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Clarifying the driving mechanisms of spatial and temporal changes in the

regulating ecosystem service value (RESV) is an important part of realizing the

goal of sustainable development. Existing studies have focused on specific

factors, ignoring the complex interactions between factors and their regional

differences. In this regard, the spatial and temporal changes of RESV and its

driving mechanisms in the different zones (core area, fringe area, and peripheral

area) were explored in the Poyang Lake Area, China. The results showed that

RESV spatially showed the distribution characteristics of fringe area > core area >

peripheral area, while the lakes influenced the provision of regulating ecosystem

services, showing that RESV per unit area was higher in the core area, and

gradually declined with the increase of distance from the lakes, presenting the

decreasing trend of fringe area > peripheral area. From 2000 to 2020, the study

area lost 70.5988 billion CNY for RESV, in which the core area was the most

affected. Further analysis of the driving mechanism of RESV in different areas

found that there are regional differences in the paths of the driving factors:

Population density mainly affects the core area, precipitation mainly affects the

fringe area, and GDP per land mainly affects the peripheral area.
KEYWORDS

regulating ecosystem services, lake, driving mechanisms, climate change,
anthropogenic pressures
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fevo.2024.1358822/full
https://www.frontiersin.org/articles/10.3389/fevo.2024.1358822/full
https://www.frontiersin.org/articles/10.3389/fevo.2024.1358822/full
https://www.frontiersin.org/articles/10.3389/fevo.2024.1358822/full
https://www.frontiersin.org/articles/10.3389/fevo.2024.1358822/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2024.1358822&domain=pdf&date_stamp=2024-02-22
mailto:chliu@email.ncu.edu.cn
https://doi.org/10.3389/fevo.2024.1358822
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2024.1358822
https://www.frontiersin.org/journals/ecology-and-evolution


Liu et al. 10.3389/fevo.2024.1358822
1 Introduction

Regulating ecosystem services are essential in sustaining global

material flows and energy cycles. In the current climate change

context, the status of regulating ecosystem services has been further

elevated, due to its important role in mitigating heat waves and

storing floods. Their sustainable provisioning is not only related to

basic human survival and social development but is also directly

related to realizing the United Nations’ sustainable development

goals. However, global ecosystems have evolved significantly under

the influence of frequent extreme weather events and intensified

human activities. This has constrained their ability to provide a

wide range of goods and services, affecting their economic value

(Bongaarts, 2019). IPBES notes that there has been a decline in 14

categories of natural contributions, with a highly significant decline

in regulating contributions (IPBES, 2019). In this context, it is of

great significance to study in depth the spatial and temporal

evolution of regulating ecosystem service value (RESV) and

its drivers.

RESV evolution is often the result of a combination of factors.

Among them, climatic factors, such as rainfall and temperature,

have long influenced ecosystems, affecting their structure and

function by altering geo-biochemical processes such as the water

cycle and carbon cycle (Yun et al., 2021; Felton et al., 2024). Since

the 20th century, the impacts of human activities on it have become

increasingly visible (Wang et al., 2021; Li et al., 2022a). Studies often

focus on anthropogenic factors such as land use, population density,

and socioeconomics (Belay et al., 2022; Baidoo and Obeng, 2023; Su

et al., 2023). Land is an important carrier of human activities, and

land use is the most direct form of human activity that has a great

impact on the ecosystem, which exacerbates environmental change

and unsustainability (Morshed et al., 2022; Yuan et al., 2024).

Population and environment are interdependent, and the rise in

population density directly leads to the extrusion of human living

space, accelerating a series of human activities such as resource

extraction and environmental exploitation, which have a profound

impact on the ecosystem (Fei et al., 2016). Uneven socio-economic

development indirectly leads to environmental complexity (Chen

et al., 2023a), for example, Sun et al. (2020) found that gross

domestic product (GDP) has a profound impact on regional

RESV. Some studies have comprehensively explored the impact of

factors such as climate and anthropogenic on RESV (Mahmoud and

Gan, 2018; Guo et al., 2022; He et al., 2022). For example, Wang

et al. (2016) decomposed the impacts of natural and anthropogenic

factors and found that there is a large quantitative difference

between the impacts of climate change and human activities. Li

et al. (2022b) applied spatial econometric modeling to calculate the

spillover effects of drivers and regulating ecosystem service values.

However, these studies tend to focus on the extent to which each

type of factor affects RESV while ignoring the interrelationships

between the drivers and how these factors drive changes in RESV.

