitat
suitability and urban PCA space explained less variation in plants
(adjusted R2 = 16.9%) than in vertebrates and arthropods (adjusted
R2 = 45% and 52.2%, respectively), again, all models being highly
significant (p < 0.001).

Discussion

Large, human-dominated ecosystems like Greater Los Angeles
differ from more ecologically pristine landscapes in at least two
important ways. First, they often contain steep environmental
gradients between urban and wildland habitats. In many cases,
a single roadway or chain-link fence may separate largely
intact natural habitats from areas characterized by high levels
of imperviousness, extremely high human population densities,
and a correspondingly high concentration of human commensal
species. This habitat heterogeneity, over scales of a few hundred
meters, presents both challenges and opportunities for different
groups of organisms. Second, urban ecosystems tend to have high
concentrations of non-native species. Whether these taxa should
be considered unwanted pests, integral parts of novel ecosystems
(Sax et al., 2022) or valuable elements of ex situ endangered species
recovery (Shaffer, 2018) depends on the urban context, the goals of
urban planners, the preferences of a diverse array of residents, and
the conservation status of the species in question (Gaertner et al.,
2016). Rather than enter into a debate on the roles of non-native
species in urban ecosystems, our goal is to provide the biodiversity
distributional data upon which decisions depend, based on best-
practice standards for biodiversity assessments (Araújo et al., 2019;
Supplementary Table 4). We provide models identifying hotspots
of urban biodiversity jointly for a broad set of 1,023 commonly
observed species, as well as separately for native and non-native
species (Figure 2). We hope that the modeling framework outlined
here for Los Angeles will provide a baseline for future research,
and that the resulting data will allow planners to include more
comprehensive appraisals of the distribution of biodiversity in their
assessments and management plans for other urban centers.

Comparison of methods to model mean
habitat suitability

Validation of models using the 2022 iNaturalist test dataset,
which included records of more than 2,200 species that were not
used to train our models, demonstrated that, across modeling
settings, models generated at the full extent outperformed those
that were combined from models generated separately in urban and
wildland areas (Supplementary Figures 2, 3). We were surprised
by this result, but it may indicate that, while significant differences
between urban and wildland models persist at the species level
(section “Exploring separate modeling in urban and wildland
extents” in Supplementary material), modeling at the full extent
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TABLE 1 Importance of landscape variables for mean habitat suitability (%incMSE: percent increase in mean squared error).

All species model Only native species model Only non-native species model

%IncMSE Landscape predictors %IncMSE Landscape predictors %IncMSE Landscape predictors

31.3 Water cover 38.5 water cover 30.4 bulk density

27.8 Bulk density 27.3 bulk density 28.9 NDVI

24.8 NDVI 25.0 NDVI 20.2 cation exchange capacity

23.5 Imperviousness 24.2 imperviousness 19.8 climatic water deficit

19.3 Cation exchange capacity 19.7 cation exchange capacity 18.7 organic matter

Models used the mean RANDOMFOREST model of habitat suitability as the response variable and landscape variables as predictors and were run separately for all, only native and only non-
native species (explaining > 97% of the variation in all models). Soil cation exchange capacity, soil bulk density, and NDVI are among the five most important landscape variables of all three
models, with water cover and imperviousness among the five most important landscape variables of models for all species and only native species.

FIGURE 5

Mean RANDOMFOREST habitat suitability plotted against urban PCA
space, separately for models of native species and non-native
species: Each data point corresponds to a value of a single raster
cell, colored by native status. Loess regression smoothing curves
are plotted separately for native and non-native species (separate
plots of the same data are shown in Supplementary Figure 12).

is the best (and fortunately, also the simplest) approach when
generalizing across species.

Among those models generated at the full extent, the mean
RANDOMFOREST model of habitat suitability, generated using the
THINNED settings, ranked above all four mean Maxent models
for both AUCROC and AUCPRG metrics (Figure 3). Pairwise raster
comparisons of all five mean models showed a fairly high similarity
between models, with all values of Schoener’s D > 0.89, Warren’s
I > 0.99, and correlation coefficients all > 0.88 (Supplementary
Table 3).

