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A gene regulatory network
model that recovers the abaxial-
adaxial polarity in Arabidopsis
thaliana leaf primordium
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Universitaria, Ciudad de México, Mexico
Megaphylls, present in the majority of vascular plants, show in many plant

lineages an abaxial-adaxial polarity in their dorsoventral axis. This polarity

commonly translates into different tissues developing on each side of the leaf

blade. This is important because it promotes better photosynthetic efficiency as

related to light absorption and gas exchange. Many researchers have studied the

molecular bases of the emergence of leaf abaxial-adaxial polarity, showing that it

is produced by the interaction and differential expression of particular genes and

other molecules. However, until now, it is still unclear if the molecular

components documented thus far are sufficient to explain the emergence of

leaf polarity. In this work, we integrated the available experimental data to

construct a graph of the Gene Regulatory Network (GRN) involved in the

formation of abaxial-adaxial polarity in the leaf primordium of Arabidopsis

thaliana. This graph consisted of 21 nodes and 47 regulations. We extracted

the main components of the graph to obtain a Minimum Network consisting of

six genes and 22 possible regulations. Then, we used the Boolean network (BN)

formalism to describe the dynamics of this Minimum Network. We identified

1905 distinct BNs that comprised the regulations of the Minimum Network and

exclusively generated the two attractors representing the abaxial and adaxial cell

types. This highlights the fact that most graphs, including our network, can

describe experimentally observed behaviors with many BN dynamics. By

performing mutant simulations and robustness analysis, we found that two of

the 1905 BNs better reproduce experimentally available information. To produce

the expected attractors, both BNs predict the same missing regulations, which

we propose should be experimentally analyzed to confirm their existence.

Interestingly, these two BNs have low robustness to perturbations compared

with previously analyzed GRNs. This was an unexpected result since abaxial-

adaxial polarity is a robust biological trait, which suggests more components or

regulations of the network are missing.
KEYWORDS

abaxial-adaxial polarity, leaf dorsiventrality, leaf primordium, gene regulatory network,
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1 Introduction

A typical leaf in vascular plants is a flat organ that consists of

three main axes: proximal-distal, center-lateral, and dorso-ventral

(also called abaxial-adaxial), resulting from differential growth

during development (Bowman et al., 2002). Leaf formation begins

with the differentiation of peripheral cells derived from the Shoot

Apical Meristem (SAM), which form a protrusion called a leaf

primordium (Kalve et al., 2014). During leaf development the upper

part of the primordium - adjacent to the SAM - will become the

adaxial side of the leaf, while the lower part will give rise to the

abaxial side (see Dkhar and Pareek, 2014 for a review on leaf shape

determination). In eudicots the two sides typically acquire different

cellular tissues (Figure 1): the adaxial side develops a palisade

mesophyll with few and small intercellular spaces and an

epidermis with a higher number of trichomes. In contrast, the

abaxial side has a spongy mesophyll characterized by large

intercellular spaces and an epidermis with more stomata (see

Kuhlemeier and Timmermans, 2016 for a review on abaxial-

adaxial polarity determination in leaves). Once dorsiventral

polarity is established in the leaf primordium, it will promote

lateral growth (Qi et al., 2017), resulting in a flat leaf with

bilateral and dorsiventral symmetry. Dorsiventral leaves are

present in most angiosperms, with a few exceptions in some

lineages that develop unifacial leaves or show an inversion in the

arrangement of both sides (Fukushima and Hasebe, 2014; Tsukaya,

2014). The dominance of bifacial leaves suggests that abaxial-

adaxial polarity is a highly stable characteristic that has been

maintained throughout the evolution of angiosperms, likely due

to the photosynthetic efficiency of dorsiventral leaves, which present

a high surface area for light assimilation, allowing for a high surface-

to-volume ratio, while reducing water loss by maintaining a higher

density of stomata on the abaxial side (Kuhlemeier and

Timmermans, 2016; Wall et al., 2022).
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Numerous works have studied the genetic factors involved in

the formation of abaxial-adaxial polarity in several plant species,

with special emphasis in the model plants Arabidopsis thaliana, Zea

mays, Oryza sativa and Antirrhinum majus (Husbands et al., 2009;

Yamaguchi et al., 2012; Reinhart et al., 2013). In A. thaliana, the

genes that appear to be responsible for the formation of leaf abaxial-

adaxial polarity are transcription factors from the KANADI

(specially KAN1, KAN2, KAN3 and KAN4), YABBY (YAB1, YAB3

and YAB5), HD-ZipIII (PHABULOSA or PHB, PHAVOLUTA or

PHV and REVOLUTA or REV), AUXIN RESPONSE FACTORS

(ARF3 and ARF4) and ASYMMETRIC LEAVES (AS1 and AS2)

gene families (Siegfried et al., 1999; Byrne et al., 2000; Ori et al.,

2000; Eshed et al., 2001; Emery et al., 2003; Pekker et al., 2005).

Homologs of the majority of these genes have been found

throughout angiosperms, as well as in non-seed plants (Sarojam

et al., 2010). In addition to the role of these genes, post-

transcriptional regulation plays an important part in the

formation of leaf polarity, with important roles for miRNA165,

miRNA166 and tasiR-ARF (Emery et al., 2003; Allen et al., 2005; Li

et al., 2005) in the regulation of several of the genes listed above. The

involvement of microRNAs in the regulation of dorsiventrality

suggests that genes from the ARGONAUTE (AGO) family are

relevant to this process, since they are required for the microRNA

silencing of target mRNA through the formation of the RISC

complex (Kidner and Martienssen, 2005; Liu et al., 2011). Genes

from this family whose role in the regulation of abaxial-adaxial

polarity has been documented are AGO1 and AGO10 (Zhang et al.,

2006; Liu et al., 2009; Zhu et al., 2011). Some genes involved in SAM

identity and maintenance may also play a part in the generation of

polarity in lateral organs. The transcription factor SHOOT

MERISTEMLESS (STM) could be involved in both processes, as

its ectopic expression leads to the formation of meristems on the

adaxial surface of lateral organs (Hay et al., 2002). Finally, an

additional factor contributing to polarity development is the
FIGURE 1

The different tissues that differentiate in the abaxial and adaxial sides of a typical eudicot leaf, such as Arabidopsis thaliana.
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phytohormone auxin, which presents a high concentration in lateral

organ primordia and is transported back to the SAM during the

development of the new organ, leading to a lower hormone

concentration on the adaxial side and a higher on the abaxial side

(Heisler et al., 2005; Qi et al., 2014). This has prompted suggestions

that auxin is a potential candidate for the Sussex signal – a

hypothetical signal thought to originate in the SAM, that reaches

the lateral organ primordia and induces their polarity (Sussex, 1951;

Reinhardt et al., 2005). Most of these molecular factors can be

divided into two groups: promoters of abaxial or adaxial fate. The

abaxial-promoting factors include the KANADI, YABBY and ARF

genes listed above, as well as the post-transcriptional factor

miRNA165/166. The adaxial-promoting factors are the HD-ZipIII

and AS genes as well as tasiR-ARF. These two groups regulate the

same set of target genes in opposite ways, while they interact with

genes from the other group in a mutually repressive manner

(Husbands et al., 2009; Yamaguchi et al., 2012; Qi et al., 2017).