In addition, the above processes tend to focus on ecosystems such as

forests, grasslands, and coastal wetlands (Helseth et al., 2022; Li

et al., 2022c; Zhang et al., 2023a), with insufficient attention paid to

lake areas.
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Lake areas are often critical areas for global biodiversity and

have an irreplaceable role in the provision of regulating ecosystem

services such as climate regulation and water purification (Zhang

et al., 2023b). Any change in the environmental quality of the lake

areas involves a wide range of social and ecological impacts

(Vincent, 2009). In recent years, the lake areas have faced

ecological risks such as deteriorating water connectivity, and gas

and water pollution. Regulating ecosystem services are the type of

ecosystem services that are most relevant to these problems. It is of

great significance to study RESV and its driving factors for the

sustainable development of the lake area. At the same time, Lake

landscapes are highly heterogeneous and dynamic, with intricate

relationships between RESV and its drivers (Blagrave et al., 2023).

The distribution of lakes may allow for regional variation in this

relationship, but this is not yet clear.

To solve the above problems, this study takes the Poyang Lake

Area (PLA) as an example, which has an important position in

global wetland protection and ecological conservation, as well as

being an internationally important wetland and a potential World

Natural Heritage site with a unique hydrological environment.

Based on the analysis of its RESV spatial and temporal

characteristics, this study evaluates the drivers and their

interactions in the different regions around the lake by using

Structural Equation Modeling (SEM).
2 Material and methods

2.1 Study area

PLA is situated in Jiangxi, China, covering an area of 21

thousand km² (Figure 1). Previous studies (Liu et al., 2012) have

divided the study area into three areas: the core area, the fringe area,

and the peripheral area. In terms of natural conditions, the terrain

of the study area is complex and varied, forming a circular tilted

distribution pattern of mountain-hills-plains from the outside to

the inside. The water system in the study area, with Poyang Lake as

the convergence center, is intricate and complex, and there are

many river runoffs. Socio-economically, PLA is the most

economically advanced area and the green industry cluster in

Jiangxi Province. In 1992, Ramsar Convention classified Poyang

Lake as a wetland of international importance. Under the regional

development and protection pattern, PLA is listed as an inland open

highland linking the “Belt and Road”, playing the role of linking the

Yangtze, Zhuhai, Fujian, and the central and western regions.

However, under the combined influence of natural factors and

human factors, PLA faces certain environmental pressures (Chen

et al., 2023b).
2.2 Data

The study data mainly include: ①land use and NDVI data from

the Resource and Environment Science and Data Center (https://

www.resdc.cn/) of the Chinese Academy of Sciences (CAS), which
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has a spatial resolution of 30 meters. Based on the needs of the

study, the land use was merged into seven types, namely, woodland,

grassland, arable land, watersheds, wetlands, construction land, and

unutilized land. According to this, the land use intensity index was

calculated and obtained. ②soil data, from the National Tibetan

Plateau Science Data Center (http://data.tpdc.ac.cn/), based on the

World Soil Database China Soil Dataset (V1.1), including silt, clay,

sand, and organic carbon content, and resampled with ArcGIS 10.8.

The spatial resolution is consistent with the data above. ③digital

elevation data, from the U.S. American Institute for Geosciences

(AIOG), with a spatial resolution of 30 m. Digital elevation data,

from the ASTEM GDEM V3 dataset of NASA (https://

www.nasa.gov/). The spatial resolution is consistent with the data

above. ④Meteorological data, from the China Meteorological Data

Website, interpolated by the ArcGIS 10.8 inverse distance weight

method to obtain the meteorological raster data with a spatial

resolution of 30 m. ⑤The GDP per land was obtained from the

Resource and Environmental Sciences Data Centre of the Chinese

Academy of Sciences (https://www.resdc.cn/DOI/DOI.aspx?

DOIID=33). The population density is from the Worldpop

dataset, and the land-use intensity is calculated based on the

land-use type (Liu et al., 2023).
2.3 Methods

2.3.1 Estimation of RESV
The Millennium Ecosystem Assessment (MEA, 2005)

subdivided regulating ecosystem services into four main types: gas

conditioning, climate regulation, environmental purification, and

water conditioning. Carbon sequestration and oxygen release

(CSOR) are considered to be the most important forms of gas

conditioning (Shi et al., 2020). Water conservation is an important
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ecosystem service that the Lake can provide (Yan et al., 2023).

Accordingly, in this study, based on the MA classification and

taking into account the actual situation of PLA, four indicators,

namely, CSOR, climate regulation, water conservation, and

environmental purification, were selected to account for RESV.