By using the test dataset to generate AUCROC and AUCPRG
metrics, we can ask whether our mean RANDOMFOREST model
is an accurate representation of unsampled biodiversity for the
Greater Los Angeles ecosystem. The high values of AUCROC
(median = 0.783) and AUCPRG (median = 0.877) demonstrate that
the mean RANDOMFOREST model of habitat suitability is suited
to accurately predict hotspots of urban biodiversity more broadly,
especially for species that occur but were not part of the modeling
framework. At the same time, we recognize the need to explore

model validation further, particularly at the species level, and ideally
using structured survey datasets that contain true absences (Valavi
et al., 2022).

Habitat suitability of single species can be closely associated
with the observed abundance of that species (Weber et al., 2017;
de La Fuente et al., 2021), but it need not be. There is conflicting
evidence on this association (Boyce et al., 2016; Dallas and Hastings,
2018), and it has been suggested that predicted habitat suitability
values more closely reflect the upper limit of a species’ abundance
(VanDerWal et al., 2009). Habitat suitability for multiple species,
including the mean habitat suitability model constructed here, can
be interpreted as the cell-by-cell probability of encountering many
species, analogous to interpreting a single species’ habitat suitability
model as the probability of that species’ presence (Elith et al., 2011).
Put another way, mean models of habitat suitability are commonly
interpreted as reflecting species richness, or alpha diversity, across
a modeling extent (Calabrese et al., 2014).

Can iNaturalist records be harnessed as
valid indicators of species distributions?

A common, and reasonable critique of community science
observational data is that it reflects where people go to observe
nature, rather than the true distribution of biodiversity. To some
extent, this must be true, just as it is for museum specimen
records or sample sites in ecological studies—people tend to go
where access is relatively easy (Newbold, 2010; Martin et al.,
2012). However, four lines of evidence convince us that the
post-filtered iNaturalist dataset paired with the analyses run here
are a reasonable representation of true mean habitat suitability
rather than a reflection of rates of human visitation. First,
the vast majority of the raster cells encompassing the total
environmental PCA space in our study extent contain iNaturalist
observations (Supplementary Figure 10). While some cells have
many observations and some relatively few, the iNaturalist dataset
used in this study did not leave unique environmental conditions
unsampled. Second, models using iNaturalist observations as
predictors and the mean RANDOMFOREST model of habitat
suitability of all 1,023 native and non-native species as the
response variable explained a modest 8.15% of the variation. If
visitation frequency and their associated iNaturalist observations
were driving the mean model of habitat suitability, we would
expect this to be much higher. Third, density plots of iNaturalist
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FIGURE 6

Top row shows mean RANDOMFOREST models of habitat suitability for (A) native plant species, (B) native arthropod species, and (C) native vertebrate
species. The association to urban intensity were only strong in plants (adjusted R2 = 43.6%) and low in vertebrates and arthropods (adjusted
R2 < 1%). Bottom row shows mean RANDOMFOREST models of habitat suitability for (D) non-native plant species, (E) non-native arthropod species,
and (F) non-native vertebrate species. The association to urban intensity was less strong in plants (adjusted R2 = 16.9%) and stronger for vertebrates
and arthropods (adjusted R2 = 45% and 52.2%, respectively). Vertical lines show the level of urban intensity with highest mean habitat suitability.

observations and the highest quartal mean habitat suitability values
showed considerable mismatch (Figure 4), indicating that habitat
suitability models are not driven by the sheer number of iNaturalist
observations at a given locality. And last, the independent test
dataset used to evaluate all mean models of habitat suitability
produced median AUCROC values > 0.7, similar to model
validation in other studies (Valavi et al., 2022), indicating that it
predicts the presence of many species accurately. Collectively, we
interpret this as strong evidence that spatial variation in human
sampling intensity was adequately addressed by the methodologies
employed here, and that the resulting models can be interpreted
as depictions of true multi-species habitat suitability, largely
uninfluenced by the location and number of iNaturalist records
alone. The one exception to this may be the low habitat suitability
modeled for the highest elevation sites in our study extent, although
this is likely due to the delineation of the study extent rather than
the modeling itself, as discussed below.