Furthermore, all of these molecular factors show an expression

corresponding to the identity they promote and none of them seem

to have intercellular mobility (Husbands et al., 2009), with the

exception being the post-transcriptional factors and the HD-ZipIII

transcription factor REV, whose mRNA appears to move through

cells (Thieme et al., 2015).

Although all of these genetic factors have been extensively

studied, the mechanism by which the genetic network’s dynamics

generates an abaxial-adaxial polarity is not fully comprehended. In

fact, there are still some regulations where the effect towards the

target gene is uncertain. For example, the regulation of AS1 and AS2

by YABBY shows some contradictory results where some

experimental analyses suggest is an activation (Bonaccorso et al.,

2012), while others propose that the same regulation is an inhibition

(Lin et al., 2003; Bonaccorso et al., 2012) and some reports even

suggest an absence of regulation (Kumaran et al., 2002). Also, the

exact function of many of these genes in generating polarity is not

well-understood. For example, it is unknown whether the YABBY

genes are important for the onset of leaf polarity or for its

maintenance (Sarojam et al., 2010). Mathematical and

computational models can help us to elucidate these and other

uncertainties. They can be used to simulate the behavior of genetic

networks, which can help us identify the key factors that control

polarity and to what degree. Additionally, computational models

can be used to test hypotheses about how genetic networks work,

which can help us refine our understanding of these systems and

propose new regulatory hypotheses that can be experimentally

tested. Also, these theoretical approaches can help to integrate the

vast amount of new experimental information and proceed from a

descriptive to a predictive analysis.

As far as we know, there is only one previous model analyzing

the genetic dynamics of abaxial-adaxial polarity in lateral organs,

constructed by La Rota et al. (2011). This model focuses on the

emergence of polarity in sepals, which are floral organs akin to

leaves. However, until now, there is no model that explicitly

addresses how polarity is established during the development of
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leaf primordia. Given that the elements of a Gene Regulatory

Network (GRN) are molecules whose concentration can change

over time depending on their interactions, it is important to create a

dynamic model of the process. Broadly speaking, there are two

general mathematical approaches: continuous models, such as those

based on differential equations, or discrete models. Discrete models

provide an alternative to the challenges encountered within models

based on differential equations by not requiring quantitative

information about the components and the value of the

parameters of the system. Moreover, discrete models are easily

modified and can handle a larger number of components than their

continuous counterpart (Saadatpour and Albert, 2013). The

simplest type of discrete modeling of a GRN are Boolean

networks, where nodes can only take two values: 1 or 0,

representing whether the molecule is active or above a certain

threshold (1), or inactive or below a certain threshold (0),

respectively. For instance, in the case of a gene, 1 would indicate

that the gene is being expressed, and 0 would indicate that it is not.

The value of each node is updated based on the values of the nodes

that regulate it. Despite its simplicity, Boolean networks can provide

important information. For example, by updating the values of all

nodes in the network, a steady state (or set of states) called an

attractor is reached. It has been shown that the node values in an

attractor represent their expression in the cell, so each attractor can

be interpreted as a cell type (Kauffman, 1969; Espinosa-Soto et al.,

2004; Ortiz-Gutiérrez et al., 2015; Garcıá-Gómez et al., 2017).

In this study, we have systematized the available experimental

data regarding the molecules involved in establishing the abaxial-

adaxial polarity. Although all the genes briefly described above have

an important role in abaxial-adaxial polarity in all the angiosperm

species where they have been studied, their relative contribution

and expression vary between species and even between organs in

the same plant (Yamada et al., 2011; Sablowski, 2015; Kuhlemeier

and Timmermans, 2016). Given the extensive diversity of leaf

development and the genetics behind it, this work focuses on the

genetic elements responsible for establishing the abaxial-adaxial

polarity during the early stages of leaf primordium differentiation

from the SAM, based on documented information in A. thaliana.

Using the gathered information, we constructed a network

graph incorporating all identified agents, which we called Base

Network. The Base Network was subsequently reduced into a

Minimum Network, comprising the core polarity genes. The

motivation for focusing on a reduced network was to gain a

clearer understanding of the abaxial-adaxial trait by isolating the

main regulators involved in its generation. Employing this

Minimum Network, we searched the BN models capable of

producing the abaxial-adaxial polarity and analyzed their ability

to produce mutants that have been previously characterized in

laboratory experiments. Additionally, we assessed the BN’s

robustness under various perturbations. We concluded that the

obtained Minimum Network presented in this work contains the

core genes responsible for the generation of abaxial-adaxial polarity

in early developing leaves of our model system.
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2 Materials and methods

2.1 Network graphs

Network graphs were built by gathering all the available

experimental data, characterizing genes and molecules essential

for adaxial and abaxial identity in A. thaliana leaf primordium.

The information included the genes involved in the emergence of

leaf polarity, and the regulatory interactions between these genes.