RESV = Z + V +W + T (1)

Z is the value of CSOR (CNY); V is the value of climate regulation

(CNY); W is the value of water conservation (CNY); and T is the

value of environmental purification (CNY) (Equation 1).

2.3.1.1 CSOR

CSOR is the function of natural ecosystems to absorb

atmospheric CO2 to synthesize organic compounds during

photosynthesis, and release O2 (Zhang et al., 2016). For each

kilogram of dry substances produced by a plant, it consumes

about 1.63 kg of CO2 and releases about 1.19 kg of O2 (Lin et al.,

2022; Chen et al., 2024).

Uci = 1:63� Bi � Rc � Pc (2)

Uo2i = 1:19� Bi � Po2 (3)

Z =oSi � (Uci + Uo2i) (4)

In the formula, Uci denotes the value produced by fixing CO2

per unit area of land use type i (CNY); Bi denotes the net primary

productivity of land use type i [of which 11.64 t/hm² for the forest

(Lin et al., 2022), 9.402 t/hm² for grassland (Lyu et al., 2023), 29.686

t/hm² for wetland (Li et al., 2008), 5.55 t/hm² for arable land (Zhou

et al., 2013), and 0 t/hm² for all watershed construction land (Zhou

et al., 2013)]; Rc denotes the carbon content of 27.27% in CO2; Pc
denotes the price of carbon sequestration per unit area of 771.2
FIGURE 1

Location of Poyang Lake Area.
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CNY/t (State Forestry Administration, 2016); Uo2i denotes the

value of services (CNY) generated by O2 released per unit area of

land type i; Po2 denotes the price of oxygen release per unit area

(cost of industrial oxygen production 376.47 CNY/t) (State Forestry

Administration, 2016); Z denotes the value of CSOR in PLA (CNY);

Si is the area of land use type i (hm²) (Equations 2–4).

2.3.1.2 Climate regulation

The two most important forms of climate regulation are cooling

and humidification, which are generally realized through the

transpiration of plant cover and moisture evaporation from air (Liang

et al., 2021). The transpiration of plant cover is mainly provided by

forests and grasslands, and the evaporation of water is mainly provided

by water bodies and surrounding wetlands. The alternative cost method

was applied to account for the value of climate regulation.

V = Va + Vb (5)

Va =oSi �Ha� b � P � a (6)

Vb =oSi � E � l � P (7)

Where V is the climate regulation value (CNY); Va is the value

of plant transpiration (CNY); Vb is the value of water evaporation

(CNY); Si is the area of land-use type i (hm²); Ha=81,100kj/hm²

(Liang et al., 2021); b is a constant, taken as 1kWh/3,600kj (Liang

et al., 2021); P is the electricity price in Jiangxi (0.62CNY/kWh); a is

the air-conditioning efficiency ratio; E is the annual evaporation

(mm), and l is the power consumption of 1 m³ water evaporation,

which is about 125 kWh (Li et al., 2023) (Equations 5–7).

2.3.1.3 Water conservation

Water conservation ensures the security of water supply in PLA,

which is significant to the hydrological and greening of the

economy of the urban agglomeration around Poyang Lake. In this

study, the water yield is emulated by the InVEST model, which

calculates water yield in the watershed according to the principle of

water balance. The fundamental theory of the InVEST water yield

calculation originates from the Budyko hydrothermal coupled

equilibrium hypothesis (Li et al., 2021).

W = C �WR (8)

WR = (1 − TI)�Min(1,
Kast
300

)�Min(1,
TravTime

25
)� Yield (9)

In the formula, W is the value of water conservation (CNY); C is

the amount of investment in reservoir construction (CNY/m³);WR is

the mean amount of water conservation over years (mm); TI is

topographic index, dimensionless, calculated according to the DEM;

Ksat is the saturated hydraulic conductivity of the soil (cm/d);

TravTime is the time of runoff movement (min) (Wang et al.,

2023a) (Equations 8, 9); Yield is the water yield (mm), which was

calculated as follows:

Yieldjx = (1 −
AETxj

Px
)Px (10)
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where Yieldjx is the annual water yield (mm); x is the raster cell;

j is the land use type; Px is the mean annual precipitation (mm) of

raster cell x; and AETxj is the mean annual evapotranspiration

(mm) of raster cell x on land use type j (Wu et al., 2023a)

(Equation 10).