Hotspots of urban biodiversity in the
Greater Los Angeles ecoregion

In Greater Los Angeles, areas of the highest mean habitat
suitability are distributed in a pattern that is closely aligned to,
but not identical with, the spatial distribution of wildland habitat
(compare Figures 1, 2). The difference is a subtle offset, such that
regions of high mean habitat suitability (orange-red in Figure 2)
very closely align to the urban-wildland interface (the light gray

regions of Figure 1A), while both very urbanized and very wild
areas receive lower values of mean habitat suitability (Figure 5).
This general result is similar to findings for species richness of
plants (McKinney, 2008) and birds (Vale and Vale, 1976), and likely
reflects the greater habitat heterogeneity at the interface of this
steep environmental gradient. Beninde et al. (2015) found a similar
increase in species richness as a function of habitat richness across
taxonomic groups in globally distributed cities. The lowest mean
habitat suitability was detected in heavily urbanized areas, but also
in some of the wildest areas within the study extent, including the
San Gabriel and Santa Susana Mountains (Figure 1B). The San
Gabriel mountains reach the highest elevation (3,069 m) within
the study extent and harbor unique environmental conditions, but
only make up a limited area within the total study extent. Further
analyses indicated that species restricted to high elevation (above
600 m) may have been under-represented in the training dataset,
with too few occurrence records of these high-elevation species to
pass our 25-observation filter, and this may reduce the apparent
suitability of these habitats. However, independent studies from
other parts of the world show a similar decrease in species richness
with increasing elevation across taxonomic groups (Lee et al.,
2004; Nogués-Bravo et al., 2008). Thus, our inferred low habitat
suitability in these ecologically intact high-elevation areas could
reflect insufficient sampling, true low habitat suitability, or both;
increased sampling efforts are necessary to resolve this question.

The landscape variables that stand out in their importance to
explain the mean RANDOMFOREST model of habitat suitability
were, in decreasing order of importance, water cover, soil bulk
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density, NDVI, imperviousness, and soil cation exchange capacity
(Table 1). The positive effect of water cover and all types of
vegetation, as captured by NDVI, on species richness is well known
across taxonomic groups in globally distributed cities (Beninde
et al., 2015), and may be even more pronounced in the relatively
xeric conditions that characterize most of our southern California
study extent. Cation exchange capacity, a measure of soil nutrient
availability, has a negative impact on mean habitat suitability,
similar to findings from non-urban systems that showed reduced
plant species richness in soils with higher cation exchange capacity
(Huston, 1980; Le Brocque and Buckney, 2003; Palmer et al., 2003).
The positive effect of bulk density on habitat suitability deserves
further inquiry. Bulk density is an indicator of soil compaction
and is rarely used in analyses of species richness. Rather, it is
often considered indicative of ecosystem functionality, since high
levels of compaction decrease the water storage capacity of soils
(Wang et al., 2018). Imperviousness has a negative association
with mean habitat suitability, which is highest at low levels of
imperviousness and decreases rapidly between 30 and 70% of
impervious surface cover, beyond which levels of mean habitat
suitability remain consistently low. This pattern is consistent with
many other observations across plant and animal species that
impervious surface cover reduces species richness, diversity, and
abundance (Sattler et al., 2010; Geslin et al., 2016; Gillespie et al.,
2017; Choate et al., 2018; Souza et al., 2019; Yan et al., 2019; Piano
et al., 2020).