All the regulations within the Base Network, along with their

respective references, are available in Supplementary Material

Table S1. A more detailed explanation of some of these

regulations, those constituting the Minimum Network, is shown

in Supplementary Material Table S2. This information was

represented by a directed graph G = (N , E), where the set of

nodes N = (x1, x2,…, xn) were the genes, microRNAs, hormones,

or any other molecule involved and the set of edges E were the

regulations between the nodes. Each regulation was described by its

sign as positive or negative (+ if activating and – if inhibiting) and

by the experimental information supporting the regulation as

mandatory or hypothetical. Mandatory regulations were

experimentally confirmed as a physical direct regulation where

the two involved molecules join physically, which can be proved

experimentally through techniques such as Double Hybrid Assay

(see Trigg et al., 2017), Chromatin Immunoprecipitation (see

Merelo et al., 2013 and Brandt et al., 2012) or by Co-

immunoprecipitation (see Husbands et al., 2016). Also, all

mandatory regulations were functionally confirmed by

experiments such as mutant analysis, which also allows to infer if

the interaction generates a positive or negative regulation towards

the target gene. On the other hand, hypothetical regulations lack an

experiment to confirm the physical interaction between molecules

or their functionality. In other words, hypothetical regulations did

not have enough experimental information to confirm that they

exist but have some experimental results suggesting there is an

interaction between two molecules.
2.2 Network graph reduction

To reduce the network graph we followed Saadatpour and

collaborators (2013) by removing isolated nodes (nodes with no

mandatory regulations), nodes that were outputs (nodes with no

target genes considering only their mandatory regulations),

mediators (nodes with only one input and one output mandatory

regulation) and inputs (nodes with no input regulations). When

eliminating a mediator node, its two regulations were fused as one

and the sign of the generated regulation was the product of the

original two: if both original regulations were positive or both

negative, then the fused regulation was positive. If only one original

regulation was negative, then the fused regulation was negative

towards the target node. We removed these nodes because they do

not affect important dynamic behaviors produced by a network,

such as the fixed-point attractors (Veliz-Cuba, 2011; Saadatpour

and Albert, 2013).
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2.3 Boolean networks

To study the dynamic of the MN we used Boolean networks

(BN). In BNs the nodes can have two values: 1 or 0. 1 represents an

expression/activation of that molecule while 0 represents lack of

expression/activity. The value of each node xi changes based on a

Boolean function:

xi(t + 1) = fi(x1i (t), x2i (t), x3i (t)…, xki (t))

where (x1i (t), x2i (t),…, xki (t)) are the values at time t of the ki
regulators of node xi. The Boolean functions of all nodes of the

network are based on experimental evidence (Wang et al., 2012;

Azpeitia et al., 2014). The set of values of all the nodes of a network

at a specific time is called the state of the network and is represented

as a vector of ones and zeros containing the values of each node in

that time. Since each node can have two values, there are 2n possible

states for a network with n nodes.

An attractor is a self-sustained group of states where, once a

network has reached it, it will stay in it unless a perturbation is

made. If the attractor is made of one state it is called a fixed-point

attractor. If the attractor comprises more than one state, it is called a

cyclic attractor since once the network has reached it, it will stay

oscillating through that group of states indefinitely. To find the

attractors of a network one can start from all possible states of the

network and follow its trajectory through time until reaching

an attractor.

There are two types of updates in a BN: Synchronous, where all

the nodes of the network update their values every time step, and

Asynchronous, where not all the nodes update their values on each

time step (Thomas and D’Ari, 1990). Unless specified, BNs were

analyzed using a Synchronous update. When an Asynchronous

update was used, we applied a general method (as shown in Harvey

and Bossomaier, 1997 and Saadatpour et al., 2010) where at each

step a single node is randomly chosen to update its value, all nodes

having the same probability of being chosen. To randomly select the

node, the Random module in Python was employed (Van

Rossum, 2020).
2.4 Definition of the abaxial-
adaxial attractors

The expected attractors correspond to the genetic expression

patterns in the cell. For this reason, we decided to define one

attractor corresponding to the expression of the MN genes in the

cells on the abaxial side and another on the adaxial side based on

their documented expression patterns (see Supplementary Material

Table S3).

Although the three post-transcriptional regulatory factors

exhibit mobility between cells, they exhibit a gradient expression

through the leaf with a predominant accumulation on the side

where they are produced — miRNA165/166 on the abaxial and

tasiR-ARF on the adaxial side (Chitwood et al., 2009; Husbands

et al., 2015). Because of this, we made the assumption that the
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expression site of all factors is also where they are being transcribed

and where they regulate their targets.

For each attractor the nodes can have three different states: On

(represented as 1) if the gene is expressed on that side of the leaf

primordium, Off (represented as 0) if the gene doesn’t show

expression on that side, and Undefined (represented with an *) if

the gene shows a gradient expression and has only a minimum

expression on that side compared to the other, or if contradictory

experimental information exists regarding its expression on a

particular side of the leaf primordium. If a gene has an Undefined

state, it means it can be On or Off on that attractor.
2.5 Types of regulations on Boolean terms

Both the Base Network and the Minimum Network contain

mandatory and hypothetical regulations, with their classification

determined by their biological experimental support (refer to the

subsection 2.0). This differentiation has implications for the

Boolean Networks: in Boolean terms, mandatory regulations must

be functional regulations as defined in previous works (Richard

et al., 2012; Comet et al., 2013; Abou-Jaoudé et al., 2016; Mori and

Mochizuki, 2017). According to this definition, a regulation is

functional if a change in the value of the regulatory node alone is

sufficient to modify the value of the regulated node. In the model

put forth here, hypothetical regulations can be functional or not.

We defined positive and negative regulations following previous

authors (Comet et al., 2013; Muñoz et al., 2018). In Boolean terms, a

positive (resp. negative) regulation is defined as a functional

regulation that activates (resp. inactivates) the target node in all

network states where the regulation is functional. If the

experimental information is not enough to define if the regulation

is positive or negative, the sign is marked as unknown, implying

that both positive or negative signs will be accepted in the

Boolean function.
2.6 Exploration of the possible BNs
using Griffin

We used the computational tool Griffin (Muñoz et al., 2018) in

order to find the BNs that satisfy the regulations of the MN and

generate the two expected attractors. Griffin allows to automate the

necessary steps for the inference and analysis of synchronous BNs,

admitting different information regarding the various types of

regulations between nodes (including positive, negative,

mandatory and hypothetical), as well as certain biological

restrictions that the BNs most support, which in our case where

the generation of only the two expected attractors.

The MN contains 22 regulations: six mandatory and 16

hypothetical. All BNs will contain the six mandatory regulations,

but each one can have different hypothetical regulations.

Different combinations of hypothetical regulations can generate

the same attractors, and the analysis of all possible combinations of
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hypothetical regulations requires a large amount of computer time

and resources. To overcome this problem, we applied the radial

exploration strategy of Griffin. This strategy fixes a maximal number

of hypothetical regulations - called the radius - that can be included

in the network. Then, it searches the BNs that produce the expected

attractors among all possible BNs with the maximal number of

accepted hypothetical regulations. A more detailed explanation can

be found in Figure S1 on the Supplementary Material. With this

strategy, we were able to find the BNs with the least number of

hypothetical regulations that satisfy the regulations and biological

restrictions. More details regarding the use of Griffin can be found

on its page http://turing.iimas.unam.mx/griffin/index.html or in

Muñoz et al., 2018.
2.7 Mutant simulations

To simulate a gain or loss of function of a gene, the value of the

mutated node is fixed as 1 or 0, respectively. A BN is said to satisfy a

mutant when the attractors of the mutant simulation correspond to

the reported experimental results.