2.3.1.4 Environmental purification

Environmental purification is very important for the health of

lake ecosystems. Environmental purification includes two forms–air

cleaning and water purification. Ecosystems that are covered with

high plants, such as woodlands and savannas, can degrade and

absorb atmospheric pollutants such as sulfur dioxide, and at the

same time have great adsorption, blocking and filtering effect on

dust, thus purifying the ecological environment (Ouyang et al.,

2020).

Ve =oSi � (Ui � Pi) (11)

Ve is the value of air cleaning (CNY); Si is the area of land of

category i (hm²); Ui is the purification capacity of environmental

pollutant i (kg/hm²); Pi is the price of purifying environmental

pollutant i (CNY/kg). According to China Biodiversity National

Situation Research Report, the annual SO2 absorption capacity of

forest land is 117.6 kg/hm²; the absorption capacity of grassland is

21.7 kg/hm²; the cost of SO2 treatment in the market is 0.6 CNY/kg;

the dust stagnation in forests and paddy fields is 33.20 t/hm²; the

dust stagnation in dry land is 30 t/hm²; and the cost of dust

reduction is 170 CNY/t (China Biodiversity National Situation

Study Report Writing Group, 1998) (Equation 11).

The following equation is used to calculate the economic value

generated by water purification (Equation 12):

Vt =oSi � C � ½(H1

T1
+
H2

T2
)� 1000 + P1 + P2� (12)

Vt represents the total value of water quality purification

(CNY); C represents the cost of artificial treatment of sewage

(CNY/t), taking the values of 1.38 (wetland, water body), 0.0467

(paddy field); H1 and H2 represent the capacity of wetland and

water body to retain N and P per unit area (kg/hm²), respectively,

H1 takes the values of 189.245 (wetland), 39.8 (water body), H2

takes the values of 34.066 (wetland), 18.6 (water body); T1 and T2

represent the concentration of N and P removed per unit area of

wastewater treatment plant (mg/L), respectively, and the values

were taken as 32 and 4; P1 and P2 represent the capacity of water

field per unit area for the retention of BOD and COD (kg/hm²), and

the values were taken as 17.07 (BOD) and 26.43 (COD) (Jiang

et al., 2017).

The total value of environmental purification is (Equation 13):

T = Ve + Vt (13)
2.3.2 Driving mechanism analysis
2.3.2.1 Driving factors

In this study, six drivers, namely mean annual temperature

(MAT), mean annual precipitation (MAP), normalized difference

vegetation index (NDVI), population density (PD), land use
frontiersin.org
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intensity (LUI), and GDP per land (GDPPL), were selected to

investigate in depth their impacts on RESV as well as the

combined impacts of interactions among the drivers on RESV

(Table 1). Among them, precipitation and temperature are the

main climate factors (Yan et al., 2022; Xu et al., 2024a), which are

directly related to the hydrological cycle, soil evapotranspiration,

and biological growth. Vegetation is crucial to ecosystems and is of

great significance in climate regulation and water conservation

(Zheng et al., 2020a; Feng et al., 2023). Population density, land

use intensity, and GDP per land are the main anthropogenic factors.

The GDP per land, as an economic indicator, reflects the economic

intensity of human activities in a place. Population density

represents the degree of agglomeration of social activities (Liang

et al., 2023). Land use intensity, to a certain degree, reflects the

degree of impact of human activities on natural ecosystems (Chen

et al., 2023c; Pan et al., 2024). These six factors were selected to

comprehensively understand the complex interactions between

natural and anthropogenic factors, reveal their joint impacts on

the spatial and temporal changes of regulating ecosystem services,

and provide a comprehensive and in-depth understanding of

sustainable development and ecological conservation.

2.3.2.2 Analysis of mechanisms driving changes in RESV

Structural equation modeling (SEM), based on the covariance

matrix of variables, is of great significance in dealing with the causal

relationships among multiple factors, and it can consider multiple

dependent variables simultaneously, thus providing a solution to

the problem of multiple causation and unobservable latent variables

in research (Zhou et al., 2023; Thiam et al., 2024; Wang et al., 2024).