Responses to urbanization by native and
non-native species

Many studies synthesizing data across taxonomic groups and
scales have found very different responses to urbanization between
generalist and specialist species (Callaghan et al., 2019), among
taxonomic groups (McKinney, 2008), and between native and non-
native taxa (Celesti-Grapow et al., 2006). In line with our most
general predictions, native species had high mean habitat suitability
in wildland areas, lowest habitat suitability in urban areas, and
the highest suitability in the proximity of the transition from
wildland to urban habitats (Figure 5). In contrast, and consistent
with expectations (Cadotte et al., 2017), wildland areas received
lower values of mean habitat suitability than urban areas for non-
native taxa, and, like native species, non-native taxa peaked in mean
habitat suitability at the transition from wildland to urban. Drivers
of the difference in mean habitat suitability between urban and
wildland areas for non-native species need to be explored further, as
knowledge on this is limited (Cadotte et al., 2017; Spear et al., 2017).
Such a difference in mean habitat suitability for non-native species
may be higher in cities that have strongly seasonal and relatively
arid Mediterranean climates, including Greater Los Angeles, than
in less arid cities. Although this has not to our knowledge been
explicitly examined, we suspect that supplemental watering may
be a stronger environmental influence at urban-wildland interfaces
in arid or extremely seasonal climates, leading to more severe
environmental gradients and reduced spillover of non-native urban
species into adjacent wildland areas. More generally, following the
categorization of species based on their urbanization tolerance
(Fischer et al., 2015), our results confirm findings from a global

analysis of urban bird and plant species (Aronson et al., 2014) and
demonstrate that native species tend to be less urban tolerant than
non-native species in Greater Los Angeles.

Similar responses to urbanization by
different taxonomic groups

Our findings indicate that most taxonomic groups have hump-
shaped responses in mean habitat suitability with respect to
urbanization, peaking in the proximity of the urban-wildland
interface. Comparisons between taxonomic groups, conducted
separately for native and non-native species, showed similar
responses (Figure 6). Native plant, arthropod, and vertebrate
species show peaks at similar levels of urban intensity, with maxima
at the transition from urban to wildland. In non-native species,
these peaks shift toward higher levels of urban intensity, although
this shift is strongest in arthropod and vertebrate species. These
findings are consistent with other studies that found the highest
levels of plant species richness at intermediate levels of urbanization
across cities (McKinney, 2008). The higher habitat suitability values
of native plants in relatively more wildland areas, in comparison
to that of native arthropods and vertebrates, may be explained by
the unique positioning of our study within the California Floristic
Province biodiversity hotspot (Myers et al., 2000).

The decline in habitat suitability with increasing intensity of
urbanization is gradual rather than showing an obvious threshold
or step-cline pattern. However, the strengths of these associations
for taxonomic groups were variable. The strongest associations
were found for native plants (adjusted R2 = 43.6%) and for
non-native vertebrates and arthropods (adjusted R2 = 45% and
52.2%, respectively). These results warrant further research into
the responses of other taxonomic groups, for plants and animals,
to levels of urban intensity. Highly variable responses in species
richness of various insect taxa have been demonstrated by urban-
rural comparisons in temperate European cities, with some taxa
peaking in urban areas, others in rural areas, and some showing
no significant differences between the two (Theodorou et al.,
2020). A comparison of levels of avian species richness within
multiple Mexican cities demonstrated that bird species richness
was higher in green spaces than in areas with more impervious
surfaces, although this varied with the functional group of species
(MacGregor-Fors et al., 2021). Following this example, future
studies could include the response of different functional groups,
potentially including additional species traits such as aspects of
life history or physiology, to explore the mechanisms underlying
species’ responses to urbanization across taxonomic groups.

Conservation efforts in Greater Los
Angeles

The City of Los Angeles has the ambitious, and admirable,
goal of no net loss of biodiversity by 2050 (City of Los Angeles,
2019). Given that many species in the region are negatively
affected and threatened by urbanization (Vandergast et al., 2009;
Thomassen et al., 2018; Gustafson et al., 2019), many existing
and pending plans focus on protecting and enhancing existing
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wildland areas. Efforts to mitigate the risks of future urbanization
include the Annenberg Wildlife Crossing in Liberty Canyon,
the Wildlife Pilot Study (City of Los Angeles, 2014), and the
Rim of the Valley Corridor (Zellmer and Goto, 2022), which
together aim to protect large habitat patches and existing and
constructed connections between them to allow wildlife to achieve
long-term persistence. Spatially, the extent of the Wildlife Pilot
Study covers a portion of the eastern Santa Monica Mountains,
while the Rim of the Valley extends around the San Fernando
Valley to include portions of the Santa Monica Mountains, Simi
Hills, Santa Susana, and San Gabriel Mountains, and Verdugo
Hills (Figure 1B), including the Annenberg Wildlife Crossing.
Many of these areas have received among the highest mean
habitat suitability scores from our models and are thus rightful
candidates for protection. However, our models also emphasize
other regions with high suitability values, including the urban-
wildland interface regions along the southern flanks of the San
Gabriel Mountains, and pockets of urban open space dotted across
the region. Many of these regions are relatively modest in size
compared to large wildlands; key regions include the Sepulveda
Basin, Baldwin Hills, Ballona Wetlands, Dominguez Gap Wetlands,
Coyote Hills, Whittier Narrows, and Upper Newport Bay. These
regions emphasize the well-established importance of urban green
and open spaces for urban biodiversity, including sometimes-
isolated or small patches (Beninde et al., 2015; Wintle et al.,
2019).