To simulate mutant plants, we recovered two different types of

experimental results observed in the mutant. We named Expression

changes to an alteration in the expression of non-mutated genes

observed in plants with a mutation compared with their expression

on the WT plant. This represents an observed increase or decrease,

respectively, in the expression of this non-mutated gene. On the

other hand, we named Cell type changes to a loss of the abaxial or

adaxial cell type caused by the mutation. This biological

information as well as can be found in Supplementary Material

Table S4.

The mutant simulations were implemented with both

synchronous and asynchronous updates in order to compare the

obtained attractors. The asynchronous update was implemented as

indicated in subsection 2.3. Boolean networks.
2.8 Robustness analysis

As a complementary strategy to validate the BNs outlined

above, we performed two robustness analyses. The first analysis

consisted in making bitflip perturbations. Boolean functions can be

represented as truth tables. Bitflip perturbations consisted in

changing one by one each line of the truth table of each node (if

the output is 0, the bitflip changes it to 1 and vice versa). The second

analysis required the comparison between a BN and random

networks with a similar structure (i.e., same number of nodes

with the same number of input interactions for each node). For

each BN, 100 randomly created networks were generated using the

package BoolNet in R (Müssel et al., 2010). Afterwards, the same

bitflip alterations were made to these randomly created BNs and the

mean number of perturbations without changes in the attractors in

these 100 networks was compared with the total amount of

perturbations without changes obtained in the original BN.
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2.9 Biological data and codes

The biological experimental data employed to construct both

the Base and Minimum Networks is detailed in Supplementary

Material Tables S1, S2. Information related to the expression

patterns of the Minimum Network molecules, used to define the

expected attractors, is available in Supplementary Material Table S3.

Additionally, the experimental details and references used to define

the mutant simulations can be found in Supplementary Material

Table S4.

All the project codes, including those used for the Griffin search,

mutant simulations, and robustness analysis, can be accessed at

https://github.com/marianayuste/Polaridad.git.
3 Results

A flowchart with an overview of the methodological process

employed in this study can be found in Figure 2.
3.1 The base network

The Base Network incorporate all genes, microRNAs and

hormones that appear to have an important role in the abaxial-

adaxial polarity determination in leaf primordia of A. thaliana, as

well as their regulations (Figure 3). Supplementary Material Table

S1 in Supplementary Material provides a listing of all the

regulations in the Base Network, along with their corresponding

references. The regulations represent the activation or inhibition

(also called positive or negative regulation, respectively) of a

regulatory node towards the target node. Based on the

experimental evidence analyzed, we defined two types of

regulations: mandatory and hypothetical. Mandatory regulations

must be experimentally confirmed as a physical direct regulation

between two molecules (by analyses such as Double Hybrid Assay,

Chromatin Immunoprecipitation or Co-immunoprecipitation) and

have enough empirical data to support if such interaction is an

activation or an inhibition (by mutant analyses). Hypothetical

regulations have experimental results that suggest an interaction

between the two nodes but is not enough to confirm it (more details

in the Methods section). The Base Network includes 22 molecules/

nodes and 52 regulations, including 22 mandatory and 30

hypothetical regulations (Figure 3, Supplementary Material

Table S1).

With the exception of STM, all of the molecules of the Base

Network show expression on the leaf primordium during its early

stages (Lynn et al., 1999; Eshed et al., 2001; Kerstetter et al., 2001;

Kidner and Martienssen, 2004; Iwakawa et al., 2007; Wenkel et al.,

2007; Chitwood et al., 2009; Sarojam et al., 2010). Several of these

molecules, including miR165/166 (Kidner and Martienssen, 2004),

KAN1 (Caggiano et al., 2017) and REV (Caggiano et al., 2017), also

show an expression on the SAM, where the gene STM is being

expressed (Lynn et al., 1999). Later on, in the context of the leaf

development, adaxial and abaxial genes become restricted to each

side. In other words, KANADI, YABBY and ARF genes expression,
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as well as miRNA165/166, become restricted to the abaxial side,

while HD-ZipIII and AS genes expression, as well as tasiR-ARF, to

the adaxial side (see Supplementary Material Table S3).

All the nodes of the network represent one molecule except for

AS1-AS2, miR165/166, and ZPR1-4. AS1 and AS2 belong to

different gene families; AS1 is a myb (SANT) domain protein,

while AS2 is part of the AS2/LOB family (Iwakawa et al., 2007;

Machida et al., 2015), however, they regulate their targets’

expression as an obligate heterodimer (Iwasaki et al., 2013;

Kuhlemeier and Timmermans, 2016). Hence, the two were added

in a single node as AS1-AS2. The microRNAs miR165 and miR166

share the same target sequences and their own sequences differ by

only one nucleotide (Zhou et al., 2007; Merelo et al., 2016). For this

reason, they were included in the same node as miR165/166. The

node ZPR1-4 represents four genes from the family LITTLE

ZIPPER (ZPR), all of whom codify proteins which join and

inhibit HD-ZipIII family genes including PHB, PHV and REV,

and who are inhibited by the product of REV (Wenkel et al., 2007;

Reinhart et al., 2013). Consequently, these four genes are depicted

as one node.
3.2 Reduction of the base network to a
minimum network

In order to create a network that contained only the necessary

and sufficient elements to produce the abaxial-adaxial polarity we

decided to reduce the Base Network to a Minimum Network (MN,

Figure 4) by removing all the nodes that do not affect the attractors;

these included isolated nodes (i.e., nodes with no mandatory

regulations), output nodes (nodes with no target genes

considering only their mandatory regulations), mediators (nodes

with only one input and one output mandatory regulation) and

inputs (nodes with no input regulations) (see Methods for more

details). As a result, the MN provides a dynamical behavior that

allows us to identify the genes and regulations essential for the

apparition of the abaxial-adaxial polarity in the leaf primordium.

Supplementary Material Table S2 presents the regulations forming

this Minimum Network, along with the experimental evidence that

supports each one of them.

A couple of exceptions were considered due to their biological

relevance. First, even though YAB1 is an isolated node, we

maintained it in the MN because it plays an important biological

role in the generation of polarity (Siegfried et al., 1999; Eshed et al.,

2001; Kumaran et al., 2002; Yamada et al., 2011; Bonaccorso et al.,

2012). We expected that keeping YAB1 in the MN would help us

inquire if its hypothetical regulations can explain its importance.