Therefore, this study chose to use structural equation modeling to

investigate the driving mechanisms of changes in RESV at the 5 km2

grid scale, and the interactions among the factors. Combined with

the regional heterogeneity, we compare the differences in the

driving mechanisms in the core, fringe, and peripheral areas. In

addition, the principle of “increase and decrease” was followed to

adjust the structural equation modeling. By adding correlations

between variables and deleting variables with insignificant path

coefficients, the model’s goodness of fit was improved.
Frontiers in Ecology and Evolution 05
2.3.3 Scale selection
Spatial heterogeneity in ecosystematics is one of the more

important issues in ecological research (Xu et al., 2024a). Scale is

the unit of measurement for spatial heterogeneity, and the degree of

spatial heterogeneity is determined by the size of the scale used for

measurement. To avoid some unnecessary selection errors, this

study calculates the Shannon Diversity Index (SHDI) of land use

around PLA by Fragstats software based on the range of 1000-

5000 m, with 1000 m as the step size, respectively. By comparing the

average value of SHDI, 5000 m was chosen as the grid analysis scale

(Table 2). The sampling grid was generated by ArcGIS 10.2

software. The raster information was extracted batch-wise by its

zonal mean statistics tool.
3 Results

3.1 Spatial and temporal changes of RESV

From 2000 to 2020, the RESV of PLA showed a decreasing

trend. It is shown in the decline from 284.78 × 1010 CNY in 2000 to

279.94 × 1010 CNY in 2010 and continues to decline to 277.72 ×

1010 CNY in 2020. RESV in the study area decreased by 705.988 ×

108 CNY in 20 years, but the deceleration slowed down from 1.7%

in 2000-2010 to 0.8% in 2010-2020. RESV of each ecosystem was in

the order of climate regulation, CSOR, environmental purification,

and water conservation.

From three areas (Figure 2), the total RESV is largest in the

fringe area, followed by the core area, and smallest in the peripheral

area; however, the core area has the largest RESV per unit area,

while the fringe area is almost the same as the peripheral area. RESV

of the three major areas declined by varying degrees in the period

from 2000 to 2020. Among them, the fringe area decreased by

109.305 × 108CNY, and the rate of decrease accelerated from 0.1%

in 2000-2010 to 0.8% in 2010-2020. The core area decreased by

558.308 × 108CNY, and the rate of decrease slowed down from 4.4%

to 0.9%. And the peripheral area decreased by 381.602 ×.07CNY in

general. The trend of change first increased and then decreased.
TABLE 1 Descriptive statistics of drivers.

Variable Number Mean Sd Min Max

GDPPL (GDP per land) 8,893 812.8 3,102 28.10 170,994

MAP (Mean
annual precipitation)

8,893 1,827 299.8 1,203 2,756

Normalized Differnce
Vegetation Index (NDVI)

8,893 0.576 0.150 0.001 0.837

PD (Population density) 8,893 240.9 658.3 0.133 22,168

LUI (Land use
intensity index)

8,893 238.1 32.0 0 387.1

MAT (Mean
annual temperature)

8,893 17.890 1.412 0 19.930
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From a specific spatial perspective (Figure 3), the high RESV

were mostly gathered in the center of the core area of PLA, while the

low values were mostly distributed in the peripheral area. Among

the various types of regulating ecosystem services, high values of

CSOR are mostly distributed in the peripheral area, high values of

climate regulation are mostly distributed in the core area, high

values of water conservation are mostly distributed in the fringe

area, and high values of environmental purification are mostly

distributed in the core area.
3.2 Driving mechanism analysis based on
structural equation modeling

3.2.1 Model fit tests
The following metrics were used to assess the overall

capability and fit of the model. According to Browne and

Cudeck (1992) and MacCallum et al. (1996), the RMSEA (Root

Mean Square Error of Approximation) is generally below 0.08,

with 0.05-0.08 indicating a good fit. The RMR (Root Mean Square

Residual) is generally less than 0.08. The GFI (Goodness of Fit

Index) is greater than 0.9, and the NFI (Normative Fit Index)

ranges from 0 to 0.9, which is considered a good fit. GFI

(Goodness of Fit Index) is greater than 0.9, the model is

considered to be well-fitted. CFI (Comparative Fit Index), and

NFI (Normative Fit Index) values range from 0-1, the closer to 1

indicates a better fit. The results show that the model accuracy

meets the requirements (Table 3).
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3.2.2 Driving mechanism analysis
As can be seen from Table 4 and Figure 4, the pathways of

climate change and human activities on RESV in PLA are complex

and diverse. The direct effects of climate change factors on RESV are

mostly positive, especially within the appropriate range.

Anthropogenic factors, on the other hand, tended to have a

negative direct effect on RESV. However, when climate change

factors interact with human activity factors, the impacts can become

complex. In three areas, the mechanisms driving changes in RESV

differed among the core, fringe, and peripheral areas.