Many of these highly suitable areas also encompass the most
affluent areas in the region, including Bel Air, Beverly Glen,
and the Hollywood Hills, while extensive areas of low habitat
suitability often fall in low-income neighborhoods including
Downtown and South Los Angeles. Both formal policy and
broadly accepted equity concerns demand that the positive
effects of nature and biodiversity should be accessible to, and
impactful for, all, regardless of wealth (Schell et al., 2020).
Our models highlight that providing equitable access to areas
with high mean habitat suitability presents a real challenge
and needs to become an integral goal for future biodiversity
planning in Greater Los Angeles. While the habitat suitability
models presented here can identify areas that have particularly
low levels of biodiversity, corresponding efforts to restore sites
and provide green-space access also need to take into account
threats of green gentrification, further complicating such efforts
(Maantay and Maroko, 2018). To put this in the context
of Morrison (2016), achieving virtuous cycles that enhance
biodiversity conservation will require different inputs, given
the very different human constituencies interacting with that
biodiversity, in different parts of Greater Los Angeles. The places,
people, and benefits from and for nature are different, and require
different approaches, even if the consistent goal is increased
biodiversity.

Conclusion: Outlook on the
application of iNaturalist for urban
ecology and conservation

While data deficiency plagues biodiversity research globally
(Hochkirch et al., 2021), and knowledge gaps in urban areas

persist that range from the identification of habitat patch size
thresholds, to evolutionary trap and population sink dynamics and
the best landscape configuration to facilitate dispersal (Aronson
et al., 2017), the accelerating number of species observations from
urban community scientists is unprecedented and encouraging
(Callaghan et al., 2020a). With growing confidence in adequately
addressing the biases inherent in community science datasets
using habitat suitability modeling techniques, iNaturalist and
similar datasets have become invaluable resources allowing in-
depth comparisons of thousands of species across cities globally.
In the future, such data should allow tracking of changes in
distributional patterns of taxa along urbanization gradients. These
data have already been used to document shifts over the last
decades for Los Angeles birds (Cooper et al., 2020), and the recent
displacement of the region’s native urban black widow spiders
by the introduced congeneric brown widow spider (Kempf et al.,
2021). The modeling framework outlined here can and should
be expanded upon to include biotic interactions (Dormann et al.,
2018). This can include methodological approaches, including
linking them to macroecological models and comparisons of
inferences to multi-species occupancy models (Calabrese et al.,
2014; Devarajan et al., 2020), and empirically by integrating
presence-absence modeling techniques and data (Isaac et al., 2020).
A key goal should be to corroborate habitat suitability modeling
from iNaturalist datasets with other, independent data sources,
such as scientific monitoring surveys (Prudic et al., 2018) and
field validation studies (Searcy and Shaffer, 2014). Furthermore,
the increasing availability of high-resolution observations and data
layers could allow for modeling fine-scale impacts of smaller
patches of urban green spaces (Beninde et al., 2015) or scale-
dependent effects across cities (Alberti and Wang, 2022). At its
core, our study creates a resource for use by urban planners in
Greater Los Angeles and provides a framework that other cities
can implement to generate a more comprehensive understanding
of the spatial distribution of biodiversity value in their region.
Using this framework can provide policymakers with a spatially
explicit tool for implementing planning strategies that are most
appropriate for biodiversity conservation. The data exist and
should be used.
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