Second, ARF3 is an output node. However, there is strong

experimental evidence that confirms a direct union between

ARF3 and YAB1 (Garcıá et al., 2006; Trigg et al., 2017). Since

there is a lack of experimental information regarding whether the

regulation is positive or negative (Tiwari et al., 2003), the ARF3

node was kept in the MN to help us explore which type of regulation

from this gene towards YAB1 is supported by the model. Finally, we

decided to remove STM and auxin nodes from the MN because they

do not seem to be involved in the generation of leaf polarity. While
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STM has an important role for meristem maintenance, its

expression diminishes once the leaf primordium starts to form

(Lynn et al., 1999). Auxin is a hormone responsible for the initiation

of leaf primordium differentiation and the genetic programs in

charge of leaf development, but not necessarily for the

establishment of polarity once the leaf starts to develop (Rast and
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Simon, 2012; Kuhlemeier, 2017; Yu et al., 2017; Conklin

et al., 2019).

For the MN to contain positive feedback loops in its regulations,

which are necessary for the generation of fixed-point attractors, all

the hypothetical regulations between the nodes of the MN were

incorporated into it.
FIGURE 2

Flowchart illustrating the methodological process employed in this study. Methodological actions are highlighted in blue, while the corresponding
results are presented in black boxes. Note that some of the output results served as inputs for subsequent actions.
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As a result, the MN consists of six nodes (five transcription

factors and one miRNA), six mandatory regulations and 16

hypothetical regulations. Interestingly, all the experimentally

confirmed mandatory regulations are inhibitions. These

regulations can be found in Supplementary Material Tables S1,
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S2. The expression patterns in the leaf primordium of these six

molecules can be found in Supplementary Material Table S3. To

verify if the MN can explain the emergence of leaf polarity it is

necessary to provide a dynamical description of the network.

Consequently, this was our next step.
FIGURE 3

Graphic representation of the Base Network of the GRN underlying the abaxial-adaxial polarity on leaves of Arabidopsis thaliana. The nodes inside
the orange polygon form the MN. Node colors depict their expression on the leaf primordium: dark green for adaxial expression, light green abaxial,
blue meristematic expression, purple expression on the whole primordium, gray unknown expression. All regulations included in the Base Network,
along with their respective references, are detailed in Supplementary Material Tables S1.
FIGURE 4

Graphic representation of the Minimum Network (MN). All the nodes and regulations of the MN formed after the different reductions made to the
Base Network. A detailed explanation of the biological information supporting each regulation in the MN is provided in Supplementary Material
Tables S2. Both hypothetical and mandatory regulations are shown. Colors and shapes of nodes and arrows share the same meaning with the ones
in Figure 3.
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3.3 Numerous Boolean networks satisfy
the MN and generate abaxial-
adaxial polarity

To describe the dynamics of the MN we used a Boolean

networks (BN) approach. It has been established that the same

network topology, which is the set of nodes and regulations that

conform the network, can be satisfied with several different BNs

(Azpeitia et al., 2017). In general, BNs are commonly constructed

without any clear criteria to select the logical rules for each node.

However, in recent years different methodologies have been

proposed for the construction of BNs following clear criteria

(Azpeitia et al., 2013; Muñoz et al., 2018; Maheshwari et al.,

2022). We decided to implement Griffin, a computational tool

that allows the inference of all the different synchronous BNs that

satisfy the regulations as well as some biological constraints (Muñoz

et al., 2018). We used the two expected attractors as the biological

constraint that the BNs must satisfy. The expected attractors of the

network correspond to the genetic expression patterns on each side

(abaxial and adaxial) of the leaf primordium (Table 1).

In summary, we fed Griffin all the regulations of the MN and the

two expected attractors. Griffin, in turn, generated all the BNs

composed of these regulations that exclusively produce those

attractors. Specifically, these BNs must include all six mandatory

regulations of the MN and may or may not include one or more of

the hypothetical regulations. We implemented a radial exploration

strategy in Griffin, which sets a maximum number of hypothetical

regulations to be included. Using Griffin to explore the possible BNs

generated by the MN, we allowed a maximum of 4 hypothetical

regulations in each network, finding 1905 different BNs that satisfy

the regulations of the MN and only generate the two expected

attractors. Furthermore, none of the possible BNs with zero or one

hypothetical regulation were able to generate only the two expected

attractors (Table 2). Consequently, the MN requires two or more

hypothetical regulations besides the six mandatory regulations in

order to satisfy the biological constraint of generating only the two

expected attractors.

The most frequent hypothetical regulations in the networks

producing the expected attractors are REV→AS1-AS2 (in 61% of

the BNs), ARF3→KAN1 (45.4%) and REV⊣KAN1 (41.5%).
3.4 Several BNs satisfy the majority of the
mutant simulations

To recognize which of the 1905 BNs found by Griffin give a

better representation of the abaxial-adaxial polarity, we executed
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mutant simulations on each of them. For each mutant simulation,

the obtained attractors were compared with the genetic expression

patterns reported experimentally (See Supplementary Material

Table S4). We compared our mutant simulations against

experimental reports describing Expression changes and Cell type

changes. The Expression change refers to modifications in gene

expression and, in our BN models, do not necessarily modify the

attractors. On the other hand, Cell type changes should modify the

attractors. Therefore, 14 mutations were simulated on each of

the BNs and compared with 8 Expression changes and 10 Cell

type changes described in the literature (Table 3). While simulating

the mutants, we realized that 1879 of the 1905 BNs generated cyclic

attractors in at least one of the simulations. In BNs, cyclic attractors

can be an artifact of a synchronous update. Since the asynchronous

update allows for each state to have more than one possible

successor, it removes possible oscillations (Thomas and D’Ari,

1990). Hence, in order to verify if these attractors were an

artifact, we repeated all simulations with an asynchronous update.

Indeed, implementing an asynchronous update reduces the BNs

with cyclic attractors to 314. Thus, an asynchronous update

eliminates the majority of the oscillations.

Three BNs satisfy 16 changes, the largest number obtained, but

still generate cyclic attractors even with an asynchronous update.