In the core area, population density had a negative direct effect

(-0.493) on RESV. On the other hand, mean annual precipitation

had a positive direct effect on RESV (0.347). In addition, population

density contributes indirectly RESV (0.130) by affecting the mean

annual temperature (0.395), and the mean annual temperature

contributes indirectly to RESV (0.130) by affecting the mean

annual precipitation (0.948). GDP per land has an indirect

inhibitory effect on RESV by acting on population density

(-0.123). NDVI and land use intensity indirectly contribute to or

inhibit changes in ESV through multiple factors.

In the fringe area, mean annual precipitation had a positive

direct effect (0.881) on RESV. However, land use intensity had a

negative direct effect on RESV (-0.180). Mean annual temperature

contributes indirectly to RESV by acting on mean annual

precipitation (0.505). Population density also indirectly inhibits

the growth of RESV by acting on land use intensity (-0.143).

NDVI indirectly contributes to the growth of RESV through

several factors.
A B

FIGURE 2

(A) RESV in the PLA and three areas, 2000-2020 (B) RESV per unit area in PLA and three areas, 2000-2020.
TABLE 2 SHDI values for 1000m-5000m, 2000-2020.

year 2000 2010 2020 mean

1000m 1.3290 1.3248 1.3552 1.3363

2000m 1.3298 1.3249 1.3570 1.3372

3000m 1.3224 1.3171 1.3525 1.3307

4000m 1.3210 1.3177 1.3506 1.3298

5000m 1.3485 1.3262 1.3597 1.3448
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In the peripheral area, GDP per land had a negative direct effect

on RESV (-0.373). Mean annual air temperature had a positive

direct effect on RESV (0.351). In addition, mean annual

temperature indirectly inhibits the growth of RESV through its

effect on land average GDP (-0.113). Land use intensity indirectly

contributes to the growth of RESV through several factors, but

population density indirectly suppresses the growth of RESV

through its effect on GDP per land (-0.178).
FIGURE 3

Spatial distribution of RESV in PLA, 2000-2020.
Frontiers in Ecology and Evolution 07
TABLE 3 Structural equation model fitting effect of three areas.

RMSEA RMR GFI CFI NFI

Core area 0.058 0.056 0.999 0.999 0.999

Fringe area 0.053 0.010 0.999 0.999 0.999

Peripheral
area

0.058 0.035 0.988 0.989 0.988
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TABLE 4 Transmission pathways of the impact of drivers on RESV.

Area Transmission
pathway

Direct
effect

Indirect
effect

Transmission pathway Direct
effect

Indirect
effect

Core area PD→RESV -0.493 GDPPL→PD→RESV -0.123

MAP→RESV 0.347 NDVI→MAT→MAP→RESV 0.118

LUI→PD→RESV -0.438 LUI→PD→MAT→MAP→RESV 0.115

MAT→MAP→RESV 0.329 NDVI→PD→MAT→MAP→RESV -0.051

NDVI→PD→RESV 0.193 GDPPL→PD→MAT→MAP→RESV 0.032

PD→MAT→MAP→RESV 0.130 NDVI→GDPPL→PD→RESV -0.013

Fringe area MAP→RESV 0.881 PD→LUI→MAT→MAP→RESV 0.200

LUI→RESV -0.180 PD→LUI→RESV -0.143

MAT→MAP→RESV 0.505 NDVI→PD→LUI→MAT→MAP→RESV -0.090

NDVI→MAP→RESV 0.471 NDVI→PD→LUI→RESV 0.064

LUI→MAT→MAP→RESV 0.251

Peripheral
area

MAT→ESV 0.351 MAT→GDPPL→RESV -0.113

GDPPL→ESV -0.373 LUI→PD→GDPPL→RESV -0.098

LUI→MAT→RESV 0.196 LUI→MAT→GDPPL→RESV -0.063

PD→GDPPL→RESV -0.178 MAP→MAT→GDPPL→RESV -0.046

MAP→MAT→RESV 0.143
F
rontiers in Eco
logy and Evolution
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FIGURE 4

Structural equation model diagram of three areas. Solid lines represent a positive effect, dashed lines represent a negative effect, numbers are
standardized coefficients, *, **, *** represent significant at the 10%, 5%, and 1% levels, respectively.
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4 Discussion

4.1 The lake affects the provision of RESV
in the surrounding area

The results of the study indicate that the overall RESV in PLA

shows a decreasing trend during the period of 2000-2020, which is

similar to the relevant studies (Dai et al., 2020; Meng et al., 2022).

This can be attributed to the disturbance of the ecosystem by

production and living activities in the lake area, such as

increasing eutrophication and reducing biodiversity (Meng et al.,

2022). In comparison with similar studies, this study characterizes

the value of ecosystem regulation services in different circles of the

lake region in terms of regional heterogeneity. It was found that the

RESV per unit area in PLA had a circle structure of core area >

fringe area > peripheral area, i.e., the RESV per unit area decreased

as the distance from the lake increased. In other words, the lake

influenced the provision of regulating ecosystem services in the

PLA. Heterogeneity and differences in the spatial distribution of

ecosystem services are quite common phenomena, as socio-

ecological resources differ significantly among regions (Dong

et al., 2023). For example, Wu et al. (2023b) found that

topography influenced the provision of CSOR service values in

the PRD region, with high values concentrated in the peripheral

ecologically favorable mountainous hills and low values in the

central plains, while Zheng et al. (2020b) found that watersheds

influenced the provision of ecosystem services, with the basins of

the Sanjiangyuan district having the ESV contribution was the

highest. For lake areas, it is an established fact that lakes have an

impact on the surrounding ecology (Zhao et al., 2021). The factors

involved in this impact are numerous and complex, as the diffuse

correlates of lake water environmental benefits can involve social,

ecological, and other factors (Manteghi et al., 2015; Qin et al., 2023).

For example, the core area is closer to the lake itself, is more directly

affected by the lake waters, and its climate regulation effect is more

significant. In addition, the core area usually contains more

wetlands, aquatic vegetation, and other rich habitats, which

provide a suitable environment for a diversity of organisms. This

may lead to higher biodiversity and regulating ecosystem service

provisioning capacity in the core area. With increasing distance

from the lake, the landscape is highly heterogeneous and may be

more susceptible to the direct impacts of anthropogenic pressures

such as agriculture and urbanization (Liu et al., 2012), which was

verified in further studies. This finding emphasizes the need to fully

understand the variability and complexity at the spatial scale when

considering lake protection and sustainable management.
4.2 Mechanisms driving spatial and
temporal changes in the RESV

Various drivers have different impacts on RESV in lakes (Xu et al.,

2024b). Liu et al. (2024) found that precipitation has a significant

positive effect on ecosystem services in lakes, andMekuria et al. (2023)

found that land degradation due to increased land use intensity
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inhibits RESV growth. However, related studies have focused on

direct effects, often ignoring the interactions between these factors

and the more complex pathways by which each factor influences

RESV. Meanwhile, due to the unique environmental characteristics of

the lake area, the driving mechanisms differ from one area to another.

Therefore, this study investigates the influence pathways of natural

and anthropogenic factors on RESV in different regions, including a

series of more complex influence pathways arising from the

interaction between natural and anthropogenic factors. It also

compares the driving mechanisms of each factor in the three areas.

4.2.1 Factors driving changes in RESV and their
influence pathway

Climatic factors, including precipitation and temperature, show

positive effects on RESV, and their synergistic effects contribute to

RESV growth. Mechanistically, temperature enhances carbon

sequestration in the region by enhancing the assimilation process

of photosynthesis (Yang et al., 2023), resulting in a higher value of

CSOR. At the same time, precipitation also increases air relative

humidity and regulates the water vapor pressure difference between

air and plant leaves (Zhao et al., 2023), which promotes

transpiration and leads to an increase in climate regulation value.

On the other hand, anthropogenic factors negatively affect

RESV, reflecting environmental externalities such as those

brought about by urbanization and economic development.

Increased environmental pollution and resource demand brought

about by higher population density and economic intensity increase

the burden on regional ecosystem regulation services (Akhtar et al.,

2022; Shen et al., 2023). RESV is mainly contributed by natural

landscapes such as woodlands, grasslands, and wetlands, which was

confirmed in this and other studies (Jo et al., 2024; Y. Pan et al.,

2014; Seidl et al., 2019). And the increase in land use intensity

brought about by urban expansion and other factors inevitably

compresses the area of the natural landscape and inhibits RESV

growth (Xiao et al., 2023).

As an indicator of vegetation cover, NDVI indirectly

contributes to the growth of RESV by increasing precipitation

and limiting population density through effects such as

promoting vegetation transpiration and increasing urban green

cover (Wolch et al., 2014).

In contrast to studies that have focused on the direct effects of

various factors on ecosystem service value (Ebner et al., 2022;

Schirpke and Ebner, 2022), this study expands on the interactions

between factors and complex pathways of influence of each factor

on RESV. In this study, climatic factors positively influenced RESV,

but there was also a negative influence on RESV through a positive

effect on anthropogenic factors, and anthropogenic factors

negatively influenced RESV, but there was also some positive

influence on RESV through a positive effect on climatic factors.