That is why we also considered the 36 BNs that satisfy 15 changes

and do not generate any cyclic attractor in the asynchronous

update. With this approach, we obtained 39 BNs that satisfy the

largest number of changes. Interestingly, all 39 selected BNs share

the hypothetical regulation of activation from REV to AS1-AS2 (the

regulation graphs of the selected BNs are shown in Supplementary

Material Figure S2). Moreover, we found that none of these BNs

satisfy the simulation of the gain-of-function of YAB1 (YAB1 = 1)

nor the simulation of the double mutant kan1 arf3 (KAN1 = 1 and

ARF3 = 0). We realized that fulfilling these simulations is
TABLE 1 The two expected attractors in the Minimum Network. The references for these expressions can be found in Supplementary Material Table S3.

YAB1 ARF3 miR165/166 KAN1 REV AS1-AS2

Adaxial * 0 0 0 1 1

Abaxial 1 1 1 1 * 0
* represents an undefined expression, which in the BN indicates that the gene can be both active (1) or inactive (0) in that attractor. More details in Methods section 2.4.
TABLE 2 Total of Boolean networks (BNs) with each amount of
hypothetical regulations that generate only the two expected attractors,
obtained from the radial exploration strategy implemented in Griffin.

Hypothetical Regulations Total BNs

0 0

1 0

2 14

3 189

4 1702

Total 1905
The last row shows the sum of all the previous ones.
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impossible because experiments report that having a gain of

function of KAN1 and a loss of function of ARF3 produce the

appearance of both phenotypes (Pekker et al., 2005). However, this

generated a contradiction with the expected attractors where KAN1

must be 0 in the adaxial attractor and ARF3 must be 1 in the

abaxial attractor.

To analyze if any of these 39 BNs dynamic is more similar to

what is biologically observed, we analyzed their robustness, since

biological GRN are usually highly robust to perturbations

(Morohashi et al., 2002).
3.5 Robustness of the BNs

In the 39 BNs recovered from the Griffin analysis we performed

systemic alterations to the logical rules of each BN using a bitflip

method and found that two BNs have the largest percentage (33%)

of perturbations that keep the original attractors without any

change. We then looked at the represented cell types of the

attractors obtained from these perturbations. We discovered that,

by allowing changes in the expression of the nodes with an

Undefined state, the same 2 BNs keep the two abaxial and adaxial

attractors in the most perturbations, both counting the

perturbations that generate only the two expected attractors

(37.5%) and the ones that generate new attractors besides the two

expected ones (37.5%). These two BNs share the same network

topology with the same 4 hypothetical regulations: REV→ AS1-AS2,

YAB1→AS1-AS2, REV⊣KAN1, KAN1⊣miR165/166 (Figure 5).

By comparing the robustness of the 39 BNs with randomly

generated networks, we found that 32 of them, including the two

BNs illustrated in Figure 5, are more robust than the average of their

100 random networks. In the BN with the largest difference between

these two percentages, 31.8% of its perturbations keep the original

attractors, in comparison with the 18.9% (12.8 SD) on average of the

perturbations that keep the original attractors in its 100 random

networks. These results indicate that the model is more robust than
FIGURE 5

Graphic representation of the shared network topology between the two BNs that obtained more robustness. Colors and shapes of nodes and
arrows share the same meaning with the ones in Figure 3.
TABLE 3 Mutant simulations and their Expression and Cell type changes
observed in experimental results.

Mutated gene Expression
changes

Cell type changes

YAB1 = 1 REV = 1 aB is conserved,
aD eliminated

ARF3 = 1 – Both aD and aB
are conserved

ARF3 = 0 – aD is conserved,
aB eliminated

KAN1 = 1 – aB is conserved,
aD eliminated

KAN1 = 0 – aD is conserved,
aB eliminated

miR165/166 = 1 ARF3 = 1 –

miR165/166 = 0 ARF3 = 0 and AS1-AS2
= 1

–

REV = 1 YAB1 = 0 aD is conserved,
aB eliminated

REV = 0 YAB1 = 1 aB is conserved,
aD eliminated

AS1-AS2 = 1 REV = 1 aD is conserved,
aB eliminated

AS1-AS2 = 0 REV = 0 –

AS1-AS2 = 0 and
ARF3 = 0

YAB1 = 1 –

KAN1 = 1 and ARF3
= 0

– Both aD and aB
are conserved

KAN1 = 0 and ARF3
= 0

– aD is conserved,
aB eliminated
The first column shows the node(s) and the type of mutation that was simulated. Due to the
lack of experimental data, not all the simulations have both types of changes. A dash
represents changes for which experimental data was not found and, consequently, were not
taken into account. Experimental support for each of these simulations can be found in
Supplementary MaterialTable S4.
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what would be expected from BNs with similar structure to the MN

but with random regulations between the nodes.
4 Discussion

Refer to Figure 2 for a visual guide to the methodological actions

and results undertaken during the construction of our model.
4.1 Abaxial and adaxial attractors can be
generated by the MN

Abaxial-adaxial polarity is a well conserved trait among leaves

of vascular plants (Fukushima and Hasebe, 2014; Tsukaya, 2014). It

has been proposed that the different tissues generated on each side

of a polarized leaf promote a higher photosynthetic efficiency

(Kuhlemeier and Timmermans, 2016) and enable the control, to

an extent, of water loss during gas exchange (Sack and Buckley,

2016). Furthermore, once the abaxial-adaxial polarity is established

in the leaf primordium, it will promote lateral growth (Qi et al.,

2017), creating a flat leaf with bilateral and dorsiventral symmetry.

For these reasons the molecular bases underlying leaf development

have been extensively studied. However, until now, it is still unclear

if the molecular components documented thus far in A. thaliana are

sufficient to explain the establishment of adaxial-abaxial polarity in

its leaves.

In this work we provide a model of the Gene Regulatory

Network involved in the formation of the abaxial-adaxial polarity

in the initial stages of differentiation of a leaf primordium. To this

end, we integrated the available experimental data from A. thaliana

into a Base Network that included all genes and other molecules

that exhibit a role in the generation of abaxial-adaxial polarity. After

reducing this initial network by removing nodes that do not affect

the attractors of the network, we end up with a Minimum Network

which was then analyzed using a BN formalism to describe its

dynamic. We found that the nodes and regulations comprising the

Minimum Network can generate the abaxial-adaxial attractors,

while also recovering most of the mutant phenotypes that have

been previously documented experimentally.
4.2 Biological implications of the model

This study proposes the nodes of the MN as the main genetical

actors behind abaxial-adaxial polarity generation in A. thaliana leaf

primordium. It also predicts some of the regulations within the MN

as the mechanisms governing this trait (discussed below in this

section). While our model provides valuable theoretical insights, we

emphasize that the results need experimental validation in order to

corroborate the biological significance of the predictions.