4.2.2 Differences in the driving mechanisms of
the three lake areas

It should be emphasized that the driving mechanisms produced

different results in the three areas (the core area, the fringe area, and

the peripheral area). Proximity to the lake and topographic
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variations led to different responses in each area, highlighting the

subtle nature of RESV dynamics. Among the effects of climatic

factors on RESV in the three areas, precipitation in the core area

and fringe area had a direct positive effect on ERSV, whereas

precipitation in the peripheral area was needed to indirectly

contribute to the growth of ERSV through temperature. ERSV in

the peripheral area, on the other hand, was significantly and directly

positively affected by temperature, while temperature in the core

and fringe area indirectly promoted ERSV growth through

precipitation. The reason for this is that the core area is close to

the lake and the lake effect is significant, while the fringe area has a

large terrain difference and is significantly affected by strong

convection. Both the lake effect and frequent strong convective

weather lead to higher-intensity precipitation (Nicholson, 2022;

Kvak et al., 2023). Consequently, these two areas have greater

rainfall intensity than the peripheral area, and the positive effect

on RESV is more significant. The peripheral area is farther away

from the lake. The lake effect is weak and influenced by land, and

the daily and annual differences in temperature are larger (Wang

et al., 2023b). Its RESV response to air temperature is more sensitive

than that of the core area and the fringe area and is more

significantly affected by the direct effect of temperature. In

contrast, when studying the effect of NDVI on RESV in the PLA,

it was found that its indirect effect only existed in the core and fringe

areas. This reflects that the lake has a great influence on the role of

NDVI. The core and fringe areas have higher vegetation diversity

due to their closer proximity to the lake than the peripheral area,

and the vegetation has a significant indirect effect on RESV.
4.3 Policy recommendations for the
enhancement of RESV

Understanding the spatial and temporal evolution of ERSV in

PLA and studying its driving factors can provide scientific support

for the sustainability and environmental protection of the region.

ERSV in the core area is directly and negatively affected by

population density. This area is significantly affected by the

interaction of anthropogenic factors, which further inhibits the

growth of ERSV. This area covers the economic, cultural, and

transportation center of Jiangxi Province, and the population is

concentrated. Therefore, this area can be reasonably allocated to the

peripheral regions of the city through the formulation of a rational

regional development plan that allocates the layout of population,

industry, and infrastructure to the peripheral areas of the city. It is

worth noting that the contradiction between ecological land and

construction land in the city center is unavoidable, and the

advantages of green infrastructures, such as air gardens, should be

brought into play to mitigate the impact of human activities on the

ecological environment. The fringe area is subject to the direct

negative influence of land use intensity. The area has a high

urbanization rate and high land use intensity. The allocation of

land resources should be optimized, the moderately intensive mode

should be applied to improve the efficiency of construction land use

according to the actual situation, and a certain proportion of

ecological parks should be planned and constructed to promote
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RESV. The peripheral area is significantly negatively affected by the

GDP per land. The ecological background of this area is relatively

good, and it should promote the transformation of the economic

growth mode from rough to intensive, realize the synergistic

development of environmental protection and economic growth,

and pilot the development of eco-industries and the construction of

new green eco-districts (urban areas and parks).
5 Conclusion

Clarifying the spatial and temporal evolution of RESV and the

driving mechanism of its changes is very significant to the realization

of sustainable development goals. Taking the PLA as an example, this

study analyzes the spatiotemporal changes of its RESV from 2000 to

2020 and explores the spatial heterogeneity of the drivers of RESV.

This study found that 1) the RESV of PLA decreased period by

period. Of these, CSOR values declined most significantly. 2) The

high RESV is mostly concentrated in the central PLA where lakes are

mainly clustered. In terms of specific indicators, the high values of

climate regulation and environmental purification are concentrated

in the core area, the high values of CSOR are concentrated in the

peripheral area, and the high values of water conservation are

concentrated in the fringe area. 3) RESV in different areas is

influenced by different kinds of factors, and the influence paths are

different. Climate change factors mainly positively affect the RESV,

but the impacts are complex when interacting with human activities.

Meanwhile, anthropogenic factors often negatively affect RESV, but

can also positively affect it in some contexts through interaction

pathways, and NDVI indirectly affects RESV by other factors. The

study emphasizes the complexity of RESV under the influence of

multiple factors, which has important implications for ecological

conservation and sustainable development.
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