4.2.1 Hypothetical regulations were needed in
the model

The regulations within the network were characterized not only

by their positive or negative sign but also by their experimental
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evidence: mandatory regulations are validated as a direct physical

regulation between the two molecules by one or more experimental

results. In contrast, hypothetical regulations have a less robust

experimental support (additional details in the Methods section).

During model analyses, the presence of all mandatory regulations in

the BN is mandatory, whereas hypothetical regulations may or may

not be included. The values of each node in an attractor can be

interpreted as their expression inside the cell, meaning each

attractor can be considered a cell type (Kauffman, 1969). In this

model we looked for the generation of two fixed-point attractors

representing the abaxial and the adaxial cells in the leaf

primordium. In order to generate multiple fixed-point attractors,

a BN must contain positive feedback loops in its regulations

(Thomas and D’Ari, 1990). Considering only the mandatory

regulations we could derive from the analysis of the experimental

data, neither the Base Network nor the MN contain this type of

motifs, thus, we incorporated several hypothetical regulations to

the analysis.

4.2.2 1905 different BNs produce the abaxial-
adaxial attractors

Once different hypothetical regulations were introduced into

the MN, we found that a variety of MN topologies contain the

required positive feedback loops. We used the computational tool

Griffin for network analysis, which further confirmed that such

hypothetical regulations are required to generate the two expected

attractors, as all networks that recover these two attractors need at

least two hypothetical regulations. An exploration of all the possible

BNs generated by adding up to four hypothetical regulations give a

total of 1905 BNs that only generate the abaxial and adaxial

attractors. This large number of possible networks suggests that

there is experimental data and interactions that have yet to be tested

and described. It is possible that such interactions, once

incorporated into our model, could reduce the amount of BNs

that recover the desired attractors. However, some works show the

opposite result, where an increase on the biological information

available for a network model does not necessarily reduce the

possible BNs. For example, the GRN involved with flower

development can produce, at least, hundreds of thousands of BNs

that generate the expected attractors from the network structure,

despite the fact that it has been updated multiple times and that it

contains a much larger amount of experimental information (Dinh

et al., 2017; Muñoz et al., 2018). An alternative interpretation of our

result could be that the amount of BNs and hypothetical regulations

that can recover the two expected attractors are a quality of the

system to be robust and evolvable at the same time. In fact,

theoretical work has shown that highly robust and evolvable

networks can produce the same behavior despite multiple

modifications (Wagner, 2008). This could be the case of leaf

polarity, which seems to be evolutionary robust because it is

present in a huge number of plant lineages, but which also seems

to be highly evolvable due to the implications it has over the

establishment of other foliar characteristics, including laminarity

and lateral growth (Huang et al., 2014; Sablowski, 2015). It has been

observed that alterations on the abaxial-adaxial establishment

mechanisms cause dramatic modifications on leaf morphology,
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such as the generation of cylindrical leaves on some monocots, the

union of the petiole at the center of the lamina, or the emergence of

ectopic laminar structures (Yamaguchi et al., 2012; Fukushima and

Hasebe, 2014), making abaxial-adaxial polarity an important

starting point for leaf diversity.

4.2.3 Biological relevance of the
hypothetical regulations

It is important to stress that the most repeated hypothetical

regulations in these networks are three positive and one negative:

REV→AS1-AS2, ARF3→KAN1, REV⊣KAN1, and YAB1→KAN1.

Two of them were included in the regulations of the two most

robust BNs (Figure 5). Furthermore, each one of these regulations

generate the positive feedback loop required for the establishment

of the two fixed-point stable attractors in the MN.

The mandatory regulations we were able to infer from

experimental data are composed of negative regulations between

components that are expressed on opposite sides of the developing

leaf primordium, representing the mutual inhibition between the

abaxial and adaxial sides that enables the establishment of a

polarized leaf. Several experimental studies had proposed that

these antagonistic regulations are what allow the separation

between the two sides of the primordium (Bowman et al., 2002;

Liu et al., 2011; Yamaguchi et al., 2012). However, we show in this

work that the missing positive feedback loops enable coupling

among components of the same side and that the activation

between genes on the same side is a key factor in the

establishment and maintenance of polarity. Further investigations

focused on these four currently hypothetical regulations are

essential for a more comprehensive understanding of the

mechanisms underlying polarity generation and maintenance in

the leaf primordium.

Other regulations of particular importance for further

investigation are the four hypothetical regulations that are present

in the two most robust networks (Figure 5). These include two of

the most repeated regulations (REV→AS1-AS2 and REV⊣KAN1) as
well as two additional hypothetical regulations: YAB1→AS1-AS2

and KAN1⊣miR165/166.

More than half of the BNs obtained in the radial exploration

using Griffin exhibit one or both of the hypothetical regulations

generated by YAB1, putting into question whether keeping YAB1 in

the network made these regulations necessary to fulfill its expected

values. Yet, nearly half of the BNs lack regulations generated by

YAB1, confirming that these regulations are not necessary to

achieve the expected values for this gene. In addition to testing

the two hypothetical regulations of YAB1 in the laboratory, our

results suggest that the apparent biological importance of YAB1 in

the generation of abaxial-adaxial polarity is indeed due to the

regulations it generates towards other genes. The experimental

literature describing the regulation of YAB1 towards the AS1-AS2

heterodimer has conflicting findings, with some experimental

results suggesting this interaction to be a positive regulation

(Bonaccorso et al., 2012), while other experiments suggest it to be

a negative regulation (Lin et al., 2003; Bonaccorso et al., 2012), and

in yet other papers no regulation between these genes was observed
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(Kumaran et al., 2002; Bonaccorso et al., 2012). Interestingly, in a

biomathematical study by La Rota et al. (2011) where they modeled

abaxial-adaxial polarity in A. thaliana sepal primordia - an organ

which is akin to a specialized leaf that is part of the flower - the

YAB1 to AS1 regulation was not maintained in any of the found

solutions. However, these authors proposed that this regulation is

an activation and likely occurs only in early stages of sepal

primordia, where co-expression of these two genes has been

observed. Consistent with this inference, our study found this

regulation in numerous BNs only as an activation, in agreement

with the description of YAB1 as an activator by Bonaccorso et al.

(2012) and supporting the hypothesis that its relative importance

decreases during development due to the change of expression of

each gene towards the abaxial or adaxial side. Thus, by allowing the

expression of YAB1 in both attractors and not necessarily having

this change in the models, its expression is maintained.

In the case of ARF3, it remained as an output node in the two

most robust models recovered here. This result could potentially be

attributed to the absence of auxin and tasiARF in the MN, which are

the two primary regulators of ARF3 (Tiwari et al., 2003; Chitwood

et al., 2009).

The node with the highest number of both incoming and

outgoing regulations in the two most robust BNs is AS1-AS2.

This node also exhibits the highest number of mandatory

regulations in both the Base Network and the MN. This could be

attributed to it representing a heterodimer composed by two

distinct gene products, thus combining the available information

from both into a single node. Nonetheless, this dimer plays a

significant role during leaf primordium development as it holds

important regulations in the genetic network behind abaxial-adaxial

polarity, in addition to the constant repression it maintains towards

several KNOX genes (Husbands et al., 2015).
4.3 Mathematical and computational
implications of the model

BNs have been used for many decades to study molecular

dynamics of biological systems (Schwab et al., 2020). Initially,

BNs were based on random network graphs with random

Boolean functions. However, in the last decades, the graphs have

been successfully constructed using experimental data in many

systems, such as plant (Espinosa-Soto et al., 2004; Garcıá-Gómez

et al., 2017; Maheshwari et al., 2019), animal (Weinstein and

Mendoza, 2013 and Weinstein et al., 2020), and human (Méndez-

López et al., 2017) development, diseases (Herrmann et al., 2012;

Dahlhaus et al., 2016; Rodrıǵuez et al., 2019), aging (Siegle et al.,

2018), among many other biological processes (e.g., Ayala-

Zambrano et al., 2023). However, with a notable exception

(Raeymaekers, 2002), it had not been until recently that efforts to

standardize the formalization of biological data into Boolean

functions started appearing in the literature (e.g., Azpeitia et al.,

2013; Dinh et al., 2017; Muñoz et al., 2018; Maheshwari et al., 2022).

Here, we used Griffin (Muñoz et al., 2018), as it enables a systematic

exploration of all possible synchronous BNs that produce a desired
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set of attractors and whose Boolean functions respect all known

experimental data. Thus, Griffin is a powerful tool to infer the

Boolean functions of a GRN. Part of its power rests on the fact that

it assumes that GRNs are updated synchronously. While

synchronicity is considered an unrealistic assumption in Boolean

networks (Thomas and D’Ari, 1990), the fixed-point attractors

produced by any GRN, such as the attractors representing the

abaxial-adaxial polarity, are the same under a synchronous and an

asynchronous update. Hence, the update regime did not affect our

main results. Moreover, it allows us to use Griffin to analyze the

possible role of important players in abaxial-adaxial polarity, such

as YAB1 and ARF3, and to include missing information about their

regulations (hypothetical regulations) and attractors (genes whose

state is not yet known in an attractor). It is important to note that in

the mutant analyses we did use an asynchronous update to

eliminate cyclic attractors produced by the synchronous update.

Hence, we believe that a combination of regimes (synchronous and

asynchronous) and methods to formalize biological data into

Boolean functions (e.g., Muñoz et al., 2018 with Maheshwari

et al., 2022) is a promising avenue to improve the construction of

BNs based on biological modules.
4.4 Robustness of the model

Abaxial-adaxial leaf polarity is a strongly conserved trait among

vascular plants (Kuhlemeier and Timmermans, 2016), and the

expression and function of several of the genes behind it are also

conserved throughout their different homologs (Husbands et al.,

2009). This suggests that leaf polarity is robust to various

evolutionary changes and molecular perturbations.

Bitflip perturbations were performed on each of the BNs with

the highest number of fulfilled mutants. It was found that in two of

these BNs, 54.17% of the perturbations maintain the abaxial and

adaxial cell types, which represents the highest percentage achieved.

This shows less robustness than what we would expect from a

model of this trait, especially when compared with the robustness

obtained in other biological network models (e.g., Sánchez-Corrales

et al., 2010; Ortiz-Gutiérrez et al., 2015).

Previous studies, such as Morohashi et al. (2002) investigating

the cell cycle on Xenopus embryos, or Benıt́ez and Alvarez-Buylla

(2010) examining GRN models of trichomes patterns on A.

thaliana epidermis, have shown that different models generate

congruent results with the experimental information, but

robustness to perturbations is higher in models with more

complex structures, including a larger number of components in

their feedback loops. By reducing the Base Network to a MN of 6

nodes, the network structures are small, likely reducing the

network’s robustness. The two cell types can be generated, but the

model is fragile to perturbations. Therefore, the MN is composed of

the genes that form the network’s core responsible for polarity, but

they are not enough to explain the robustness of this biological

system. Also, in order to reduce functional redundancy, we

removed or merged together into a single representative node,

genes of the same family with similar function as redundancy has

been observed in KANADIs (Eshed et al., 2001; Eshed et al., 2004),
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ARF3 and ARF4 (Pekker et al., 2005), HD-ZipIII (PHB, PHV, and

REV) (Emery et al., 2003) and YABBY genes (Siegfried et al., 1999;

Kumaran et al., 2002). Removing these nodes simplified the

network and reduced functional redundancy, which is a key

mechanism promoting system robustness (Kitano, 2004). Another

phenomenon that could underlie the low robustness could

potentially be attributed to missing components or regulations

within the network, which have yet to be experimentally identified.

However, the discovery of 1905 distinct BNs that exclusively

produce the two abaxial and adaxial attractors suggests some

robustness of the model as a whole. By existing so many possible

BNs with this capacity, it is implied that functional variations in the

genes exist, in a Boolean rule level, which could represent different

alleles. In other words, from an evolutionary perspective, there

might be allelic variations in the network’s genes that do not modify

the required attractors to produce the abaxial-adaxial polarity.
5 Conclusion

Here we show that to explain the appearance of the expected

attractors of leaf polarity based on the current knowledge it is

necessary to include hypothetical regulations. Once hypothetical

regulations are considered, there is a large number of networks that

produce the expected steady states. This result suggests that either

there is still important missing information regarding the genes and

the regulatory interactions producing leaf polarity in A. thaliana, or

that multiple networks have evolved with the same capacity, which

might give evolutionary robustness and evolvability to polarity, or

both. Future studies on A. thaliana and other species will aid to

solve this issue. Through mutant simulations and robustness’

analyses we also showed that there are a few networks that

reproduce more experimental observations with a higher

robustness. Interestingly, these networks are similar in the sense

that they all share a set of hypothetical regulations. We believe that

due to their similarity, these networks could be used as a guide to

explore putative missing information. In any case, our work

provides a first attempt to integrate the current knowledge about

the development of leaf polarity and opens new questions that could

be used to direct future experimental studies.
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